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Abstract—This paper proposes a GLMM with spatial and 

temporal effects for malaria data in Thailand. A Bayesian method is 

used for parameter estimation via Gibbs sampling MCMC. A 

conditional autoregressive (CAR) model is assumed to present the 

spatial effects. The temporal correlation is presented through the 

covariance matrix of the random effects. The malaria quarterly data 

have been extracted from the Bureau of Epidemiology, Ministry of 

Public Health of Thailand. The factors considered are rainfall and 

temperature. The result shows that rainfall and temperature are 

positively related to the malaria morbidity rate. The posterior means 

of the estimated morbidity rates are used to construct the malaria 

maps. The top 5 highest morbidity rates (per 100,000 population) are 

in Trat (Q3, 111.70), Chiang Mai (Q3, 104.70), Narathiwat (Q4, 

97.69), Chiang Mai (Q2, 88.51), and Chanthaburi (Q3, 86.82). 

According to the DIC criterion, the proposed model has a better 

performance than the GLMM with spatial effects but without 

temporal terms. 

 

Keywords—Bayesian method, generalized linear mixed model 

(GLMM), malaria, spatial effects, temporal correlation. 

I. INTRODUCTION 

ALARIA has been a leading cause of morbidity and 

mortality in Thailand for many decades. Around 32 

million people are at risk of malaria. All the four types of 

malaria are prevalent in the country [1]. For the effective 

control utilization of resources is required. The type and 

degree of interventions need to be based on epidemiological 

patterns of malaria risk. Malaria risk varies in space and time 

[2]. It is important to describe the spatio-temporal variability 

of malaria risk to guide control programs [3]-[5]. Disease 

mapping defined as a method for displaying the spatial 

distribution of disease occurrence, or exposure occurrence, on 

a map is the most basic way of visualizing the spatial 

distribution of the disease of interest in a defined area. The 

production of malaria maps relies on modeling to predict the 

risk for most of the map.  

Accurate prediction of risk is dependent on knowledge of a 

number of environmental and climatic factors that are related 

to malaria transmission [6], [7]. Routine hospital malaria data 

provide a proxy for the incidence or severe malaria and for the 

crudely estimating morbidity rate or equivalent indicators. 

Analysis of these data may allow to access, compare and 

improve the care provided at all levels of health care. It assists 

in monitoring and planning resource needs in a health system 
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and designing appropriate interventions, tailored towards 

communities at high risk or lead to further investigations to 

identify important risk factors [8]. This paper was motivated 

by a yearly report of the malaria data collected by the Bureau 

of Epidemiology, Ministry of Public Heath, Thailand, in 

which descriptive statistics such as percentages and charts are 

commonly presented [9]. An alternative and useful tool is 

presenting in disease maps. Therefore, we seek for a proper 

model for disease mapping. Reference [10] studies factors 

related to malaria incidence rates in Thailand using 

generalized linear mixed models (GLMM). Reference [11] 

extends their model [10] by adding spatial random effects in 

the GLMM under a hierarchical Bayesian framework. Their 

model is applied to malaria data in Thailand and malaria maps 

are constructed.  

This paper, extending the model of [11], proposes a GLMM 

with spatial effects and random effects that account for the 

temporal correlation. Hierarchical Bayesian inference via 

Gibbs sampling Markov Chain Mote Carlo (MCMC) is used 

for parameter estimation. The posterior means of the estimated 

mortality rates are used for producing malaria maps. The 

response variables are the repeated count data, the number of 

malaria patients collected quarterly in each province of 

Thailand in 2012. The factors considered are rainfall and 

temperature. This paper is organized as follows. Section II 

briefly describes the methodology. The application is 

illustrated in Section III. In Section IV, the result of the study 

is presented. Lastly, in Sections V and VI the discussion and 

conclusion are drawn.  

II. METHODOLOGY  

A GLMM with spatial effects and temporal effects are 

employed. The spatial effects are assumed to arise from the 

conditional autoregressive (CAR) model originally proposed 

by [12]. The temporal correlation is specified in the 

covariance matrix of the random effects. The model is 

expressed as: 

For 1,...,i m= , 1,...,j q= , 

Assume | , ( )
iid

ij i i ijy v Pois µ∼b , 1( ,..., )Ti i iqy y=y and 

i1 iq(b ,..., b )Ti =b , the proposed model is:  

 

1

log( )
q
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ij ij ki i
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b vµ
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= + +∑x β ,                             (1) 

 

where ijx are vectors of fixed effects, 
0( ,..., )

T

kβ β=β is a 

vector of fixed effect coefficients, 
ib are vectors of random 
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effects, and 
iv are spatial effects. 
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where 1ijw =  if ,i j  are adjacent (or 0 if they are not), 

i ij

j

w w+ = ∑
, and 

2

vτ  is a conditional variance of iv . 

Model estimation was achieved using a hierarchical 

Bayesian approach [13]. Bayesian Inference is based on 

estimating the probability density of the parameters θ  in the 

model after observing the data, their posterior distributions, 

p( | )θ Y . 

 

p( , ) p( | )π( )
p( | )

p( ) ( | ) ( )p dπ
= =

∫θ

θ Y Y θ θ
θ Y

Y Y θ θ θ

                     (3) 

 

        p( | ) f ( | )π( )∝θ Y Y θ θ                      (4) 

 

f ( | )Y θ  is the likelihood of the model, which reflects the 

relationship between the data and the parameters. π( )θ  is the 

prior distribution of the parameters, which reflects the initial 

information on the parameters. Usually, p( | )θ Y is computed 

by simulation using Markov Chain Monte Carlo techniques. 

MCMC aims at simulating a series of values for the 

parameters in the model, so that, in the end, these values will 

be drawn from the posterior distribution. The most common 

hierarchical Bayesian model is the case that there are 3 stages. 

At the first stage, a distribution for the data given parameters 

is specified. At the second stage, prior distributions for 

parameters given hyper-parameters are specified, and 

distributions for hyper-parameters are specified at the third 

stage.  

III. APPLICATION  

Data: Malaria quarterly data have been extracted from the 

Bureau of Epidemiology, Ministry of Public Health, Thailand 

[9]. Factors considered in this study are rainfall and 

temperature collected for the Thai Meteorological Department 

[14]. 

For province i  and quarter j , 1,...,76i = , 1,..., 4j = , 

let 
ijy = the number of the malaria patients.  

Assume | , ( )
iid

ij i i ijy v Pois µ∼b , 
1 2 3 4( , , , )Ti i i i iy y y y=y and 

i1 i2 i3 i4(b ,b ,b ,b )Ti =b , the proposed model is:  

 

0 1 2 1 2 3 4
log( ) log( ) *

ij i ij ij i i i i i
pop rain temp b b b b vµ β β β= + + + + + + + +   (5) 

 

where 
0 1 2, ,β β β  are fixed effect coefficients,

ijrain are the 

amounts of rainfall, and 
ijtemp are the average temperatures, 

ib are vectors of random effects that take into account the 

temporal correlation via its covariance matrix, and 
iv are 

spatial effects that account for the spatial dependence. We add 

the offsets, log( )ipop , where ipop are mid-year population, so 

that we can get the morbidity rates (MR).  
 

 
0 1 2 1 2 3 4MR exp( * )ij ij i i i i irain temp b b b b vβ β β= + + + + + + +    (6) 

  

Diffuse priors are assigned to the fixed effect coefficients. 
 

4

0 1 2, , N(0.0,10 ),β β β ∼ MN( , )i ∼b 0 D . 

 

The covariance structure of D is assumed to be 

exchangeable, 
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assume 2
ΙG(0.5,0.005)vτ ∼ . 

The model was implemented using WinBugs [15]. The 

Gibbs sampling MCMC are run for 25,000 iterations, with 

burn-in of 5,000. We assess MCMC convergence of all model 

parameters by visual analysis of history and Kernel density 

plots. The performance of the proposed model is compared 

with the GLMM with spatial effects but without temporal 

correlation: 
 

0 1 2log( ) log( ) *ij i ij ij i ipop rain temp b vµ β β β= + + + + + .         (8) 

 

The deviance information criterion (DIC) is used [16]. 

Smaller DIC is preferable to larger DIC. 

 

 

Fig. 1 History plot of 
0β showing convergence 

 

 
Fig. 2 History plot of 

1β showing convergence 

 

 

Fig. 3 History plot of 
2β showing convergence 
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IV. RESULT 

As an example, for 
0β , 

1β and
2β , the history plots in Figs. 

1-3 show no trend and snake around the mean and the Kernel 

density plots in Figs. 4-6 look more bell-shape or not multi-

modal. These suggest Gibbs sampling MCMC convergence. 

Table I presents the posterior means, the corresponding 95% 

credible intervals (CI) for the parameters, and morbidity rates. 

If the amount of rainfall increases by 1 mm, the malaria 

morbidity rate (per 100,000 population) will increase by 

0.08%. If the temperature increases by 1°C, the morbidity rate 

will increase by 38.14. The spatial variation across the areas is 

not large ( 2

vτ = 0.0146). The temporal correlation ( 0.4677)ρ =

is quite large, as well as the variability in each area is quite 

large ( 2
2.4470σ = ). Since the DIC of the proposed model 

(21,000) is less than the DIC of the GLMM with spatial 

effects but without temporal correlation (DIC =21,700), it is 

evident that the proposed model has a better performance. The 

province and quarter (Q) whose morbidity rate (per 100,000 

population) is higher than 80 is presented in Table II. The 

malaria maps showing the distribution of the mortality rates in 

each province are presented in Figs. 7–10. 
 

 

Fig. 4 Kernel density plot of 
0β showing convergence 

 

 

Fig. 5 Kernel density plot of 
1β showing convergence 

 

 

Fig. 6 Kernel density plot of 
2β showing convergence 

 
TABLE I 

POSTERIOR MEANS, THE CORRESPONDING 95% CREDIBLE INTERVALS (CI) 

FOR THE PARAMETERS, AND MORBIDITY RATES  

Param. Mean 
Stand. 95% Credible Morbid. 

Error  Interval Rate 

0β  -6.5740 0.1413 -6.8460 -6.2950 0.0014 

1
β (rain) 0.0008 0.0000 0.0008 0.0008 1.0008 

2β  (temp) 0.3231 0.0040 0.3153 0.3309 1.3814 
ρ  0.4677 0.3034 0.0190 0.9819 - 

2σ  2.4470 1.1100 1.0920 5.0400 - 

 2

vτ  0.0146 0.0221 0.0015 0.0711 - 

TABLE II 

PROVINCE AND QUARTER (Q) IN WHICH THE POSTERIOR MEAN OF THE 

ESTIMATED MORBIDITY RATE (PER 100,000 POPULATION) IS HIGHER  

THAN 80 

Province Q Mean 
Stand. 95% Credible 

 Error Interval 

Trat 3 111.70 5.50 101.20 122.70 

Chiang Mai 3 104.70 1.75 101.30 108.20 

Narathiwat 4 97.69 2.64 92.61 102.90 

Chiang Mai 2 88.51 1.52 85.57 91.54 

Chanthaburi 3 86.82 2.58 81.87 91.95 

Nakhon Sawan 4 81.09 1.68 77.79 84.39 

Surin 2 80.79 1.54 77.83 83.85 

V. DISCUSSION  

The malaria maps cluster and identify the regions which 

have high risk of this disease. Such identification is important 

because policy makers may wish to target regions associated 

with such extreme risks for financial assistance while 

epidemiologist may wish to target such regions for further 

study. Rainfall and temperature are related to the malaria 

morbidity rates. This result supports the finding of [17] 

indicating that the temperature and rainfall are strong positive 

predictors of increased annual malaria incidence in Zimbabwe. 

Our proposed model has a better performance than the GLMM 

with spatial effects but without temporal correlation because 

the temporal correlation usually occurs in the spatio-temporal 

data. We select exchangeable covariance structure because our 

data are quarterly collected, so each period of time is not far 

from each other. Moreover, the data are usually spatially 

correlated according to the first law of geography stating that 

“everything is related to everything else, but near things are 

more related than distant things.” [18]. Our proposed model 

can be applied to other kinds of spatio-temporal data. 

 

 

 Fig. 7 Malaria morbidity rate in Q1 
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Fig. 8 Malaria morbidity rate in Q2 

 

 

Fig. 9 Malaria morbidity rate in Q3 

 

 

Fig. 10 Malaria morbidity rate in Q4 

VI. CONCLUSION  

This paper proposes a GLMM with spatial and temporal 

effects for malaria data in Thailand. The malaria quarterly data 

have been extracted from the Bureau of Epidemiology, 

Ministry of Public Health of Thailand [9]. The related factors 

are rainfall and temperature. A Bayesian method is used for 

parameter estimation via Gibbs sampling MCMC in 

WinBUGS. The spatial dependence is presented in a CAR 

model and the temporal correlation is presented through the 

covariance matrix of the random effects. The result shows that 

rainfall and temperature are positively related to the malaria 

morbidity rate. The posterior means of the estimated morbidity 

rated are used to construct the malaria maps. The malaria 

maps show the distribution of the morbidity rate (per 100,000 

population) in each province. The top 5 highest morbidity 

rates are in Trat (Q3, 111.70), Chiang Mai (Q3, 104.70), 

Narathiwat (Q4, 97.69), Chiang Mai (Q2, 88.51), and 

Chanthaburi (Q3, 86.82). In epidemiology and surveillance, 

the map is a useful tool for gathering some information. Using 

DIC criterion, the proposed model has a better performance 

than the GLMM with spatial effects but without temporal 

terms. 
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