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Spatial Variation of WRF Model Rainfall Prediction
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Abstract—Rainfall is a major climatic parameter affecting
many sectors such as health, agriculture and water resources. Its
quantitative prediction remains a challenge to weather forecasters
although numerical weather prediction models are increasingly being
used for rainfall prediction. The performance of six convective
parameterization schemes, namely the Kain-Fritsch scheme, the
Betts-Miller-Janjic scheme, the Grell-Deveny scheme, the Grell-3D
scheme, the Grell-Fretas scheme, the New Tiedke scheme of the
weather research and forecast (WRF) model regarding quantitative
rainfall prediction over Uganda is investigated using the root mean
square error for the March-May (MAM) 2013 season. The MAM
2013 seasonal rainfall amount ranged from 200 mm to 900 mm over
Uganda with northern region receiving comparatively lower rainfall
amount (200–500 mm); western Uganda (270–550 mm); eastern
Uganda (400–900 mm) and the lake Victoria basin (400–650 mm). A
spatial variation in simulated rainfall amount by different convective
parameterization schemes was noted with the Kain-Fritsch scheme
over estimating the rainfall amount over northern Uganda (300–750
mm) but also presented comparable rainfall amounts over the eastern
Uganda (400–900 mm). The Betts-Miller-Janjic, the Grell-Deveny,
and the Grell-3D underestimated the rainfall amount over most
parts of the country especially the eastern region (300–600 mm).
The Grell-Fretas captured rainfall amount over the northern region
(250–450 mm) but also underestimated rainfall over the lake Victoria
Basin (150–300 mm) while the New Tiedke generally underestimated
rainfall amount over many areas of Uganda. For deterministic rainfall
prediction, the Grell-Fretas is recommended for rainfall prediction
over northern Uganda while the Kain-Fritsch scheme is recommended
over eastern region.

Keywords—Convective parameterization schemes, March-May
2013 rainfall season, spatial variation of parameterization schemes
over Uganda, WRF model.

I. INTRODUCTION

PRECIPITATION (e.g. rainfall) is one of the key climatic

parameter that impacts many sectors e.g. agriculture

[1], [2], health [3], electricity generation [4] and water

resources [5], [6] among others. Rainfall over Uganda is

normally influenced by the Inter–Tropical Convergence Zone,

the El Niño/La Niña episodes, the Indian Ocean Dipole and

extra-tropical weather systems [7], [1] and has large spatial

and temporal variability which complicates its prediction [1],

[8] but it can be predicted quantitatively up to 7 days [5], [9].
There are a couple of scientific ways of quantitatively

predicting rainfall such as using the radar which is superior at
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now–casts due to better spatial representation and assimilation

of initial precipitation estimates but their accuracy deteriorates

with time due to their inability to resolve growth and decay of

precipitation for long lead times [5]; the Numerical Weather

Prediction (NWP) models which have higher skill for longer

lead times because they solve the dynamics and physics of the

atmosphere [5] and statistical models such regression which

describe the relationship between the predictant and predictor

[8].

Due to large spatial and temporal variability of precipitation,

errors normally arise introducing uncertainty. This limitation

can be partly addressed by statistically correcting the models

[10]. An additional improvement in spatial performance can

be obtained by applying ensemble prediction [11]. Ensembles

members can be obtained by perturbing model physical

parameterization schemes [12], running the models at the

different time (time–lagged) [9], combining output from

different models (multi–model ensemble) [9], [13] or a

combination of all the methods.

Although ensemble prediction, radar tools and statistical

correcting predictions from numerical weather prediction

(NWP) models can attempt to address the problems in spatial

performance of NWP models, it is more important to have

a thorough knowledge regarding the performance of a given

model in any given region. In the study we employed the

weather research and forecasting (WRF) model and assessed

the spatial performance of six convective schemes. The rest

of the paper is presented as Section II describes the data and

methods, Section III presents the results and discussion while

Section IV gives the summary and conclusions.

II. DATA AND METHODS

A. Data Sources

The study used observed March–May (MAM) 2013 rainfall

data from 21 weather stations of Uganda (i.e. Fig. 1)

which was obtained from the Uganda National Meteorological

Authority (UNMA). The rainfall data was compared to

the simulated rainfall data by the WRF model over the

same period. The input data to initialize the deterministic

WRF model was obtained from the National Centers for

Environmental Prediction (NCEP) final reanalysis [14] at a

resolution of 1o × 1o, covering the period of study.

B. Rainfall of the Study Area

Rainfall over Uganda exhibits large spatial and temporal

variations with the first rains starting late in northern

region. Generally Uganda experiences two rainy season
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Fig. 1 Study region and contours in meters over the Uganda

(i.e. March–May and September–November/December). The

MAM seasonal rainfall over Uganda is generally influenced

by the Inter–Tropical Convergence Zone (ITCZ) [1], [2]; the

monsoon winds of East Africa [15], [16]; the Indian ocean

dipole; the humid Congo airmass [6]; the tropical cyclones,

semi–permanent subtropical anticyclones and easterly waves

[1], [7]; the complex topography [16], vegetation and inland

water bodies which modulate local rainfall [1], [17].

The ITCZ migrates north and southwards over the

equator twice in a year which makes the region to

experience two major rainfall seasons (March–May and

September–November). Our study considered the MAM 2013

season due to the heavy rainfall that was generally experienced

over Uganda that also caused destruction of infrastructure and

loss of lives in western Uganda.

C. Experiment Design

In this study, the spatial performance of six convective

parameterization schemes (i.e. Kain–Fritsch (KF);

Betts–Miller–Janjić (BMJ); Grell–Fretas (GF); Grell 3D

ensemble (G3); New–Tiedke (NT) and Grell–Devenyi (GD))

is assessed. Three domains (Fig. 2) are used with the first

domain at 90Km horizontal resolution sufficiently covering

Africa to capture the large scale synoptic systems (e.g. the

sub–tropical high pressure systems) important for rainfall over

equatorial region; the second domain at 30 Km horizontal

resolution covering a major part of equatorial region to cater

for influx of moisture over Uganda especially the Congo air

mass and the moist currents from Mozambique channel; and

the third domain at 10 Km resolution containing Uganda.

For all the schemes, the integration is done over MAM 2013

with same initial conditions. The cumulus parameterization

schemes are used because of their significant effect on

precipitation simulation [18].

Fig. 2 The domains used in running WRF model

Arua

Buginyanya

Entebbe

Gulu

Jinja

Kibanda

Kamenyamigo

Kitgum

Lira

Makerere

Masindi

Namulonge

Ntusi

Serere
Soroti

Tororo

Kasese

Bushenyi

Kabale

Mbarara

Kituza

Fig. 3 Study stations and isohytes in mm over Uganda

D. Methods

1) Model Performance: The model performance was

assessed by comparing the simulated rainfall using the

convective schemes and observed rainfall. Two statistical

scores: the root mean square error (RMSE) and the mean error

(Bias) were employed to assess the spatial performance of the

schemes. These performance measures have been discussed by

Mugume et al. [19].

The RMSE is obtained from the square root of the mean

square differences between predicted (i.e. P ) and observed

(i.e. O) when paired. It is computed mathematically as:

RMSE =

√√√√ 1

n

n∑
i=1

[Pi −Oi]
2

(1)
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(b) BMJ
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(c) GF

Arua

Buginyanya

Entebbe

Gulu

Jinja

Kibanda

Kamenyamigo

Kitgum

Lira

Makerere

Masindi

Namulonge

Ntusi

Serere
Soroti

Tororo

Kasese

Bushenyi

Kabale

Mbarara

Kituza

(d) G3

Arua

Buginyanya

Entebbe

Gulu

Jinja

Kibanda

Kamenyamigo

Kitgum

Lira

Makerere

Masindi

Namulonge

Ntusi

Serere
Soroti

Tororo

Kasese

Bushenyi

Kabale

Mbarara

Kituza

(e) NT

Arua

Buginyanya

Entebbe

Gulu

Jinja

Kibanda

Kamenyamigo

Kitgum

Lira

Makerere

Masindi

Namulonge

Ntusi

Serere
Soroti

Tororo

Kasese

Bushenyi

Kabale

Mbarara

Kituza

(f) GD

Fig. 4 The root mean square error of different areas over Uganda presented by the six convective schemes of WRF model

and Bias is the mean of the differences (i.e Pi −Oi) which is

computed as:

Bias =
1

n

n∑
i=1

[Pi −Oi] (2)

where i is the ith data point ordered in time.
2) Spatial Interpolation: To represent results spatially, we

employed the inverse distance weighted method (IDW). The

description of the IDW is given by Franke [20]. According to

Franke [20], given fi a partial derivative of a bivariate function

F (x, y) with distance, di defined as

di =
√

(x− xi)2 + (y − yi)2

F (x, y) becomes:

F (x, y) =

∑n
i=1 wi(x, y)fi∑n
i=1 wi(x, y)

(3)

with the weight wi defined as

wi =

[
R− di
Rdi

]2

for di �= 0; i = 1, 2, · · · , n and R is a radius of some disk

centered at (xi, yi).

III. RESULTS AND DISCUSSION

A. Overview of Rrainfall over the Study Period

The study region and isohytes representing the total rainfall

of stations considered in study is shown by Fig. 3. We observed

that the total MAM 2013 rainfall amount was generally in

the range: 200–900 mm. Stations in northern Uganda received

comparatively lower rainfall amount (i.e. 200–500 mm) which

is expected because this region normally receives a unimodal

rainfall distribution with rainfall onset around April/May

peaking around July/August. Over western Uganda, the rainfall

amount was in the range: 270–550 mm; rainfall over Eastern

Uganda was in the range: 400–900 mm while the lake Victoria

basin received rainfall in the range: 400–650 mm.

B. Spatial Performance of the Convective Schemes

The performance of the convective schemes as indicated

by the RMSE and the Bias is presented using Figs. 4 and 5,

respectively.

The results of RMSE show that the KF scheme gave the

highest RMSE over northern region (i.e. 25–60) while the

other schemes gave RMSE of 20–30. With exception of KF
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(f) GD

Fig. 5 The mean error (Bias) of different areas over Uganda presented by the six convective schemes of WRF model

scheme, all the other schemes presented poor performance

over eastern Uganda. Additionally, the performance over the

lake Victoria basin was equally poor in the 30–60. The RMSE

of the schemes over western Uganda was in the range 10–25.

The results of Bias show that the KF scheme had positive

Bias over the northern region (Bias: 2 to 10) and a negative

Bias over the eastern region (Bias: -4 to 0). The NT scheme

gave the largest negative bias (Bias: -12 to -7) over the lake

Victoria basin. The schemes also presented negative bias over

the lake victoria basin (generally in the range: -8 to 0) and

Bias: -4 to 0 over western Uganda.

IV. SUMMARY AND CONCLUSION

The study assessed the performance of six convective

parameterization schemes of WRF model over Uganda using

the MAM 2013 rainfall that was in the range 200–900 mm.

The cumulus schemes presented varied results over different

regions of Uganda with the KF scheme over estimating

rainfall over northern Uganda; the BMJ, the GD and the

G3 schemes underestimating rainfall amount over most parts

of the country especially the eastern region; the GF scheme

capturing rainfall amount over the northern region while the

NT scheme generally underestimating rainfall amount over

most of the areas.

The schemes generally presented a RMSE in the range of 10

to 30 with poor performance notable over the northern region.

A negative Bias is generally noted over most parts of Uganda

with exception of the northern region. These results confirm

that you can not find a perfect convective scheme for all the

areas in Uganda. The study proposes using ensemble methods

to improve performance of the schemes over Uganda.
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