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Sparsity-Aware and Noise-Robust Subband
Adaptive Filter
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Abstract—This paper presents a subband adaptive filter (SAF)
for a system identification where an impulse response is sparse
and disturbed with an impulsive noise. Benefiting from the uses
of l1-norm optimization and l0-norm penalty of the weight vector
in the cost function, the proposed l0-norm sign SAF (l0-SSAF)
achieves both robustness against impulsive noise and much improved
convergence behavior than the classical adaptive filters. Simulation
results in the system identification scenario confirm that the proposed
l0-norm SSAF is not only more robust but also faster and more
accurate than its counterparts in the sparse system identification in
the presence of impulsive noise.
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I. INTRODUCTION

THE normalized least mean square (NLMS) algorithm

has become one of the most popular and widely used

adaptive filtering algorithms because of its simplicity and

robustness. Despite these advantages, the use of NLMS has

been limited since it converges poorly for correlated input

signals [1]–[4]. To address this problem, various approaches

have been presented, such as the recursive least squares

algorithm [1], [2], the affine projection algorithm [2], [3], and

subband adaptive filtering (SAF) [5]–[9]. Among these, the

SAF algorithm allocates the input signals and desired response

into almost mutually exclusive subbands. This prewhitening

characteristic of SAF allows each subband to converge

almost separately so that the subband algorithms obtain faster

convergence behavior. On the basis of these characteristics,

Lee and Gan proposed a normalized SAF (NSAF) algorithm

in [8], [9]. This work improves the convergence speed,

while using almost the same computational complexity as the

NLMS algorithm. However, the NSAF still suffers from the

degradation of convergence performance in cases when an

underlying system to be identified is sparse such as network

echo path [10], underwater channel [11], and digital TV

transmission channel [12]. Motivated by the proportionate

step-size adaptive filtering [13], [14], the proportionate NSAF

(PNSAF) has been presented to combat poor convergence

in a sparse system identification [15]. However, it does not

exploit the sparsity condition itself. Moreover, the NSAF

and PNSAF algorithms are highly sensitive to impulsive

interference, leading to deteriorated convergence behavior.

Impulsive interference exits in various applications such as
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acoustic echo cancellation [17], network cancellation [18],

subspace tracking [19], and so on.

To address the robustness issue, the sign SAF (SSAF) [16]

has been developed based on the l1-norm optimization, making

it robust against impulsive interference. However, its use is

limited in case of a sparse system identification. Moreover, the

SSAF converges poorly and fails to accelerate the convergence

rate with the number of subbands.

Motivated by compressive sensing framework [20], [21]

and the least absolute shrinkage and selection operator

(LASSO) [22], a variety of adaptive filtering algorithms which

incorporates the sparsity of a system has been developed

unlike the proportionate adaptive filtering approach [23]–[26].

Especially, the l0-norm of a system is able to represent

the actual sparsity [24]–[26]. In this paper, a l0-norm

constraint SSAF (l0-SSAF) is presented, aiming at developing

a sparsity-aware SSAF. With this in mind, by integrating

the l0-norm penalty of the current weight vector into the

l1-norm optimization criterion, the l0-SSAF benefits both

much improved convergence for a sparse system identification

and robustness against impulsive noise. In addition, the

l0-SSAF is derived from a l1-norm optimization of the a
priori error instead of the a posteriori error used in the SSAF.

Thus, there is no need to approximate the a posteriori error

with the a priori error to derive the update recursion of the

l0-SSAF. Simulation results show that the l0-SSAF is superior

to the conventional SAFs in identifying a sparse system in the

presence of severe impulsive noise.

II. CONVENTIONAL SAFS

Consider a desired signal d(n) that arise from the system

identification model

d(n) = u(n)w◦ + v(n), (1)

where w◦ is a column vector for the impulse response of

an unknown system that we wish to estimate, v(n) accounts

for measurement noise with zero mean and variance σ2
v and

u(n) = [u(n) u(n− 1) · · ·u(n−M + 1)] is a 1×M input

vector.

Fig. 1 shows the structure of the NSAF, where the desired

signal d(n) and output signal u(n) are partitioned into N
subbands by the analysis filters H0(z), H1(z), . . . , HN−1(z).
The resultant subband signals, di(n) and yi(n) for i =
0, 1, . . . , N − 1, are critically decimated to a lower sampling

rate commensurate with their bandwidth. Here, the variable n
to index the original sequences, and k to index the decimated

sequences are used for all signals. Then, the decimated desired
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Fig. 1 Subband structure used in the proposed SAF

signal and the decimated filter output signal at each subband

are defined as di,D(k) = di(kN) and yi,D(k) = ui(k)w(k),
where ui(k) is the input data vector for the ith subband such

that

ui(k) = [ui(kN), ui(kN − 1), . . . , ui(kN −M + 1)]

and w(k) = [w0(k), w1(k), . . . , wM−1(k)]
T denotes an

estimate for w◦. Then, the decimated subband error vector

is given by

ei,D(k) = di,D(k)− yi,D(k) = di,D(k)− ui(k)w(k). (2)

In [8], the authors have presented the update recursion of

the NSAF algorithm is given by

w(k + 1) = w(k) + μ

N−1∑
i=0

uT
i (k)

‖ui(k)‖2 ei,D(k), (3)

where μ is a step-size parameter. Then, the estimation error in

all the N subbands, i.e., eD(k) = [e0,D(k), . . . , eN−1,D(k)]T

can be written in a compact form as

eD(k) = dD(k)−U(k)w(k), (4)

where the N × M subband data matrix U(k) and the N × 1
desired response vector d(k) are given by

U(k) = [u0(k), u1(k) . . . , uN−1(k)]
T , (5)

and

dD(k) = [d0,D(k), d1,D(k), . . . , dN−1,D(k)]T . (6)

More recently, the SSAF [16] has been obtained from the

following optimization criterion:

min
w(k+1)

‖dD(k)−U(k)w(k + 1)‖1
subject to ‖w(k + 1)−w(k)‖22 ≤ μ2, (7)

where ‖ · ‖1 denotes the l1-norm and μ2 is a parameter

which prevents the weight coefficient vectors from abrupt

change. Using Lagrange multipliers to solve the constrained

optimization problem and utilizing the accessible eD(k)
instead of unavailable a posteriori error, i.e., dD(k) −
U(k)w(k+1), the update recursion of the SSAF is formulated

as

w(k + 1) = w(k) + μ
UT (k)sgn[eD(k)]√∑N−1
i=0 ui(k)uT

i (k) + δ
, (8)

where δ is a regularization parameter and sgn(·)
denotes the sign function, where sgn[eD(k)] =
[sgn(e0,D(k)), . . . , sgn(eN−1,D(k))]T .

III. PROPOSED l0-NORM CONSTRAINT SSAF (l0-SSAF)

Our objective is to cope with the sparsity of an

underlying system while inheriting robustness from the

l1-norm optimization criterion. Our approach is to find a new

weight vector, w(k + 1), that minimizes the l1-norm of the

a priori error vector with the l0-norm penalty of the current

weight vector w(k) as follows:

min
w

J(k) � min
w

[‖eD(k)‖1 + γ‖w(k)‖0] . (9)

where ‖·‖0 denotes the l0-norm and γ(> 0) is a regularization

parameter which governs the comprise between the effect of

the l0-norm penalty term and the error vector related term.

Note that the a priori error eD(k) is used unlike the SSAF,

leading to no approximation of the a posteriori error with the

a priori error.

Taking derivative of J(k) with respect to w(k), it leads to

∇w(k)J(k) =−UT (k)sgn(eD(k)) + γ
∂‖w(k)‖0
∂w(k)

�−UT (k)sgn(eD(k)) + γfβ(w(k)),

(10)

where fβ(w(k)) � [fβ(w0(k)), fβ(w1(k)) . . . , fβ(wM−1(k))]
T .

To avoid a Non-polynomial hard problem from the l0-norm

minimization, the l0-norm penalty is often approximated as

follows [27]:

‖w(k)‖0 ≈
M−1∑
i=0

(
1− e−β|wi(k)|

)
, (11)

where the parameter β plays a role adjusting the degree of

zero attraction. A mth component of the gradient for (11) is

given by

∂‖w(k)‖0
∂wm(k)

= fβ(wm(k)) = βsgn[wm(k)]e−β|wm(k)| (12)

∀0 ≤ m ≤ M − 1. To reduce the computational cost in

(12), the 1st order Taylor series expansion of the exponential

function is employed

e−β|x| ≈
{

1− β|x|, |x| ≤ 1
β

0, elsewhere
(13)

Then, a gradient (12) is computed as

fβ(wm(k)) =

⎧⎨
⎩

β2wm(k) + β, − 1
β ≤ wm(k) < 0

β2wm(k)− β, 0 < wm(k) ≤ 1
β

0, elsewhere.

(14)

Finally, the update recursion of the l0-SSAF is given by

w(k+1) = w(k) + μUT (k)sgn(eD(k))− κfβ(w(k)), (15)

where μ is the step-size parameter and κ = μγ.
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Fig. 2 NMSD Learning curves of the NSAF, PNSAF, SSAF, and l0-SSAF
algorithms [N=4, SIR=-30 dB, Input: Gaussian AR(1) with pole at 0.9]
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Fig. 3 NMSD Learning curves of the l0-SSAF algorithm with various γ
values [N=4, SIR=-30 dB, Input: Gaussian AR(1) with pole at 0.9]

IV. SIMULATION RESULTS

To validate the performance of the proposed l0-SSAF,

computer simulations are carried out in a system identification

scenario in which the unknown system is randomly generated.

The length of the unknown system is M = 128, where

S of them are non-zero. The non-zero filter weights are

positioned randomly and their values are taken from a

Gaussian distribution N (0, 1/S). Here, the sparse systems of

the sparsity S = 4, 8, 16, 32 are considered. The adaptive filter

and the unknown system are assumed to have the same number

of taps. The input signals u(n) are obtained by filtering

a white, zero-mean, Gaussian random sequence through a

first-order system

G1(z) = 1/(1− 0.9z−1), (16)

or a second-order system

G2(z) = (1 + 0.5z−1 + 0.8z−2)/(1− 0.9z−1). (17)
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Fig. 4 NMSD Learning curves of the NSAF, PNSAF, SSAF, and l0-SSAF
algorithms [N=4, SIR=-10 dB, Input: Gaussian AR(1) with pole at 0.9]

A measurement noise v(n) with white Gaussian distribution

is added to the system output y(n) such that the signal-to-noise

ratio (SNR) is 20 dB, where the SNR is defined as

SNR = 10 log10

(
E[y2(n)]

E[v2(n)]

)
,

where y(n) = u(n)w◦.

An impulsive noise z(n) is added to the system output

y(n) with the signal-to-interference ratio (SIR) of -30 or -10

dB correspondingly. The impulsive noise is modeled by a

Bernoulli-Gaussian (BG) distribution [17], which is obtained

as the product of a Bernoulli distribution and a Gaussian one,

i.e., z(n) = ω(n)η(n), where ω(n) is a Bernoulli process

with a probability mass function given by P (ω) = 1 − Pr
for ω = 0 and P (ω) = Pr for ω = 1. In addition, η(n) is

an additive white Gaussian noise with zero mean and variance

σ2
η = 1000σ2

y . Here, Pr = 0.01 is used. In order to compare

the convergence performance, the normalized mean square

deviation (NMSD),

Normalized MSD = E

[‖w◦ −w(k)‖2
‖w◦‖2

]
,

is taken and averaged over 50 independent trials. The

cosine-modulated filter banks [28] with the subband numbers

of N = 4 is used in the simulations. The prototype filter of

length L = 32 is used. The parameters used in simulations are

as follows: NSAF (μ = 0.0005 or 0.0001), SSAF (μ = 0.0005,

δ = 0.001), PNSAF (μ = 0.0005, ρ = 0.01), l0-SSAF

(μ = 0.0003, β = 20). The γ of the l0-norm SSAF is obtained

by repeated trials to minimize the steady-state NMSD.

Fig. 2 shows the NMSD learning curves of the NSAF,

PNSAF, SSAF, and l0-norm SSAF algorithms in the case

of SIR = −30 dB. For the l0-SSAF, γ = 5 × 10−5 is

chosen. Compared to the conventional SAF algorithms, the

proposed l0-SSAF yields remarkably improved convergence

performance in terms of the convergence rate and the

steady-state misalignment.

In Fig. 3, to verify the effect of γ on convergence

performance, the NMSD curves of the l0-SSAF for different
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γ values are illustrated in the case of SIR = −30 dB. With

different γ values (γ = 3 × 10−4, 1 × 10−4, 7 × 10−5, and

5× 10−5), the l0-SSAF is not excessively sensitive to γ. The

analysis for an optimal γ value remains a future work.

Fig. 4 illustrates the NMSD learning curves of the NSAF,

PNSAF, SSAF, and l0-norm SSAF algorithms under SIR =
−10 dB. The same γ value with Fig. 2 is chosen. In figure,

the similar results shown in Fig. 2 are observed.

V. CONCLUSION

This paper has proposed a robust and sparse-aware SSAF

algorithm which incorporates the sparsity condition of a

system into the l1-norm optimization criterion of the a priori
error vector. By utilizing the l0-norm penalty of the current

weight vector and approximating it to avoid a Non-polynomial

hard problem, the update recursion of the proposed l0-norm

SSAF is obtained while reducing the computational cost using

Taylor series expansion. The simulation results indicate that

the proposed l0-SSAF achieves highly improved convergence

performance over the conventional SAF algorithms where a

system is not only sparse but also disturbed with impulsive

noise.
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