
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:10, No:1, 2016

121

Sparsity-Aware Affine Projection Algorithm for
System Identification

Young-Seok Choi

Abstract—This work presents a new type of the affine projection
(AP) algorithms which incorporate the sparsity condition of a
system. To exploit the sparsity of the system, a weighted l1-norm
regularization is imposed on the cost function of the AP algorithm.
Minimizing the cost function with a subgradient calculus and
choosing two distinct weighting for l1-norm, two stochastic gradient
based sparsity regularized AP (SR-AP) algorithms are developed.
Experimental results exhibit that the SR-AP algorithms outperform
the typical AP counterparts for identifying sparse systems.
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I. INTRODUCTION

ADAPTIVE filtering algorithms have gained popularity

and they are proven to be efficient in various applications

such as system identification, channel equalization, echo

cancellation, and so on. Among various adaptive filtering

methods, the relative simplicity and ease of implementation

of the normalized least mean square (NLMS) algorithm have

made it a popular choice for adaptive filtering applications.

However, its convergence rate is significantly deteriorated for

correlated input signals [1], [2]. To overcome this issue, the

affine projection (AP) algorithm was introduced [3]. The AP

algorithm makes use of multiple input vectors in updating

the filter weights, leading to a faster convergence over the

LMS-type filters which update the filter weights based only

on the current input vector [2], [3]. In spite of the fascinating

features of the AP algorithm, the use of the AP algorithm is

limited when identifying sparse systems which is practically

common. To address this issue, variants of the AP algorithm

which employ the variable gain parameters in accordance with

the magnitude of the filter weights have been presented [4],

[5]. However, these proportionate AP algorithms do not exploit

the sparsity condition of an underlying system to be identified.

More recently, motivated by compressive sensing (CS)

framework, a new type of adaptive filtering which make use of

the sparsity condition of the system directly has been presented

[6], [7]. The core idea behind this approach is to incorporate

prior knowledge for the sparse system of interest by imposing

an l1-norm based sparsity regularization. Adding the sparsity

constraint (-norm regularization) to the cost function, it leads

to the shrinkage of the least relevant weights of the filter to

zeros. However, most preceding works have focused on the

LMS and the recursive least square (RLS) algorithms, thus an

AP algorithm which exploits the sparsity has been lacking.
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Along with this line, this work presents a new family of

sparse AP algorithms in a manner of incorporating a weighted

l1-norm regularization into the cost function of the classical

AP algorithm. Through a subgradient calculus and the distinct

choice of the weighted l1-norm regularization, two stochastic

gradient based sparsity regularized AP (SR-AP) algorithms

are derived: First, a simple l1-norm sparse AP algorithm is

presented. Second, a weighted l1-norm sparse AP algorithm

based on an estimate of the actual sparseness of the system is

obtained.

Numerical experiments show that inheriting the merits of

the AP algorithm, the resulting SR-AP algorithms possess

superior convergence properties over conventional AP ones

especially when the system is sparse. The remainder of this

letter is organized as follows: Section II briefly reviews the AP

algorithm in the context of system identification. In Section III,

the proposed SR-AP algorithms are developed. In Section IV,

the simulation results are presented. Section V concludes this

study.

II. AFFINE PROJECTION ALGORITHM FOR SYSTEM

IDENTIFICATION

Consider a desired signal d(i) that arise from the system

identification model

d(i) = uih
◦ + v(i), (1)

where i is the time index, h◦ is a column vector for the impulse

response of an unknown system that we wish to estimate, v(i)
accounts for measurement noise with zero mean and variance

σ2
v , and ui = [u(i) u(i−1) · · ·u(i−M+1)] is an 1×M row

input vector. In [8], the cost function of the AP algorithms is

given by

JAP(i) = E[e∗i (UiU
∗
i )

−1ei]/2, (2)

where

Ui =

⎡
⎢⎢⎢⎣

ui

ui−1

...

ui−K+1

⎤
⎥⎥⎥⎦ , di =

⎡
⎢⎢⎢⎣

d(i)
d(i− 1)

...

d(i−K + 1)

⎤
⎥⎥⎥⎦ ,

ei = di − Uihi−1, and hi−1 is an estimate for h◦ at (i −
1)th iteration. By minimizing the cost function (2), the update

recursion of the AP algorithm is represented as

hi = hi−1 + μU∗
i (UiU

∗
i + δIK)−1ei, (3)

where μ is the step-size, ρ is the regularization parameter, and

IK denotes a K ×K identity matrix.
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III. SPARSITY REGULARIZED AFFINE PROJECTION

ALGORITHM

In order to take into account the sparsity characteristic,

an augmented cost function which incorporates a weighted

l1-norm into (2) is newly formulated as

JSR−AP(i) = E
[
e∗i (UiU

∗
i )

−1ei
]
/2 + γ‖Whi−1‖1, (4)

where ‖Whi−1‖1 =
∑k=M−1

k=0 wk|hi−1,k| accounts for a

weighted l1-norm of the estimated filter weight, W is the

M × M weighting identity matrix whose diagonal elements

are wk, and hi,k, k = 0, 1, . . . ,M − 1 denote the kth weight

of hi. In addition, γ is a positive valued parameter which

provides a tradeoff between the error related term and the

sparsity. Then, a stochastic gradient update recursion with the

aim of minimizing (4) is derived as follows as:

hi = hi−1 − μ∇hJSR-AP(i)

= hi−1 + μU∗
i (UiU

∗
i + δIK)−1ei

−μγ∇s
h‖Whi−1‖1, (5)

where ∇s
hf(·) denotes a subgradient vector of the function

f(·) with respect to h. Since the weighted l1-norm is

not differentiable with respect to hi−1 when hi−1 equals

zero, here, the subgradient calculus is employed [9].

The subgradient vector ∇s
h‖Whi−1‖1 can be obtained as

WT sgn(Whi−1) = Wsgn(hi−1), since W is assumed as

a diagonal matrix with positive-valued elements. Then, a

framework of the AP algorithms with sparsity can be written

as follows as:

hi = hi−1+μU∗
i (UiU

∗
i +δIK)−1ei−μγWsgn(hi−1). (6)

Note that an update recursion (6) reduces to the typical

AP algorithm if γ = 0. Here, by choosing the weighting

matrix W, two versions of the AP algorithm with the sparsity

constraint are developed: First, the use of the identity matrix

as the weighting matrix, i.e., W = IM , leads to the following

update recursion

hi = hi−1 + μU∗
i (UiU

∗
i + δIK)−1ei − μγsgn(hi−1), (7)

which is referred to as the sparsity regularized AP-1

(SR-AP-1) algorithm.

Second, the choice of the weights inversely proportional

to the magnitude of the system weights results in an

approximation of the actual sparseness of the underlying

system, i.e., the l0-norm of the system [6]. Due to

unavailability of the system weights, here, the magnitude of

the current filter weights are used as an alternative as follows

[10]:

wj =
1

|hi−1,j |+ ε
, (8)

where hi−1,j is the j-th tap of hi−1 and ε is a small positive

value to avoid singularity in the case when |hi−1,j | = 0. Then,

the weighting matrix W consists of the values of wj as the

j-th diagonal elements. Finally, the second AP algorithm with

sparsity constraint is given by

hi = hi−1 + μU∗
i (UiU

∗
i + δIK)−1ei − μγ

sgn(hi−1)

|hi−1|+ ε
, (9)
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Fig. 1 Example of sparse system h◦

where the vector division operation accounts for a

component-wise division. This update recursion is referred to

as the sparsity regularized AP-2 (SR-AP-2) algorithm.

IV. EXPERIMENTAL RESULTS

To assess the performance of the proposed SR-APs, the

system identification simulations were carried out. A system

to be identified has 64 taps and a few taps of them, i.e., L
taps, have non-zero values, indicating the sparse characteristic.

Then, the degree of sparsity is represented as S = L/64.

The adaptive filter is assumed to have identical length of

M = 64. Fig. 1 shows an example of a sparse system h◦

of L = 8. The input signal is obtained by filtering a white,

zero-mean, Gaussian random sequence through a first-order

system F (z) = 1/(1 − 0.9z−1). The signal-to-noise ratio

(SNR) is computed by 10 log10(E[y(i)2]/E[v(i)2]), where

y(i) = uih
◦.The measurement noise v(i) is added to y(i).The

mean square deviation (MSD), E‖h◦ − hi‖2, is taken and

averaged over 50 independent trials. For the conventional APs

and the SR-APs, the projection order k = 4, and the step-size

parameter μ = 1 and μ = 0.15 for the AP in Figs. 2 and 3 are

chosen in the following system identifications. In addition, the

number of nonzero taps is set to L = 4 except Fig. 4 where

various values of L are considered.

Fig. 2 illustrates the MSD curves of the classical APs

and two SR-APs, i.e., SR-AP-1 and SR-AP-2, in the case

of SNR = 30dB. For comparison purpose, the improved

proportionate AP (IPAP) [4], [5] is considered. For both the

SR-AP-1 and SR-AP-2, γ = 3×10−4 is used. In addition, the

parameter ε = 0.1 is chosen for the SR-AP-2. In the figure,

it is clear that the SR-AP-2 indicates the best performance

as well as the SR-AP-1 outperforms two classical APs, i.e.,

the AP and IPAP, in terms of the convergence rate and

the steady-state misalignment. Then, in order to validate the

convergence performance of the classical APs and the SR-APs

under various SNRs (SNR = 15, 20, 25, 30, 35, and 40 dB),

the steady-state MSD values are compared in Fig. 3. As can

be seen, the SR-AP-2 outperforms other APs under various
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Fig. 2 MSD curves of the AP, IPAP, and SR-AP algorithms (SR-AP-1 and
SR-AP-2) [K = 4, L = 4, SNR = 30dB]
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Fig. 3 Steady-state MSD values of the AP, IPAP, and SR-AP algorithms
(SR-AP-1 and SR-AP-2) under various SNRs [K = 4, L = 4,

SNR = 15, 20, 30, 35, 40dB]

SNRs. In addition, the SR-AP-1 outperforms the classical APs

in terms of the steady-state misalignment.

Second, the convergence properties of the classical APs and

SR-AP are compared under various sparsity conditions. The

same number of tap of system with the first simulation is used

(M = 64) and the different sparsity conditions (S=2/64, 8/64,

and 16/64) are considered. Fig. 4 shows the MSD curves of

the AP, IPAP and SR-AP-2 in the case of SNR = 30dB. It

clearly shows that the more severe the sparsity of the system,

the better the convergence performance of the SR-AP over the

classical APs.

Finally, Fig. 5 illustrates the tracking performance of the

SR-AP algorithms with regard to a sudden change in the

unknown system. The unknown system is suddenly changed

from h◦ to −h◦. The figure clearly shows that the proposed

SR-AP algorithms keep track of sudden weight change without

degrading the convergence rate and the steady-state error,

outperforming the AP counterparts.
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Fig. 4 MSD curves of the AP, IPAP, and SR-AP-2 algorithms for various
sparsity conditions [K = 4, SNR = 30dB, S = 2/64, 8/64, 16/64]
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Fig. 5 MSD curves of the AP, IPAP, and SR-AP algorithms for time-varying
system identification setup [K = 4, L = 4, SNR = 30dB]

V. CONCLUSION

This work presented a novel family of the AP algorithms

which employs the sparsity constraint in identifying sparse

systems. The proposed AP algorithms take into account the

sparsity property by incorporating the variants of l1-norm of

the system into the cost function. Employing the subgradient

calculus and choosing the weighting matrix, two stochastic

gradient AP algorithms with the sparsity constraint were

developed. The resulting SR-AP algorithms have proven their

superiority over the conventional AP counterparts, especially

in cases when systems are severely sparse.
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