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Some solitary wave solutions of generalized
Pochhammer-Chree equation via Exp-function

method
Kourosh Parand, Jamal Amani Rad

Abstract—In this paper, Exp-function method is used for some
exact solitary solutions of the generalized Pochhammer-Chree equa-
tion. It has been shown that the Exp-function method, with the help
of symbolic computation, provides a very effective and powerful
mathematical tool for solving nonlinear partial differential equations.
As a result, some exact solitary solutions are obtained. It is shown
that the Exp-function method is direct, effective, succinct and can be
used for many other nonlinear partial differential equations.
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I. INTRODUCTION

THE study of exact solutions of nonlinear partial dif-
ferential equations (NPDE) plays an important role in

mathematical physics, engineering and the other sciences.
In the past several decades, various methods for obtaining
solutions of NPDE’s and ODE’s have been presented, such
as, tanh-function method [1], [2], [3], Adomian decomposition
method [4], [5], Homotopy perturbation method [6], [7], [8],
variational iteration method [9], [10], [11], spectral method
[12], [13], [14], sine-cosine method [15], [16], radial basis
method [17], [18] and so on. Recently, Ji-Huan He and Xu-
Hong Wu [19] proposed a novel method, so called Exp-
function method, which is easy, succinct and powerful to
implement to nonlinear partial differential equations arising
in mathematical physics. The Exp-function method has been
successfully applied to many kinds of NPDEs, such as, KdV
equation with variable coefficients [20], Maccari’s system [21],
Kawahara equation [22], Boussinesq equations [23], Burger’s
equations [24], [25], [26], Double Sine-Gordon equation [27],
[28], Fisher equation [29], Jaulent-Miodek equations [30] and
the other important nonlinear partial differential equations
[31], [32], [33]. In this paper we apply the Exp-function
method [19] to obtain exact solitary wave solution of a
nonlinear partial differential equation, namely, generalized
Pochhammer-Chree equation (GPC) given by

utt − uttxx − (αu+ βun+1 + γu2n+1)xx = 0 , n ≥ 1 .

where α, β and γ are constants. GPC equation represents a
nonlinear model of longitudinal wave propagation of elastic
rods [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44], [45], [46]. The model for α = 1, β = 1

n+1 and γ = 0
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was studied in [40], [41] where solitary wave solutions for
this model was obtained for n = 1, 2 and 4. A second model
for α = 0, β = − 1

2 and γ = 0 was studied by [42] and
solitary wave solutions were obtained as well. However, a third
model was investigated in [37], [43], [44], [45], [46] for n = 1
and n = 2 where explicit solitary wave solutions and kinks
solutions were derived.
The rest of the paper is organized as follows: Section 2
describes exp-function method for finding exact solutions
to the NPDEs. The applications of the proposed analytical
scheme presented in Section 3. The conclusions are discussed
in the section 4. Exp-function calculations are provided in the
end.

II. BASIC IDEA OF EXP-FUNCTION METHOD

We consider a general nonlinear PDE in the following form

N(u, ux, ut, uxx, utt, uxt, ...) = 0 , (1)

where N is a polynomial function with respect to the indicated
variables or some functions which can be reduced to a poly-
nomial function by using some transformation. We introduce
a complex variation as

u(x, t) = U(η) , η = k(x− ct) + ϕ0 . (2)

where k and c are constants and ϕ0 is an arbitrary constant.
We can rewrite Eq.(1) in the following nonlinear ordinary
differential equations

N(U, kU ′,−kcU ′, k2U ′′, ...) = 0 ,

where the prime denotes the derivation with respect to η.
According to the Exp-function method [19], we assume that
the solution can be expressed in the form

U(η) =

∑c
i=−d ai exp(iη)∑p
j=−q bj exp(jη)

, (3)

where c, d, p and q are positive integers which can be
freely chosen, ai and bj are unknown constants to be
determined. To determine the values of c and p, we balance
the highest order linear term with the highest order nonlinear
term in Eq.(3). Similarly to determine the values of d and
q. So by means of the exp-function method, we obtain
the generalized solitary solution and periodic solution for
nonlinear evolution equations arising in mathematical physics.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:7, 2010

996

III. APPLICATIONS OF THE EXP-FUNCTION METHOD

In this section, we show the detailed steps of the Exp-
function method to construct exact solitary wave solutions of
generalized Pochhammer-Chree equations (GPC)

utt − uttxx − (αu+ βun+1 + γu2n+1)xx = 0 , (4)

where α, β and γ are constants. Making the travelling wave
transformation

u(x, t) = U(η), η = k(x− ct) + ϕ0 ,

and integrating twice, here k and c are constants to be
determined later, then Eq.(4) becomes an ordinary differential
equation in the form

k2(c2 − α)U − k4c2U ′′ − k2βUn+1 − k2γU2n+1 = 0 ,

where the prime denotes the derivative with respect to η and
also where the integration constants are chosen as zero. We
now use the transformation

Un = v , (5)

which we find

U ′′ =
1− n

n2
v

1
n−2(v′)2 +

1

n
v

1
n−1v′′ ,

substituting the transformations (5) into the GPC equation
gives the ODE,

n2k2(c2 − α)v2 − k4c2(1− n)(v′)2 − k4c2nvv′′

−k2βn2v3 − k2γn2v4 = 0 , (6)

We have the following cases:
I. β �= 0
According to the Exp-function method [28], [47], [48], we
assume that the solution of Eq.(6) can be expressed in the
form

v(η) =
ac exp(cη) + ...+ a−d exp(−dη)
bp exp(pη) + ...+ b−q exp(−qη) ,

where c, d, p and q are positive integers which are unknown
to be determined later. In order to determine values of c and
p, we balance the linear term of the highest order with the
highest order nonlinear terms in Eq.(6), i.e. vv′′ and v4. By
simply calculation, we have

vv′′ =
c1 exp[(2c+ 3p)η] + ...

c2 exp[5pη] + ...
, (7)

and

v4 =
c3 exp[(4c+ p)η] + ...

c4 exp[5pη] + ...
, (8)

where ci are coefficients only for simplicity. By balancing
highest order of exp-function in Eqs.(7) and (8), we have

4c+ p = 2c+ 3p ,

which leads to the result

p = c .

Similarly to determine values of d and q, we balance the linear
term of lowest order in Eq.(6)

vv′′ =
...+ d1 exp[−(3q + 2d)η]

...+ d2 exp[−5qη]
, (9)

and

v4 =
...+ d3 exp[−(q + 4d)η]

...+ d4 exp[−5qη]
, (10)

where di are determined coefficients only for simplicity, we
have

−(3q + 2d) = −(q + 4d) ,

which leads to results

q = d .

For simplicity, we set p = c = 1 and q = d = 1, so Eq.(3)
reduces to

v(η) =
a1 exp(η) + a0 + a−1 exp(−η)
exp(η) + b0 + b−1 exp(−η) . (11)

Substituting Eq.(11) into Eq.(6), equating to zero the
coefficients of all powers of exp(nη) yields a set of algebraic
equations for a0, b0, a−1, a1, b1, k and c (see Appendix
A). By solving the system of algebraic equations with a
professional mathematical software, we obtain

a1 = 0 , a0 =
b0
β
(c2 − α)(n+ 2) , a−1 = 0 ,

b0 = b0 , k =
n

c

√
c2 − α, c = c ,

b−1 =
b20

4β2(n+ 1)

[
γ(c2 − α)(n+ 2)2 + β2(n+ 1)

]
.

Substituting these result into Eq.(11), we obtain

v(η) =

b0
β (c2 − α)(n+ 2)

exp(η) + b0 + b−1 exp(−η) .
(12)

where b0 and c are free parameters and

b−1 =
b20

4β2(n+ 1)

[
γ(c2 − α)(n+ 2)2 + β2(n+ 1)

]
.

To compare our results with those obtained in [43], [45], if
we set

b0 =
2
√
3β√

3β2 + 16γ(c2 − α)
, n = 2 ,

Eq(12) becomes

v(η) =

8
√
3√

3β2+16γ(c2−α)
(c2 − α)

exp(η) + 2
√
3β√

3β2+16γ(c2−α)
+ exp(−η)

. (13)
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where η = 2
c

√
c2 − α(x− ct) + ϕ0. We re-write Eq.(13) and

use of Eq.(5) in the form

u(x, t) = ±
{(

4

√
3(α− c2)2

3β2 − 16γ(α− c2)

sech2

[
1

c

√
c2 − α(x− ct) + ϕ0

])
/

(
2 +

(
− 1 +

√
3β√

3β2 − 16γ(α− c2)

)

sech2

[
1

c

√
c2 − α(x− ct) + ϕ0

])}1/2

which is the traveling wave solution obtained in [43], [45].
Also, by the choice γ = 0 in our solution (12) gives

v(η) =

b0
β (c2 − α)(n+ 2)

exp(η) + b0 +
1
4b

2
0 exp(−η)

. (14)

where η = n
c

√
c2 − α(x − ct) + ϕ0. To compare our results

with those obtained in [43], [45], [46], we present the follow-
ing discussion
(I) At c2 > α and b0 = 2 .
We can obtain from Eq.(14) and Eq.(5) that

u(x, t) =

{
(c2 − α)(n+ 2)

2β

sech2

[
n

2c

√
c2 − α(x− ct) + ϕ0

]}1/n

(II) At c2 > α and b0 = −2 .
We can obtain from Eq.(14) and Eq.(5) that

u(x, t) =

{
− (c2 − α)(n+ 2)

2β

csch2

[
n

2c

√
c2 − α(x− ct) + ϕ0

]}1/n

or equivalently

u(x, t) =

{
(c2 − α)(n+ 2)

8β(
2− tanh2

[
n

4c

√
c2 − α(x− ct) + ϕ0

]

− coth2

[
n

4c

√
c2 − α(x− ct) + ϕ0

])}1/n

(III) At c2 < α and b0 = 2 .
We can obtain from Eq.(14) and Eq.(5) that

u(x, t) =

{
(c2 − α)(n+ 2)

2β

sec2

[
n

2c

√
α− c2(x− ct) + ϕ0

]}1/n

(IV) At c2 < α and b0 = −2 .
We can obtain from Eq.(14) and Eq.(5) that

u(x, t) =

{
(c2 − α)(n+ 2)

2β

csc2

[
n

2c

√
α− c2(x− ct) + ϕ0

]}1/n

or equivalently

u(x, t) =

{
(c2 − α)(n+ 2)

8β(
2 + tanh2

[
n

4c

√
α− c2(x− ct) + ϕ0

]

+ coth2

[
n

4c

√
α− c2(x− ct) + ϕ0

])}1/n

which are the traveling wave solutions obtained in [43], [45],
[46].
II. β = 0
In the this case, Eq.(6) convert to

n2k2(c2 − α)v2 − k4c2(1− n)(v′)2 (15)
− k4c2nvv′′ − k2γn2v4 = 0 ,

According to the Exp-function method [28], [47], [48], we
assume that the solution of Eq.(6) can be expressed in the
form

v(η) =
a1 exp(η) + a0 + a−1 exp(−η)
exp(η) + b0 + b−1 exp(−η) . (16)

Substituting Eq.(16) into Eq.(15), equating to zero the
coefficients of all powers of exp(nη) yields a set of algebraic
equations for a0, b0, a−1, a1, b1, k and c (see Appendix
B). By solving the system of algebraic equations with a
professional mathematical software, we obtain

a1 = 0 , a0 = a0 , a−1 = 0 , b0 = 0 ,

b−1 =
1

4

γa20
(c2 − α)(n+ 1)

,

k =
n

c

√
c2 − α , c = c .

Substituting these result into Eq.(16), we obtain

v(η) =
a0

exp(η) + 1
4

γa2
0

(c2−α)(n+1) exp(−η)
. (17)

where a0 and c are free parameters. To compare our results
with those obtained in [37], [43], [45], [46], we present the
following discussion
(I). At a0 = 2

√
(n+1)(α−c2)

γ , c2 > α and γ < 0.
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We can obtain from Eq.(17) and Eq.(5) that

u(x, t) =

{
− 1

2

√
(n+ 1)(α− c2)

γ(
tanh

[
n

2c

√
c2 − α(x− ct) + ϕ0

]

− coth

[
n

2c

√
c2 − α(x− ct) + ϕ0

])}1/n

(II). At a0 = 2
√

(n+1)(c2−α)
γ , c2 > α and γ > 0.

We can obtain from Eq.(17) and Eq.(5) that

u(x, t) =

{√
(n+ 1)(c2 − α)

γ

sech2

[
n

c

√
c2 − α(x− ct) + ϕ0

]}1/n

(III). At a0 = 2i
√

(n+1)(c2−α)
γ , c2 > α and γ > 0.

We can obtain from Eq.(17) and Eq.(5) that

u(x, t) =

{
i

√
(n+ 1)(c2 − α)

γ

csch2

[
n

c

√
c2 − α(x− ct) + ϕ0

]}1/n

(IV). At a0 = 2
√

(n+1)(α−c2)
γ , c2 < α and γ < 0.

We can obtain from Eq.(17) and Eq.(5) that

u(x, t) =

{√
(n+ 1)(c2 − α)

γ

sec2

[
n

c

√
c2 − α(x− ct) + ϕ0

]}1/n

(V). At a0 = 2i
√

(n+1)(α−c2)
γ , c2 < α and γ < 0.

We can obtain from Eq.(17) and Eq.(5) that

u(x, t) =

{√
(n+ 1)(c2 − α)

γ

csc2

[
n

c

√
c2 − α(x− ct) + ϕ0

]}1/n

which are the traveling wave solutions obtained in [37], [43],
[45], [46].

IV. CONCLUSION

In this paper, Exp-function method is used to obtain some
exact solitary solutions of the generalized Pochhammer-Chree
equation. Generalized Pochhammer-Chree equation represents
a nonlinear model of longitudinal wave propagation of elastic
rods. Exp-function method changes the problem from solving
nonlinear partial differential equations to solving a ordinary

differential equations by chosen free parameters and with
the help of symbolic computation, provides a very effective
and powerful mathematical tool for solving nonlinear partial
differential equations. The obtained result clarify that the Exp-
function method is direct, effective, succinct and can be used
for many other nonlinear partial differential equations.

APPENDIX A

−n2c2a2−1b
2
−1 + n2αa2−1b

2
−1 + n2βa3−1b−1 + n2γa4−1 = 0 ,

−2n2c2a2−1b0b−1 + 2n2αa0a−1b
2
−1 + 2n2αa2−1b0b−1

+ 3n2βa0a
2
−1b−1 − 2n2c2a0a−1b

2
−1 + n2βa3−1b0

+ 4n2γa0a
3
−1 + nk2c2a−1a0b

2
−1 − nk2c2a2−1b0b−1 = 0 ,

−2n2c2a1a−1b
2
−1 + 2n2αa1a−1b

2
−1 − 4nk2c2a2−1b−1

+ 3n2βa1a
2
−1b−1 + 3n2βa20a−1b−1 + 3n2βa0a

2
−1b0

− n2c2a20b
2
−1 − n2c2a2−1b

2
0 + n2αa20b

2
−1 + n2αa2−1b

2
0

+ k2c2a20b
2
−1 + k2c2a2−1b

2
0 + 6n2γa20a

2
−1 + 4n2γa1a

3
−1

− 2n2c2a2−1b−1 + 2n2αa2−1b−1 + n2βa3−1 + 4n2αa0a−1b0b−1

− 4n2c2a0a−1b0b−1 − 2k2c2a0a−1b0b−1

+ 4nk2c2a−1a1b
2
−1 = 0 ,

−6k2c2na−1a0b−1 + 6k2c2na1b−1a−1b0 + n2βa30b−1

+ 4k2c2a1b
2
−1a0 − 4k2c2a−1a0b−1 + 3n2βa0a

2
−1

+ nk2c2a0a−1b
2
0 − nk2c2a20b−1b0 − 4k2c2a1b−1a−1b0

− 4n2c2a1a−1b0b−1 + 6n2βa1a0a−1b−1 + 4n2αa1a−1b0b−1

− k2c2na2−1b0 + 3n2βa20a−1b0 − 2n2c2a0a−1b
2
0

+ 2n2αa0a−1b
2
0 − 2n2c2a1a0b

2
−1 − 4n2c2a0a−1b−1

+ 2n2αa1a0b
2
−1 + 4n2αa0a−1b−1 + 3n2βa1a

2
−1b0

+ 12n2γa1a0a
2
−1 + 4k2c2a2−1b0 − 2n2c2a2−1b0 + 2n2αa2−1b0

+ 4n2γa30a−1 + 2n2αa20b0b−1 + k2c2na1b
2
−1a0

− 2n2c2a20b0b−1 = 0 ,

4k2c2a2−1 + n2γa40 − n2c2a20b
2
0 + n2αa20b

2
0 + 4k2c2a21b

2
−1

+ n2βa30b0 + 3n2βa1a
2
−1 + 3n2βa20a−1 + 6n2γa21a

2
−1

− 2k2c2a20b−1 + 2n2αa20b−1 − 2n2c2a20b−1 − 8k2c2a1b−1a−1

+ 2k2c2a−1a0b0 − 2k2c2a1b
2
0a−1 + 2k2c2a1b−1a0b0

+ 4k2c2na1b
2
0a−1 − n2c2a2−1 + n2αa2−1 − 4n2c2a1a−1b−1

− 2n2c2a1a−1b
2
0 − 4n2c2a0a−1b0 + 4n2αa1a−1b−1

+ 2n2αa1a−1b
2
0 + 4n2αa0a−1b0 − 4nk2c2a20b−1

+ 3n2βa21a−1b−1 + 3n2βa1a
2
0b−1 + 12n2γa1a

2
0a−1 + n2αa21b

2
−1

− n2c2a21b
2
−1 − 4n2c2a1a0b0b−1 + 4n2αa1a0b0b−1

+ 6n2βa1a0a−1b0 = 0 ,

n2βa30 + nk2c2a0a1b
2
0 − k2c2na21b0b−1 + 6k2c2na1b0a−1

+ 4k2c2a−1a0 + 2n2αa20b0 + 2n2αa0a−1 − 4k2c2a1b−1a0

+ 4n2γa1a
3
0 + k2c2na−1a0 + 6n2βa1a0a−1 − 2n2c2a0a−1

− 2n2c2a20b0 + 4k2c2a21b0b−1 − 4k2c2a1b0a−1 + 3n2βa1a
2
0b0

+ 2n2αa1a0b
2
0 − 2n2c2a1a0b

2
0 − nk2c2a20b0 + 3n2βa21a0b−1

+ 12n2γa21a0a−1 − 2n2c2a21b0b−1 − 4n2c2a1a0b−1

− 4n2c2a1a−1b0 + 2n2αa21b0b−1 + 4n2αa1a0b−1

+ 4n2αa1a−1b0 + 3n2βa21a−1b0 − 6k2c2na1b−1a0 = 0 ,
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4n2αa1a0b0 − 4n2c2a1a0b0 + 4k2c2na1a−1 − 4k2c2na21b−1

+ 3n2βa21a0b0 − 2k2c2a1a0b0 − n2c2a20 + n2αa20 + k2c2a20

− n2c2a21b
2
0 + n2αa21b

2
0 + k2c2a21b

2
0 + 3n2βa1a

2
0 + 6n2γa21a

2
0

+ 3n2βa21a−1 + 4n2γa31a−1 + 2n2αa21b−1 + 2n2αa1a−1

− 2n2c2a21b−1 − 2n2c2a1a−1 + n2βa31b−1 = 0 ,

−k2c2na21b0 + nk2c2a0a1 + 4n2γa31a0 − 2n2c2a21b0

− 2n2c2a1a0 + 2n2αa21b0 + 2n2αa1a0 + 3n2βa21a0

+ n2βa31b0 = 0 ,

−n2c2a21 + n2αa21 + n2βa31 + n2γa41 = 0 .

APPENDIX B

−n2c2a2−1b
2
−1 + n2αa2−1b

2
−1 + n2γa4−1 = 0 ,

4n2γa0a
3
−1 + 2n2αa0a−1b

2
−1 + 2n2αa2−1b0b−1

− 2n2c2a0a−1b
2
−1 − 2n2c2a2−1b0b−1

+ nk2c2a−1a0b
2
−1 − nk2c2a2−1b0b−1 = 0 ,

−4n2c2a0a−1b0b−1 + 4n2αa0a−1b0b−1

− 2k2c2a0a−1b0b−1 + 4nk2c2a−1a1b
2
−1 + 4n2γa1a

3
−1

+ 2n2αa2−1b−1 − 2n2c2a2−1b−1 − n2c2a20b
2
−1

− n2c2a2−1b
2
0 + n2αa20b

2
−1 + n2αa2−1b

2
0 + k2c2a20b

2
−1

+ k2c2a2−1b
2
0 + 6n2γa20a

2
−1 − 2n2c2a1a−1b

2
−1

+ 2n2αa1a−1b
2
−1 − 4nk2c2a2−1b−1 = 0 ,

k2c2na1b
2
−1a0 − 6k2c2na−1a0b−1 − 4n2c2a1a−1b0b−1

+ 4n2αa1a−1b0b−1 + 6k2c2na1b−1a−1b0

+ nk2c2a0a−1b
2
0 − nk2c2a20b−1b0 − 4k2c2a1b−1a−1b0

− nk2c2a2−1b0 + 2n2αa0a−1b
2
0 − 2n2c2a20b0b−1

− 2n2c2a0a−1b
2
0 + 2n2αa20b0b−1 + 4k2c2a1b

2
−1a0

− 4k2c2a−1a0b−1 − 2n2c2a1a0b
2
−1 − 4n2c2a0a−1b−1

+ 2n2αa1a0b
2
−1 + 4n2αa0a−1b−1 + 12n2γa1a0a

2
−1

+ 4k2c2a2−1b0 + 4n2γa30a−1 + 2n2αa2−1b0

− 2n2c2a2−1b0 = 0 ,

4k2c2a2−1 + n2γa40 + n2αa2−1 − n2c2a2−1

+ 2k2c2a1b−1a0b0 + 4k2c2na1b
2
0a−1 + n2αa20b

2
0

− n2c2a20b
2
0 + 12n2γa1a

2
0a−1 + 2k2c2a−1a0b0

− 2n2c2a20b−1 + 6n2γa21a
2
−1 + 4k2c2a21b

2
−1

− 4n2c2a1a−1b−1 − 2k2c2a1b
2
0a−1 − 2n2c2a1a−1b

2
0

− 4n2c2a0a−1b0 + n2αa21b
2
−1 + 2n2αa1a−1b

2
0

+ 4n2αa1a−1b−1 + 4n2αa0a−1b0 − 4nk2c2a20b−1

− 2k2c2a20b−1 + 2n2αa20b−1 − n2c2a21b
2
−1

− 4n2c2a1a0b0b−1 − 8k2c2a1b−1a−1

+ 4n2αa1a0b0b−1 = 0 ,

−2n2c2a21b0b−1 − 4n2c2a1a0b−1 − 4n2c2a1a−1b0

+ 2n2αa21b0b−1 + 4n2αa1a0b−1 + 4n2αa1a−1b0

+ 12n2γa21a0a−1 + nk2c2a0a1b
2
0 − 2n2c2a20b0

+ 2n2αa20b0 + 4k2c2a−1a0 + 4n2γa1a
3
0 + 2n2αa0a−1

− 2n2c2a0a−1 − nk2c2a21b0b−1 + 6nk2c2a1b0a−1

− 6nk2c2a1b−1a0 + nk2c2a−1a0 − 2n2c2a1a0b
2
0

+ 2n2αa1a0b
2
0 − nk2c2a20b0 + 4k2c2a21b0b−1

− 4k2c2a1b0a−1 − 4k2c2a1b−1a0 = 0 ,

4n2γa31a−1 − 2n2c2a21b−1 − 2n2c2a1a−1 + 2n2αa21b−1

+ 2n2αa1a−1 − n2c2a21b
2
0 − 4n2c2a1a0b0

+ 4n2αa1a0b0 − 2k2c2a1a0b0 + 4nk2c2a1a−1 − 4nk2c2a21b−1

+ n2αa21b
2
0 + k2c2a21b

2
0 + 6n2γa21a

2
0 + k2c2a20 − n2c2a20

+ n2αa20 = 0 ,

−nk2c2a21b0 + nk2c2a0a1 − 2n2c2a21b0 − 2n2c2a1a0 + 2n2αa21b0

+ 2n2αa1a0 + 4n2γa31a0 = 0 ,

n2γa41 − n2c2a21 + n2αa21 = 0 .
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