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Some Separations in Covering Approximation
Spaces
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Abstract—Adopting Zakowski’s upper approximation operator
C and lower approximation operator C, this paper investigates
granularity-wise separations in covering approximation spaces. Some
characterizations of granularity-wise separations are obtained by
means of Pawlak rough sets and some relations among granularity-
wise separations are established, which makes it possible to research
covering approximation spaces by logical methods and mathematical
methods in computer science. Results of this paper give further
applications of Pawlak rough set theory in pattern recognition and
artificial intelligence.
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I. INTRODUCTION

Rough set theory, which was proposed by Z. Pawlak in
[8], is a useful tool in researches and applications of pattern
recognition and artificial intelligence (see [1], [4], [5], [6],
[7], [9], [13], [15], [16], for example). In rough set the-
ory, Pawlak approximation spaces are based on equivalence
class partitioning of sets. However, in an equivalence class
partitioning of a set, we can usually not separate points by
equivalence classes. In other words, Pawlak approximation
spaces do not satisfy “granularity-wise separations” in general.
This leads us to explore the richer rough set theory. In the
past years, covering approximation spaces arouse our extensive
interest and their usefulness has been demonstrated by many
successful applications in pattern recognition and artificial
intelligence (see [10], [11], [12], [15], [17], [18], [20], for
example). Naturally, the following question is worthy to be
considered.

Question 1.1: (1) How to characterize granularity-wise sep-
arations in covering approximation spaces?

(2) What relations are there among granularity-wise sepa-
rations in covering approximation spaces?

As some investigations of the above question, we adopt
Zakowski’s upper approximation operator C and lower ap-
proximation operator C to characterize granularity-wise sepa-
rations in a covering approximation space (U, C) and establish
some relations among these separations. Results of this paper
give further applications of Pawlak rough set theory in pattern
recognition and artificial intelligence.
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II. PRELIMINARIES

Definition 2.1 ([20]): Let U , the universe of discourse, be
a finite set and C be a family of nonempty subsets of U .

(1) C is called a cover of U if
⋃{K : K ∈ C} = U .

(2) The pair (U ; C) is called a covering approximation space
if C is a cover of U .

Definition 2.2 ([8]): Let (U ; C) be a covering approxima-
tion space.

(1) C is called a partition on U if K
⋂
K′ = ∅ for all

K,K ′ ∈ C, where K �= K ′.
(2) (U ; C) is called a Pawlak approximation space if C is a

partition on U .
Notation 2.3: Let (U ; C) be a covering approximation

space. Throughout this paper, we use the following notations,
where x ∈ U , X ⊂ U and F ⊂ 2U .

(1)
⋂F =

⋂{F : F ∈ F}.
(2)

⋃F =
⋃{F : F ∈ F}.

(3) Cx = {K : x ∈ K ∈ C}.
(4) N(x) =

⋂{K : K ∈ Cx} =
⋂ Cx.

(5) D(X) = U − ⋃{K : K ∈ C ∧
K

⋂
X = ∅}.

(6) D(x) = D({x}) = U − ⋃
(C − Cx).

Now we give the following granularity-wise separations
in covering approximation spaces. Ideas of these separations
come from topology (see [2], for example).

Definition 2.4: Let (U ; C) be a covering approximation
space. (U ; C) is called a G0- (resp. G1-, G2-, G3-, Gd-, Gr-)
covering approximation space if (U ; C) satisfies the following
G0- (resp. G1-, G2-, G3-, Gd-, Gr-) separation axiom.

(1) G0-separation axiom: x, y ∈ U
∧
x �= y =⇒ ∃K ∈

C(K
⋂{x, y} = {x}∨

K
⋂{x, y} = {y}).

(2) G1-separation axiom: x, y ∈ U
∧
x �= y =⇒

∃Kx,Ky ∈ C(Kx

⋂{x, y} = {x}∧
Ky

⋂{x, y} = {y}).
(3) G2-separation axiom: x, y ∈ U

∧
x �= y =⇒

∃Kx,Ky ∈ C(x ∈ Kx

∧
y ∈ Ky

∧
Kx

⋂
Ky = ∅).

(4) G3-separation axiom: x ∈ U
∧
x �∈ X ⊂ U =⇒ ∃K ∈

C(x ∈ K
∧
K

⋂
X = ∅).

(5) Gd-separation axiom: x ∈ U =⇒ ∃K ∈ C({x} =
K

⋂
D(x)).

(6) Gr-separation axiom: x ∈ K ∈ C =⇒ D(x) ⊂ K.
For short, Gi-covering approximation spaces are called Gi-

spaces, i = 0, 1, 2, 3, d, r.
In order to investigate the above separations in covering

approximation spaces by means of Pawlak rough sets, we need
the following definition (see [11], for example).

Definition 2.5: Let (U ; C) be a covering approximation
space. For each X ⊂ U , Put

C(X) =
⋃

{K : K ∈ C and K ⊂ X};
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C(X) = U − C(U −X).

(1) C : 2U −→ 2U is called covering upper approximation
operator.

(2) C : 2U −→ 2U is called covering lower approximation
operator.

(3) C(X) is called a covering upper approximation of X ,
which is abbreviated to X∗.

(4) C(X) is called a covering lower approximation of X ,
which is abbreviated to X∗.

(5) X is called a definable set of (U ; C) if X∗ = X∗.
(6) X is called a rough set of (U ; C) if X∗ �= X∗.
Remark 2.6: Lemma 3.12 of this paper shows that D(x) =

{x}∗. So Gd-separation axiom (resp. Gr-separation axiom)
in this paper is equivalent to Gd-separation axiom (resp. Gr-
separation axiom) in [3]. In order to avoid approximation oper-
ators appearing in definitions of granularity-wise separations,
we use D(x) in Gd-separation axiom and Gr-separation axiom
of this paper.

III. CHARACTERIZATIONS OF SEPARATIONS

Lemma 3.1 ([11], [20]): Let (U ; C) be a covering approx-
imation space. Then the following hold.

(1) U∗ = U∗ = U and ∅∗ = ∅∗ = ∅.
(2) If X ⊂ U , then X∗ ⊂ X ⊂ X∗.
(3) If X ⊂ Y ⊂ U , then X∗ ⊂ Y∗ and X∗ ⊂ Y ∗.
(4) If X ⊂ U , then (X∗)∗ = X∗ and (X∗)∗ = X∗.
(5) If K ∈ C, then K∗ = K.
(6) If X ⊂ U , then (U −X)∗ = U −X∗ and (U −X)∗ =

U −X∗.
Lemma 3.2: Let (U ; C) be a covering approximation space,

x, y ∈ U and x �= y. Then the following are equivalent.
(1) x �∈ {y}∗.
(2) ∃K ∈ C(K

⋂{x, y} = {x}).
Proof. (1) =⇒ (2): If x �∈ {y}∗, then x �∈ U − (U − {y})∗
by Lemma 3.1(6), and hence x ∈ (U − {y})∗. So there is
K ∈ C such that x ∈ K ⊂ U − {y}. Thus y �∈ K, and hence
K

⋂{x, y} = {x}.
(2) =⇒ (1): If there is K ∈ C such that K

⋂{x, y} = {x},
then y �∈ K, and so y ∈ U − K. By Lemma 3.1(3),(5),(6),
{y}∗ ⊂ (U −K)∗ = U −K∗ = U −K. Note that x ∈ K, so
x �∈ {y}∗.

Corollary 3.3: Let (U ; C) be a covering approximation
space, x, y ∈ U and x �= y. Then the following are equivalent.

(1) x ∈ {y}∗.
(2) ∀K ∈ C(x ∈ K −→ y ∈ K).

Proof. (1) =⇒ (2): Suppose that x ∈ {y}∗. Let K ∈ C. then
K

⋂{x, y} �= {x} by Lemma 3.2. Thus K
⋂{x, y} = ∅ or

K
⋂{x, y} = {y} or K

⋂{x, y} = {x, y}. Consequently, if
x ∈ K, then K

⋂{x, y} = {x, y}, and hence y ∈ K.
(2) =⇒ (1): Suppose that (2) holds. Then, for each K ∈ C,

y ∈ K providing x ∈ K, and hence K
⋂{x, y} �= {x}. By

Lemma 3.2, x ∈ {y}∗.
Theorem 3.4: Let (U ; C) be a covering approximation

space. Then the following are equivalent.
(1) (U ; C) is a G0-space.
(2) x, y ∈ U

∧
x �= y =⇒ x �∈ {y}∗ ∨

y �∈ {x}∗.
(3) x, y ∈ U

∧
x �= y =⇒ {x}∗ �= {y}∗.

Proof. (1) =⇒ (2): Suppose that (U ; C) is a G0-space. Let
x, y ∈ U and x �= y. Without loss of generality, assume that
there is K ∈ C such that K

⋂{x, y} = {x}. Then x �∈ {y}∗
by Lemma 3.2.

(2) =⇒ (3): Suppose that (2) holds. Let x, y ∈ U and x �=
y. Without loss of generality, assume that x �∈ {y}∗. Since
x ∈ {x}∗ by Lemma 3.1(2), {x}∗ �= {y}∗.

(3) =⇒ (1): Suppose that (3) holds. Let x, y ∈ U and x �= y.
Then {x}∗ �= {y}∗. Without loss of generality, assume that
there is z �∈ {y}∗ and z ∈ {x}∗. By Lemma 1(6), z �∈ {y}∗ =
U−(U−{y})∗, and hence z ∈ (U−{y})∗. So there is K ∈ C
such that z ∈ K ⊂ U − {y}, i.e., z ∈ K and y �∈ K. Since
z ∈ {x}∗, x ∈ K by Corollary 3.3. Thus K

⋂{x, y} = {x}.
It follows that (U ; C) is a G0-space.

Theorem 3.5: Let (U ; C) be a covering approximation
space. Then the following are equivalent.

(1) (U ; C) is a G1-space.
(2) x, y ∈ U

∧
x �= y =⇒ x �∈ {y}∗ ∧

y �∈ {x}∗.
(3) x ∈ U =⇒ {x} = {x}∗.
(4) x ∈ U =⇒ {x} = N(x).

Proof. (1) =⇒ (2): It holds by Lemma 3.2.
(2) =⇒ (3): Suppose that (2) holds. Let x ∈ U . If y ∈ U

and y �= x, then y �∈ {x}∗. So {x}∗ ⊂ {x}. On the other hand,
{x} ⊂ {x}∗ by Lemma 1(2). It follows that {x}∗ = {x}.

(3) =⇒ (4): Suppose that (3) holds. Let x ∈ U . Assume
that y ∈ N(x), then y ∈ K for each K ∈ Cx. If y �= x, then
x �∈ {y}∗ = U − (U − {y})∗, and hence x ∈ (U − {y})∗. So
there is K ∈ Cx such that K ⊂ U − {y}, i.e., y �∈ K. This
is a contradiction. It follows that N(x) ⊂ {x}. On the other
hand, it is clear that {x} ⊂ N(x). So N(x) = {x}.

(4) =⇒ (1): Suppose that (3) holds. Let x, y ∈ U and x �= y,
then y �∈ N(x), and hence there is Kx ∈ Cx ⊂ C such that
y �∈ Kx. Thus Kx

⋂{x, y} = {x}. In a similar way, there is
Ky ∈ C such that Ky

⋂{x, y} = {y}. Consequently, (U ; C)
is a G1-space.

Theorem 3.6: Let (U ; C) be a covering approximation
space. Then the following are equivalent.

(1) (U ; C) is a G2-space.
(2) x, y ∈ U

∧
x �= y =⇒ ∃Kx,Ky ∈ C(x ∈ Kx

∧
y ∈

Ky

∧
K∗

x

⋂
Ky = ∅).

(3) x, y ∈ U
∧
x �= y =⇒ ∃K ∈ C(x ∈ K

∧
y �∈ K∗).

(4) x, y ∈ U
∧
x �= y =⇒ ∃K ∈ C(x ∈ K ⊂ K∗ ⊂

U − {y}).
Proof. (1) =⇒ (2): Suppose that (U ; C) is a G2-space. Let
x, y ∈ U and x �= y. Then there are Kx,Ky ∈ C such that
x ∈ Kx, y ∈ Ky and Kx

⋂
Ky = ∅. So Kx ⊂ U −Ky . By

Lemma 3.1(3),(5), K∗
x ⊂ (U −Ky)∗ = U −Ky∗ = U −Ky .

So K∗
x

⋂
Ky = ∅

(2) =⇒ (3): It is clear.
(3) =⇒ (4): Suppose that (3) holds. Let x, y ∈ U and x �= y.

Then there is K ∈ C such that x ∈ K and y �∈ K∗. Note that
y �∈ K∗ if and only if K∗ ⊂ U − {y}. So x ∈ K ⊂ K∗ ⊂
U − {y}.

(4) =⇒ (1): Suppose that (4) holds. Let x, y ∈ U and x �= y.
Then there is K ∈ C such that x ∈ K ⊂ K∗ ⊂ U − {y}. So
y ∈ U − K∗ = (U − K)∗, and hence there is K ′ ∈ C such
that y ∈ K ′ ⊂ U −K. It is clear that K

⋂
K ′ = ∅. It follows

that (U ; C) is a G2-space.
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Remark 3.7: In Theorem 3.6(2), “K∗
x

⋂
Ky = ∅” can not

be replaced by “K∗
x

⋂
K∗

y = ∅”.
Proof. Let U = {a, b, c, d, e}, and C = {{a, b}, {a, c},
{c, d}, {b, d}, {a, b, e}, {c, d, e}}. It is not difficult to check
that (U ; C) is a G2-space. If Ka ∈ Ca, Kb ∈ Cb and
Ka

⋂
Kb = ∅, then Ka = {a, c} and Kb = {b, d}. Since

K∗
a = {a, c}∗ = U − (U − {a, c})∗ = U − {b, d, e}∗ =

U−{b, d} = {a, c, e} and K∗
b = {bd}∗ = U−(U−{b, d})∗ =

U − {a, c, e}∗ = U − {a, c} = {b, d, e}, e ∈ K∗
a

⋂
K∗

b �= ∅.
Theorem 3.8: Let (U ; C) be a covering approximation

space. Then the following are equivalent.
(1) (U ; C) is a G3-space.
(2) x ∈ U

∧
x �∈ X ⊂ U =⇒ x �∈ X∗.

(3) X ⊂ U =⇒ X = X∗.
(4) X ⊂ U =⇒ X = X∗.
(5) x ∈ U =⇒ {x} = {x}∗.
(6) x ∈ U =⇒ {x} ∈ C.

Proof. (1) =⇒ (2): Suppose that (U ; C) is a G3-space. Let
x ∈ U and x �∈ X ⊂ U . Then there is K ∈ C such that
x ∈ K and K

⋂
X = ∅. So X ⊂ U −K, and hence X∗ ⊂

(U −K)∗ = U −K∗ = U −K. It follows that x �∈ X∗.
(2) =⇒ (3): Suppose that (2) holds. Let X ⊂ U . Then

x �∈ X∗ if x �∈ X . This shows that X∗ ⊂ X . On the other
hand, X ⊂ X∗ by Lemma 3.1(2). Consequently, X = X∗.

(3) =⇒ (4): Suppose that (3) holds. Let X ⊂ U . Then
U−X∗ = (U−X)∗ = U−X , and so X∗ = U−(U−X∗) =
U − (U −X) = X .

(4) =⇒ (5): It is clear.
(5) =⇒ (6): Suppose that (5) holds. Let x ∈ U . Then x ∈

{x} = {x}∗. So there is K ∈ C such that x ∈ K ⊂ {x}. It
follows that {x} = K ∈ C.

(6) =⇒ (1): Suppose that (6) holds. Let x ∈ U
∧
x �∈ X ⊂

U . Then {x} ∈ C and {x}⋂
X = ∅. So (U ; C) is a G3-space.

Lemma 3.9: Let (U ; C) be a covering approximation space,
x ∈ U and X ⊂ U . Then the following are equivalent.

(1) x �∈ X∗.
(2) ∃K ∈ C(x ∈ K

∧
K

⋂
X∗ = ∅).

(3) ∃K ∈ C(x ∈ K
∧
K

⋂
X = ∅).

Proof. (1) =⇒ (2): Let x �∈ X∗, i.e., x �∈ U − (U − X)∗.
Then x ∈ (U −X)∗. So there is K ∈ C such that x ∈ K ⊂
(U −X)∗ = U −X∗. Consequently, K

⋂
X∗ = ∅.

(2) =⇒ (3): It holds by Lemma 3.1(2).
(3) =⇒ (1): If there is K ∈ C such that x ∈ K and

K
⋂
X = ∅, then K ⊂ U−X , and hence x ∈ K ⊂ (U−X)∗.

So x �∈ U − (U −X)∗ = X∗.
Corollary 3.10: Let (U ; C) be a covering approximation

space, x ∈ U and X ⊂ U . Then the following are equivalent.
(1) x ∈ X∗.
(2) ∀K ∈ C ∧

x ∈ K(K
⋂
X∗ �= ∅).

(3) ∀K ∈ C ∧
x ∈ K(K

⋂
X �= ∅).

The following lemma can be obtained immediately from
Definition 2.5.

Lemma 3.11: Let (U ; C) be a covering approximation
space, x ∈ U and X ⊂ U . Then the following are equivalent.

(1) x ∈ X∗
(2) ∃K ∈ C(x ∈ K ⊂ X).
(3) ∃K ∈ C(x ∈ K ⊂ X∗).

Lemma 3.12: Let (U ; C) be a covering approximation space
and x ∈ U . Then {x}∗ = D(x).
Proof. Let y ∈ {x}∗ = U − (U − {x})∗. Then y �∈ (U −
{x})∗. Thus, for each K ∈ C, if y ∈ K, then K �⊂ U − {x},
and hence x ∈ K, i.e., K ∈ Cx. So y �∈ K for each K ∈
C − Cx, and hence y �∈ ⋃

(C − Cx). Consequently, y ∈ U −⋃
(C − Cx) = D(x). On the other hand, let y ∈ D(x). Then

we can obtain y ∈ {x}∗ by reversing the above proof. This
proves that {x}∗ = D(x).

Theorem 3.13: Let (U ; C) be a covering approximation
space. Then the following are equivalent.

(1) (U ; C) is a Gd-space.
(2) x ∈ U =⇒ ∃X,Y ⊂ U({x} = X∗

⋂
Y ∗).

Proof. (1) =⇒ (2): Let (U ; C) be a Gd-space. If x ∈ U , then
there is K ∈ C such that {x} = K

⋂
D(x). Put X = K and

Y = {x}, then {x} = K
⋂
D(x) = K∗

⋂{x}∗ = X∗
⋂
Y ∗

by Lemma 3.1(5) and Lemma 3.12.
(2) =⇒ (1): Suppose that (2) holds. Let x ∈ U . Then

there are X,Y ⊂ U such that {x} = X∗
⋂
Y ∗. By Lemma

3.11, there is K ∈ C such that x ∈ K ⊂ X∗, and
hence {x} = K

⋂
Y ∗. Note that x ∈ Y ∗. By Lemma

3.12 and Lemma 3.1(3)(4), D(x) = {x}∗ ⊂ (Y ∗)∗ = Y ∗.
Thus {x} ⊂ K

⋂{x}∗ = K
⋂
D(x) ⊂ K

⋂
Y ∗ = {x}.

Consequently, {x} = K
⋂
D(x). This proves that (U ; C) is

a Gd-space.
Theorem 3.14: Let (U ; C) be a covering approximation

space. Then the following are equivalent.
(1) (U ; C) is a Gr-space.
(2) ∀x, y ∈ U(x �∈ {y}∗ =⇒ y �∈ {x}∗).
(3) ∀x, y ∈ U(x ∈ {y}∗ =⇒ y ∈ {x}∗).

Proof. (1) =⇒ (2): Suppose that (U ; C) is a Gr-space. Let
x, y ∈ U and x �∈ {y}∗. Then x ∈ U − {y}∗ = (U − {y})∗.
So there is K ∈ C such that x ∈ K ⊂ U − {y}. Since (U ; C)
is an Gr-space, D(x) ⊂ K ⊂ U − {y}. By Lemma 3.12,
{x}∗ ⊂ U − {y}, and hence y �∈ {x}∗.

(2) =⇒ (3): It is clear.
(3) =⇒ (1): Suppose that (3) holds. Let x ∈ K ∈ C. We

only need to prove that D(x) ⊂ K. Let y ∈ D(x). By Lemma
3.12, y ∈ {x}∗, and hence x ∈ {y}∗ = U − (U − {y})∗. So
x �∈ (U − {y})∗. It follows that K �⊂ U − {y}, thus y ∈ K.
This proves that D(x) ⊂ K.

IV. RELATIONS AMONG SEPARATIONS

Theorem 4.1: Let (U ; C) be a covering approximation
space. Consider the following condition.

(1) (U ; C) is a G3-space.
(2) (U ; C) is a G2-space.
(3) (U ; C) is a G1-space.
(4) (U ; C) is a Gd-space.
(5) (U ; C) is a G0-space.
(6) (U ; C) is a Gr-space.
Then (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) and (3) =⇒ (6).

Proof. (1) =⇒ (2): Suppose that (U ; C) is a G3-space. Let
x, y ∈ U and x �= y, then {x}, {y} ∈ C by Theorem 3.8(6),
and {x}⋂{y} = ∅. So (U ; C) is a G2-space.

(2) =⇒ (3): It is clear.
(3) =⇒ (4): Suppose that (U ; C) is a G1-space. For each

x ∈ U , {x} = {x}∗ by Theorem 3.5(3). Note that U = U∗ by
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Lemma 3.1(1). So {x} = {x}⋂
U = {x}∗ ⋂

U∗. By Theorem
3.13, (U ; C) is a Gd-space.

(4) =⇒ (5): Suppose that (U ; C) is a Gd-space. Let x, y ∈ U
and x �= y. Then there is K ∈ C such that {x} = K

⋂
D(x) =

K
⋂{x}∗. If y �∈ {x}∗, by Lemma 3.9, there is K ′ ∈ C such

that y ∈ K ′ and K ′ ⋂{x} = ∅, and hence K ′ ⋂{x, y} = {y}.
If y ∈ {x}∗, then y �∈ K, and hence K

⋂{x, y} = {x}.
Consequently, (U ; C) is a G0-space.

(3) =⇒ (6): Suppose that (U ; C) is a G1-space. For each
x ∈ U , If x ∈ K ∈ C, then {x} = {x}∗ = D(x) by Theorem
3.5(3) and Lemma 3.12, and hence D(x) ⊂ K. So (U ; C) is
a Gr-space.

Remark 4.2: None of implications in Theorem 4.1 can be
reversed (see the following counterexamples).

Example 4.3: G2-space �=⇒ G3-space.
Proof. Let U = {a, b, c, d}, and C = {{a, b}, {a, c},
{c, d}, {b, d}}.

(1) It is not difficult to check that (U ; C) is a G2-space.
(2) {a} �∈ C, so (U ; C) is not a G3-space by Theorem 3.8(6).
Example 4.4: G1-space �=⇒ G2-space.

Proof. Let U = {a, b, c}, and C = {{a, b}, {a, c}, {b, c}}.
Then {a}∗ = U − (U − {a})∗ = U − {b, c}∗ = U − {b, c} =
{a}. Similarly, {b}∗ = {b} and {c}∗{c}. {a, b}∗ = U − (U −
{a, b})∗ = U − {c}∗ = U − ∅ = U . Similarly, {b, c}∗ =
{a, c}∗ = U .

(1) Since {a}∗ = {a}, {b}∗ = {b} and {c}∗ = {c} (U ; C)
is a G1-space by Theorem 3.5(3).

(2) For each K ∈ C, K∗ = U , (U ; C) is not a G2-space by
Theorem 3.6(3).

Example 4.5: Gd-space �=⇒ G1-space.
Proof. Let U = {a, b}, and C = {{a}, {a, b}}. Then {a}∗ =
{a}, {a}∗ = U − (U − {a})∗ = U − {b}∗ = U − ∅ = U and
{b}∗ = U − (U − {b})∗ = U − {a}∗ = U − {a} = {b}.

(1) Since {a} = {a}⋂
U = {a}∗

⋂
U∗ and {b} =

U
⋂{b} = U∗

⋂{b}∗, (U ; C) is a Gd-space by Theorem 3.13.
(2) {a}∗ �= {a}, so (U ; C) is not a G1-space by Theorem

3.5(3).
Example 4.6: G0-space �=⇒ Gd-space.

Proof. Let U = {a, b, c}, and C = {{a, c}, {b, c}}. Then
{a}∗ = U − (U − {a})∗ = U − {b, c}∗ = U − {b, c} = {a},
{b}∗ = U − (U − {b})∗ = U − {a, c}∗ = U − {a, c} = {b}
and {c}∗ = U − (U − {c})∗ = U − {a, b}∗ = U − ∅ = U .

(1) Since {a}∗ �= {b}∗ �= {c}∗ �= {a}∗, (U ; C) is a G0-
space by Theorem 3.4(3).

(2) For each K ∈ C, K
⋂
D(c) = K

⋂{c}∗ = K
⋂
U =

K �= {c}, so (U ; C) is not a Gd-space.
Example 4.7: Gr-space �=⇒ G0-space.

Proof. Let U = {a, b}, and C = {{a, b}}. It is easy to see
that (U ; C) is a Gr-space and it is not a G0-space. In addition,
(U ; C) is also a Pawlak approximation space.

Example 4.8: Gd-space �=⇒ Gr-space.
Proof. If Gd-space =⇒ Gr-space, then Gd-space =⇒ G1-
space by the following Theorem 4.9. This contradicts Example
4.5.

Theorem 4.9: Let (U ; C) be a covering approximation
space. Then the following are equivalent.

(1) (U ; C) is a G1-space.
(2) (U ; C) is a G0- and Gr-space.

Proof. (1) =⇒ (2): It holds by Theorem 4.1.
(2) =⇒ (1): Suppose that (U ; C) is a G0- and Gr-space.

Let x, y ∈ U and x �= y. By Theorem 3.4(2), x �∈ {y}∗ or
y �∈ {x}∗. Without loss of generality, assume that x �∈ {y}∗.
Then y �∈ {x}∗ by Theorem 3.14(2). So (U ; C) is n G1-space
by Theorem 3.5(2).

Although none of implications in Theorem 4.1 can be
reversed, we have the following equivalences on separations
in Pawlak approximation spaces.

Theorem 4.10: Let (U ; C) be a Pawlak approximation
space. Then the following are equivalent.

(1) (U ; C) is a G3-space.
(2) (U ; C) is a G2-space.
(3) (U ; C) is a G1-space.
(4) (U ; C) is a Gd-space.
(5) (U ; C) is a G0-space.
(6) C = {{x} : x ∈ U}.

Proof. (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5): They are hold
by Theorem 4.1.

(5) =⇒ (6): Suppose (U ; C) is a G0-space. Let x ∈ U .
Then there is Kx ∈ C such that x ∈ Kx. If {x} �∈ C, then
Kx �= {x}, and hence there is y ∈ Kx and y �= x. Thus
Kx

⋂{x, y} = {x, y}. On the other hand, since (U ; C) be a
Pawlak approximation space, C is a partition of U , and hence
K

⋂{x, y} = ∅ for each K ∈ C−{Kx}. This contradicts that
(U ; C) is a G0-space. So {x} ∈ C.

(6) =⇒ (1): Suppose that (6) holds. Then {x} ∈ C for each
x ∈ U . By Theorem 3.8(6), (U ; C) is a G3-space.

Remark 4.11: By Theorem 4.10, G0-Pawlak approximation
spaces are Gr-spaces. But Gr-Pawlak approximation space
�=⇒ G0-space by Example 4.7. So the condition “(U ; C) is a
Gr-space” is not equivalent to conditions in Theorem 4.10.

V. CONCLUSION

This paper explore a new property in covering approxima-
tion spaces: granularity-wise separation. Adopting Zakowski’s
covering approximation operators C and C, this paper give
some characterization of covering approximation spaces with
some granularity-wise separation and establish some relations
among these spaces. Results of this paper deepen and enrich
rough set theory, which is helpful to understand inherent
property of covering approximation spaces completely.

In this paper, our investigations are based on Zakowski’s
covering approximation operators C and C. Because there are
also other useful covering approximation operators [10], [11],
[14], [15], [19], [20], it is a natural question how to investigate
separations in corresponding covering approximation spaces
with these covering approximation operators. This is still
worthy to be considered in subsequent research.
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