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Some Results on the Generalized Higher Rank
Numerical Ranges
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Abstract—In this paper, the notion of rank−k numerical range
of rectangular complex matrix polynomials are introduced. Some
algebraic and geometrical properties are investigated. Moreover, for
ε > 0, the notion of Birkhoff-James approximate orthogonality
sets for ε−higher rank numerical ranges of rectangular matrix
polynomials is also introduced and studied. The proposed definitions
yield a natural generalization of the standard higher rank numerical
ranges.
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I. INTRODUCTION AND RELATED WORK

LET Mn×m be the vector space of all n × m complex
matrices. For the case n = m, Mn×n is denoted by Mn;

namely, the algebra of all n×n complex matrices. Throughout
the paper, k,m and n are considered as positive integers and
k ≤ min{m,n}. Moreover, Ik denotes the k × k identity
matrix. The set of all n × k isometry matrices is denoted by
Xn,k, i.e., Xn,k = {X ∈ Mn×k : X∗X = Ik}. For the case
n = k, Xn,n is denoted by Un, namely, the group of all n×n
unitary matrices.
Motivation of our study comes from quantum information
science. A quantum channel is a trace preserving completely
positive map such as L : Mn → Mn. By the structure
of completely positive linear maps, e.g., see [3], there are
matrices E1, . . . , Er ∈ Mn with

∑r
j=1 EjE

∗
j = In such

that L(A) =
∑r

j=1 E
∗
jAEj . The matrices E1, . . . , Er are

interpreted as the error operators of the quantum channel L.
Let V be a k−dimensional subspace of C

n and P be the
orthogonal projection of Cn onto V. Then the k−dimensional
subspace V is a quantum error correction code for the channel
L if and only if there are scalars γij ∈ C with i, j ∈ {1, . . . , r}
such that PE∗

i EjP = γijP ; for more information, see [7] and
its references, and also see [11]. In this connection, the rank−k
numerical range of A ∈ Mn is defined and denoted by

Λk(A) = {λ ∈ C : PAP = λP, for some rank − k

orthogonal projection P on C
n}.

It is known, see [4], that

Λk(A) = {λ ∈ C : X∗AX = λIk, for some X ∈ Xn,k}.
The sets Λk(A), where k ∈ {1, . . . , n}, are generally

called higher rank numerical ranges of A. Apparently, for k=1,
Λk(A) reduces to the classical numerical range of A; namely,

Λ1(A) = W (A) := {x∗Ax : x ∈ C
n, x∗x = 1},
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which has been studied extensively for many decades; e.g., see
[9] and [10]. Stampfli and Williams in [14], and later Bonsall
and Duncan in [2], observed that the numerical range of A ∈
Mn can be rewritten as:

W (A) = {μ ∈ C : ‖A− λIn‖2 ≥ |μ− λ|, ∀λ ∈ C},
where ‖.‖2 denotes the spectral matrix norm (i.e., the matrix
norm subordinate to the Euclidean vector norm). By this
idea, Chorianopoulos, Karanasios and Psarrakos [5] recently
introduced a definition of the numerical range for rectangular
complex matrices. For any A,B ∈ Mn×m with B �= 0, and
any vector norm ‖.‖ on Mn×m, they defined the numerical
range of A with respect to B as the compact and convex set:

W‖.‖(A;B) = {μ ∈ C : ‖A− λB‖ ≥ |μ− λ|, ∀λ ∈ C}.
(1)

It is clear that W‖.‖2
(A; In) = W (A) = Λ1(A), where

A ∈ Mn. Hence, W‖.‖(. ; .) is a direct generalization of the
classical numerical range. It is known that W‖.‖(A;B) �= ∅
if and only if ‖B‖ ≥ 1. So, to avoid trivial consideration, we
assume that ‖B‖ ≥ 1.
Suppose

P (λ) = Alλ
l +Al−1λ

l−1 + · · ·+A1λ+A0 (2)

is a rectangular matrix polynomial, where Ai ∈ Mn×m (i ∈
{0, 1, 2, . . . , s}), As �= 0, and λ is a complex variable. The
study of matrix polynomials has a long history, especially with
regard to their applications on higher order linear systems of
differential equations; e.g., see [8], [12] and the references
therein. Let B ∈ Mn×m and ‖ · ‖ be a vector norm on Mn×m

such that ‖B‖ ≥ 1. Moreover, let P (λ) be an n ×m matrix
polynomial as in (2). Using (9), Chorianopoulos and Psarrakos
[6] recently introduced and studied the numerical range of
P (λ) with respect to B as:

W‖·‖[P (λ);B] = {μ ∈ C : 0 ∈ W‖·‖(P (μ);B)}. (3)

For the case n = m, B = In and ‖ · ‖ = ‖ · ‖2, we have
the classical numerical range of the square matrix polynomial
P (λ); namely,

W‖·‖2
[P (λ); In] = W [P (λ)] : = {μ ∈ C : x∗P (μ)x = 0,

for some nonzero x ∈ C
n}.

Hence, W‖·‖[.; .] is a direct generalization of the classical
numerical range of square matrix polynomials, which plays
an important role in the study of overdamped vibration
systems with a finite number of degrees of freedom, and it
also is related to the stability theory; e.g., see [13] and its
references. Recently, Aretaki and Maroulas [1] introduced the
notion of higher rank numerical ranges of square complex
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matrix polynomials. Let P (λ), as in (2), be a square matrix
polynomial (i.e., n = m). For a positive integer k ≤ n, they
defined the rank−k numerical range of P (λ) as:

Λk[P (λ)] = {μ ∈ C : X∗P (μ)X = 0k, for some X ∈ Xn,k},
Where 0k ∈ Mk is the zero matrix. It is readily verified, see
[1], that

W‖·‖2
[P (λ); In] = W [P (λ)] = Λ1[P (λ)] ⊇ Λ2[P (λ)] ⊇ · · ·

⊇ Λn[P (λ)].

So, the notion of the numerical range of rectangular matrix
polynomials is a generalization of the notion of higher rank
numerical ranges of square matrix polynomials.
In this paper, we are going to generalize the notion of
higher rank numerical ranges of square matrix polynomial
to rectangular matrix polynomials. For this, we introduce
the notion of rank−k numerical range of a rectangular
matrix polynomial, and we investigate some algebraic and
geometrical properties of this notion.

II. MAIN RESULTS

In [15], the authors introduced a formula analogous to (9)
to propose a definition of the higher rank numerical range of
rectangular matrices. For any A, B ∈ Mn×m and any vector
norm ‖·‖ on M(n−k+1)×(m−k+1), where 1 ≤ k ≤ min{n,m}
is a positive integer, they defined the rank−k numerical range
of A with respect to B as

Λk,‖·‖(A;B) = {μ ∈ C : ‖X∗(A− λB)Y ‖ ≥ |μ− λ|, (4)

∀ λ ∈ C, ∀ (X,Y ) ∈ X},
where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X = {(X,Y :=

[
X 0

0 U

]
) : X ∈ Xn,n−k+1, U ∈

Um−n} if m ≥ n

X = {(X :=

[
Y 0

0 U

]
, Y ) : Y ∈ Xm,m−k+1, U ∈

Un−m} if n ≥ m

(5)

At first, we state some results from [15] which are useful
in our discussion. Recall that, in a complex normed space
(X, ‖.‖), for any ε ∈ [0, 1), two vectors φ and ψ are said
to be Birkhoff-James ε−orthogonal, denoted by φ⊥ε

BJψ, if
‖φ + λψ‖ ≥ √

1− ε2‖φ‖ for all λ ∈ C. For the case ε =
0, we write φ⊥BJψ instead φ⊥0

BJψ. Also, Let 1 ≤ k2 ≤
k1 ≤ min{n,m} be two positive integers. Moreover, let ‖ · ‖
be a vector norm on M(n−k2+1)×(m−k2+1). Define ||| · ||| on
M(n−k1+1)×(m−k1+1) by

|||Z||| = ‖
(

Z 0
0 0k1−k2

)
‖, (6)

where Z ∈ M(n−k1+1)×(m−k1+1), and 0k1−k2 ∈ Mk1−k2 is
the zero matrix.

Theorem 1. Let A, B ∈ Mn×m and 1 ≤ k ≤ min{n,m}
be a positive integer. Moreover, let ‖ · ‖ be a vector norm
on M(n−k+1)×(m−k+1) and X be the set as in (5). Then the
following assertions are true:
(i) Λk,‖·‖(A;B) =

⋂
(X,Y )∈X W‖·‖(X∗AY ;X∗BY ).

Consequently, Λk,‖·‖(A;B) is a compact and convex set in
C. For the case k = 1, if the vector norm ‖ · ‖ is unitarily
invariant, then

Λ1(A;B) = W‖·‖(A;B);

(ii) For the case n = m, Λk,‖·‖(A;B) =⋂
X∈Xn,n−k+1

W‖·‖(X∗AX;X∗BX). Consequently, if
‖ · ‖ = ‖ · ‖2 and B = In, then

Λk,‖·‖(A; In) = Λk(A);

(iii) Λk,‖·‖(UAV ;UBV ) = Λk,‖·‖(A;B), where for the case

m ≥ n, U ∈ Un and V =

(
U∗ 0
0 ∗

)
∈ Um, and for the

other case, i.e., n ≥ m, V ∈ Um and U =

(
V ∗ 0
0 ∗

)
∈ Un;

(iv) Let 1 ≤ k2 ≤ k1 ≤ min{n,m} be two positive integers,
‖ · ‖ be a unitarily invariant norm on M(n−k2+1)×(m−k2+1)

and ||| · ||| be the vector norm on M(n−k1+1)×(m−k1+1) as
in (6). Then

Λk1,|||·|||(A;B) ⊆ Λk2,‖·‖(A;B);

(v) If ‖X∗BY ‖ > 1 for all (X,Y ) ∈ X , then Λk,‖·‖(A;B) ⊇⋂
(X,Y )∈X {μ ∈ C : X∗BY⊥BJX

∗(A−μB)Y }. The equality
holds if ‖X∗BY ‖ = 1 for all (X,Y ) ∈ X ;
(vi) For any nonzero b ∈ C,⎧⎨
⎩

if |b| = 1, then Λk,‖·‖(A; bB) = b−1Λk,‖·‖(A;B);
if |b| < 1, then Λk,‖·‖(A; bB) ⊆ b−1Λk,‖·‖(A;B);
if |b| > 1, then Λk,‖·‖(A; bB) ⊇ b−1Λk,‖·‖(A;B);

(vii) Λk,‖·‖(aA+bB;B) = aΛk,‖·‖(A;B)+b, where a, b ∈ C.

It is natural to use a formula analogous to (3) to propose
a definition of the higher rank numerical range of rectangular
matrix polynomials.

Definition 1. Let B ∈ Mn×m, P (λ) be a rectangular
matrix polynomial as in (2) and 1 ≤ k ≤ min{n,m} be
a positive integer. Moreover, let ‖ · ‖ be a vector norm on
M(n−k+1)×(m−k+1). The rank−k numerical range of P (λ)
with respect to B is defined and denoted by

Λk,‖·‖[P (λ);B] = {μ ∈ C : 0 ∈ Λk,‖·‖(P (μ);B)}.
The sets Λk,‖·‖[P (λ);B], where k ∈ {1, 2, . . . ,min{n,m}}

is a positive integer, are generally called the higher rank
numerical range of P (λ) with respect to B.

Theorem 2. Let B ∈ Mn×m, P (λ) be a rectangular matrix
polynomial as in (2) and 1 ≤ k ≤ min{n,m} be a
positive integer. Moreover, let ‖ · ‖ be a vector norm on
M(n−k+1)×(m−k+1). Then

Λk,‖·‖[P (λ);B] =
⋂

(X,Y )∈X
W‖·‖[X∗P (λ)Y ;X∗BY ],
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where X is the set as in (5) and X∗P (λ)Y = (X∗AlY )λl +
· · ·+ (X∗A1Y )λ+ (X∗A0Y ). If k = 1, and the vector norm
‖ · ‖ is unitarily invariant, then

Λ1,‖·‖[P (λ);B] = W‖·‖[P (λ);B].

Proof: Using Definition 1 and Theorem 1(i), the first
equality is easy to verify. If k = 1, and the vector norm ‖ · ‖
is unitarily invariant on Mn×m, then by Theorem 1(i), the
second equality can be also easily verify by the first result.

Theorem 3. Let B ∈ Mn, P (λ), as in (2), be a square matrix
polynomial (i.e., n=m) and 1 ≤ k ≤ n be a positive integer.
Moreover, let ‖ · ‖ be a vector norm on Mn−k+1. Then

Λk,‖·‖[P (λ);B] =
⋂

X∈Xn,n−k+1

W‖·‖[X∗P (λ)X;X∗BX].

Consequently, for the case ‖ · ‖ = ‖ · ‖2 and B = In,

Λk,‖·‖2
[P (λ); In] = Λk[P (λ)].

Proof: The results follows directly from Theorem 1(ii),
or Theorem 2.

Remark 1. Theorems 2 and 3 show that the notion of
rank−k numerical range of rectangular matrix polynomials
can be considered as generalizations of the numerical range
of rectangular matrix polynomials and the rank−k numerical
range of square matrix polynomials.

In the following proposition, we state some basic properties
of higher rank numerical ranges of rectangular matrix
polynomials. For this, we need the following lemma.

Lemma 1. Let B ∈ Mn×m and P (λ) be a rectangular
matrix polynomial as in (2). Moreover, let ‖ · ‖ be a vector
norm on M(n−k+1)×(m−k+1) and 0 �= α ∈ C. Then the
following assertions are true:
(i) W‖·‖[αP (λ);B] = W‖·‖[P (λ);B], W‖·‖[P (αλ);B] =
α−1W‖·‖[P (λ);B] and W‖·‖[P (λ + α);B] =
W‖·‖[P (λ);B]− α;

(ii) If R(λ) = λlP (
1

λ
) := A0λ

l+A1λ
l−1+ · · ·+Al−1λ+Al

is the reverse matrix polynomial of P (λ), then

W‖·‖[R(λ);B]\{0} = {μ ∈ C :
1

μ
∈ W‖·‖[P (λ);B], μ �= 0}.

Proposition 1. Let B ∈ Mn×m, P (λ) be a rectangular
matrix polynomial as in (2), and 1 ≤ k ≤ min{n,m} be
a positive integer. Moreover, let ‖ · ‖ be a vector norm on
M(n−k+1)×(m−k+1). Then the following assertions are true:
(i) Λk,‖·‖[P (αλ);B] = α−1Λk,‖·‖[P (λ);B], and
Λk,‖·‖[αP (λ);B] = Λk,‖·‖[P (λ);B], where α ∈ C is
nonzero;
(ii) Λk,‖·‖[P (λ + α);B] = Λk,‖·‖[P (λ);B] − α, where
α ∈ C.

(iii) If R(λ) = λlP (
1

λ
) := A0λ

l+A1λ
l−1+· · ·+Al−1λ+Al,

then

Λk,‖·‖[R(λ);B] \ {0} = { 1
μ

: μ ∈ Λk,‖·‖[P (λ);B], μ �= 0}.

Proof: Let X be the set as in (5) and (X,Y ) ∈ X be
given. By setting

Q(λ) : = X∗P (λ)Y = (X∗AlY )λl + · · ·+ (X∗A1Y )λ+

(X∗A0Y ),

and using Lemma 1(i), we have

W‖·‖[X∗P (αλ)Y ;X∗BY ] = W‖·‖[Q(αλ);X∗BY ]

= α−1W‖·‖[Q(λ);X∗BY ]

= α−1W‖·‖[X∗P (λ)Y ;X∗BY ],

W‖·‖[X∗P (λ+ α)Y ;X∗BY ] = W‖·‖[Q(λ+ α);X∗BY ]

= W‖·‖[Q(λ);X∗BY ]− α

= W‖·‖[X∗P (λ)Y ;X∗BY ]

− α.

So, the results in (i) and (ii) follow from Theorem 2. By
Theorem 2 and Lemma 1(ii), we have:

μ �= 0, μ ∈ Λk,‖·‖[R(λ);B] ⇐⇒ ∀(X,Y ) ∈ X , μ ∈
W‖·‖[X∗R(λ)Y ;X∗BY ], μ �= 0

⇐⇒ ∀(X,Y ) ∈ X ,
1

μ
∈

W‖·‖[X∗P (λ)Y ;X∗BY ], μ �= 0

⇐⇒ 1

μ
∈ Λk,‖·‖[P (λ);B], μ �= 0.

So, the set equality in (ii) holds.
In the following proposition, we investigate the closeness

of the rank−k numerical range of rectangular matrix
polynomials.

Proposition 2. Let B ∈ Mn×m, P (λ) be a rectangular
matrix polynomial as in (2) and 1 ≤ k ≤ min{n,m} be
a positive integer. Moreover, let ‖ · ‖ be a vector norm on
M(n−k+1)×(m−k+1). Then Λk,‖·‖[P (λ);B] is a closed set in
C.

Proof: In view of Theorem 2, it is enough to show
that for every (X,Y ) ∈ X , where X is the set as in
(5), W‖·‖[X∗P (λ)Y ;X∗BY ] is closed. Let {μt}∞t=1 ⊆
W‖·‖[X∗P (λ)Y ;X∗BY ], and limt→∞ μt = μ. We will show
that μ ∈ W‖·‖[X∗P (λ)Y ;X∗BY ]. For this, let λ ∈ C be
arbitrary. By (3) and (9), we have

‖X∗P (μt)Y − λX∗BY ‖ ≥ |λ|
for all t ∈ N. Since ‖ · ‖ and P (·) are continuous functions,
the above inequality shows that

‖X∗P (μ)Y − λX∗BY ‖ ≥ |λ|.
So, by (3) and (9), μ ∈ W‖·‖[X∗P (λ)Y ;X∗BY ], and hence,
the result holds.

The following example shows that the higher rank numerical
range of rectangular matrix polynomials need not be a bounded
set, and hence a compact set in C.
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Example 1. Let P (λ) = λA−I2, where A =

( −1 0
0 1

)
∈

M2. By Theorem 3, we have:

Λ1,‖·‖2
[P (λ); I2 ] = W [P (λ)]

= {μ ∈ C : (x∗Ax)μ = 1, for some

x ∈ C
2and x∗x = 1}

= {μ ∈ C : tμ = 1, for some t ∈ [−1, 1]}
= {1

t
: t ∈ [−1, 1], t �= 0}

= (−∞,−1]
⋃

[1,+∞).

So, Λ1,‖·‖2
[P (λ); I2 ] is unbounded.

In the following Theorem, we investigate the boundedness
of Λk,‖·‖[P (λ);B]. For this, we need the following Lemma.

Lemma 2. Let B ∈ Mn×m, P (λ) be a rectangular matrix
polynomial as in (2) and 1 ≤ k ≤ min{n,m} be a positive
integer. Moreover, let ‖ · ‖ be a vector norm on Mn×m. Then
the following assertions are true:
(i) If 0 /∈ W‖·‖(Al;B), then W‖·‖[P (λ);B] is bounded.
(ii) Suppose 0 ∈ W‖·‖(Al;B) and 0 is not an isolated point
of W‖·‖[R(λ);B], where

R(λ) = λlP (
1

λ
) := A0λ

l +A1λ
l−1 + · · ·+Al−1λ+Al.

Then W‖·‖[P (λ);B] is unbounded.

Theorem 4. Let B ∈ Mn×m, P (λ) be a rectangular matrix
polynomial as in (2) and 1 ≤ k ≤ min{n,m} be a
positive integer. Moreover, let ‖ · ‖ be a vector norm on
M(n−k+1)×(m−k+1). Then the following assertions are true:
(i) If 0 �∈ Λk,‖·‖(Al;B), then Λk,‖·‖[P (λ);B] is bounded.
(ii) Suppose 0 ∈ Λk,‖·‖(Al;B) and 0 is not an isolated point
of Λk,‖·‖[R(λ);B], where

R(λ) = λlP (
1

λ
) := A0λ

l +A1λ
l−1 + · · ·+Al−1λ+Al.

Then Λk,‖·‖[P (λ);B] is unbounded.

Proof: (i); Since 0 �∈ Λk,‖·‖(Al;B), by Theorem 1(i),
there exists (X,Y ) ∈ X , such that

0 /∈ W‖·‖(X∗AlY ;X∗BY ),

where X is the set as in (5). Using Lemma 2(i),
W‖·‖[X∗P (λ)Y ;X∗BY ] is a bounded set in C, and hence,
by Theorem 2, Λk,‖·‖[P (λ);B] is bounded.
Since 0 ∈ Λk,‖·‖(Al;B), by Definition 1, it follows that
0 ∈ Λk,‖·‖[R(λ);B]. Moreover, since 0 is not an isolated point
of the set Λk,‖·‖[R(λ);B], there is a sequence {μk}k∈N ⊆
Λk,‖·‖[R(λ);B] \ {0} that converges to the origin. So, by
Proposition 1(iii), we have

{μ−1
k }k∈N ⊆ Λk,‖·‖[P (λ);B],

and hence, the result in (ii) follows from this fact that the
sequence {μ−1

k }k∈N is unbounded.

III. ADDITIONAL RESULTS

In this section, we investigate some algebraic properties
of the higher rank numerical range of rectangular matrix
polynomials.

Proposition 3. Let B ∈ Mn×m and P (λ) = q(λ)B, where
q(λ) is a scalar polynomial . Moreover, let 1 ≤ k ≤
min{n,m} be a positive integer and ‖ · ‖ be a vector norm
on M(n−k+1)×(m−k+1). Then

Λk,‖·‖[P (λ);B] = {μ ∈ C : q(μ) = 0}.
Proof: Using Definition 1 and Theorem 1(vii), we have:

μ ∈ Λk,‖·‖[P (λ);B] ⇐⇒ 0 ∈ Λk,‖·‖(P (μ);B) =

Λk,‖·‖(q(μ)B;B) = {q(μ)}
⇐⇒ q(μ) = 0.

So, the result holds.
In the following theorem, we show that the rank−k

numerical range of rectangular matrix polynomials is invariant
under some unitary matrices.

Theorem 5. Let B ∈ Mn×m, P (λ) be a rectangular matrix
polynomial as in (2), and 1 ≤ k ≤ min{n,m} be a
positive integer. Moreover, let ‖ · ‖ be a vector norm on
M(n−k+1)×(m−k+1). Then

Λk,‖·‖[UP (λ)V ;UBV ] = Λk,‖·‖[P (λ);B],

where for the case m ≥ n, U ∈ Un and V =

(
U∗ 0
0 ∗

)
∈

Um, and for the other case, i.e., n ≥ m, V ∈ Um and U =(
V ∗ 0
0 ∗

)
∈ Un. Also, UP (λ)V = (UAlV )λl + · · ·

+ (UA1V )λ+ (UA0V ).

Proof: Using Definition 1 and Theorem 1(iii), the result
is easy to verify.

In the following theorem, we state the relationship
between higher rank numerical range of rectangular matrix
polynomials.

Theorem 6. Let B ∈ Mn×m, P (λ) be a rectangular matrix
polynomial as in (2) and 1 ≤ k2 ≤ k1 ≤ min{n,m} be two
positive integers. Moreover, let ‖ · ‖ be a unitarily invariant
norm on M(n−k2+1)×(m−k2+1) and ||| · ||| be the vector norm
on M(n−k1+1)×(m−k1+1) as in (6). Then

Λk1,|||·|||[P (λ);B] ⊆ Λk2,‖·‖[P (λ);B].

Proof: Let μ ∈ Λk1,|||·|||(P (μ);B), be given. So, by
Definition 1, 0 ∈ Λk1,|||·|||(P (μ);B), and hence, by Theorem
1 (iv), 0 ∈ Λk2,||·||(P (μ);B). Hence, the proof is complete.

Using Definition 1 and Theorem 1 (v), we have the
following proposition

Proposition 4. Let B ∈ Mn×m, P (λ) be a rectangular
matrix polynomial as in (2) and 1 ≤ k ≤ min{n,m} be
a positive integer. Moreover, let ‖ · ‖ be a vector norm on
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M(n−k+1)×(m−k+1) and X be the set as in (5). Then the
following assertions are true:
(i) If ‖X∗BY ‖ = 1 for all (X,Y ) ∈ X , then

Λk,‖·‖[P (λ);B] =
⋂

(X,Y )∈X
{μ ∈ C : X∗BY⊥BJX

∗P (μ)Y };

(ii) If ‖X∗BY ‖ > 1 for all (X,Y ) ∈ X , then

Λk,‖·‖[P (λ);B] ⊇
⋂

(X,Y )∈X
{μ ∈ C : X∗BY⊥BJX

∗P (μ)Y }.

The following proposition follows from Definition 1 and
Theorem 1(vi).

Proposition 5. Let B ∈ Mn×m, 0 �= b ∈ C, P (λ) be
a rectangular matrix polynomial as in (2) and 1 ≤ k ≤
min{n,m} be a positive integer. Moreover, let ‖·‖ be a vector
norm on M(n−k+1)×(m−k+1). Then the following assertions
are true:
(i) If |b| = 1, then Λk,‖·‖[P (λ); bB] = Λk,‖·‖[P (λ);B];
(ii) If |b| < 1, then Λk,‖·‖[P (λ); bB] ⊆ Λk,‖·‖[P (λ);B];
(iii) If |b| > 1, then Λk,‖·‖[P (λ); bB] ⊇ Λk,‖·‖[P (λ);B].

Corollary 1. Let B ∈ Mn×m, P (λ) be a rectangular
matrix polynomial as in (2) and 1 ≤ k ≤ min{n,m} be
a positive integer. Moreover, let ‖ · ‖ be a vector norm on
M(n−k+1)×(m−k+1). If ‖B‖ > 1, Then

Λk,‖·‖[P (λ); ‖B‖−1B] ⊆ Λk,‖·‖[P (λ);B]

Let A,B ∈ Mn×m, 1 ≤ k ≤ min{n,m} be a positive
integer, and X be the set as in (5). Moreover, let ‖ · ‖ be
a vector norm on M(n−k+1)×(m−k+1) and 0 ≤ ε < 1. The
Birkhoff-James ε− orthogonality set of A with respect to B
is defined and denoted, [6], by

W ε
‖·‖(A;B) = {μ ∈ C : ‖A− λB‖ ≥

√
1− ε2‖B‖|μ− λ|,

∀λ ∈ C}.
Also, the rank−k, ε numerical range of A with respect to B
is defined and denoted, e.g., see [15], by

Λε
k,‖·‖(A;B) = {μ ∈ C : ‖X∗(A− λB)Y ‖ ≥

√
1− ε2

‖X∗BY ‖|μ− λ|, ∀λ ∈ C, ∀(X,Y ) ∈ X},
and by [15], we have

Λε
k,‖·‖(A;B) =

⋂
(X,Y )∈X

W ε
‖·‖(X

∗AY ;X∗BY ), (7)

Λε
k,‖·‖(A;B) =

⋂
(X,Y )∈X

{μ ∈ C : X∗BY ⊥ε
BJ X∗(A− μB)Y }.

(8)

Moreover, let P (λ) be a rectangular matrix polynomial as in
(rpoly). The Birkhoff-James ε−orthogonality set of P (λ) with
respect to B is defined and denoted, e.g., see [6], by

W ε
‖·‖(A;B) = {μ ∈ C : 0 ∈ W ε

‖·‖(P (μ);B)}. (9)

By this idea, at the end of this section, we introduce and study
the notion of rank-k, ε numerical range of rectangular matrix
polynomials.

Definition 2. Let B ∈ Mn×m, P (λ) be a rectangular matrix
polynomial as in (2), 1 ≤ k ≤ min{n,m} be a positive integer
and X be the set as in (5). Moreover, let ‖ · ‖ be a vector
norm on M(n−k+1)×(m−k+1) and 0 ≤ ε < 1. The rank−k, ε
numerical range of P (λ) with respect to B is defined and
denoted by

Λε
k,‖·‖[P (λ);B] = {μ ∈ C : 0 ∈ Λε

k,‖·‖(P (μ);B)}.
It is clear that:

Λε
k,‖·‖[P (λ);B] = {μ ∈ C : ‖X∗(P (μ)− λB)Y ‖ ≥

√
1− ε2

‖X∗BY ‖|λ|, ∀λ ∈ C, ∀(X,Y ) ∈ X}.
Using Definition 2 and Relations (7), (8), (9), and Theorem 2,
we have the following theorem.

Theorem 7. Let B ∈ Mn×m, P (λ) be a matrix polynomial
as in (2), 1 ≤ k ≤ min{n,m} be a positive integer and X
be the set as in (5). Moreover, let ‖ · ‖ be a vector norm on
M(n−k+1)×(m−k+1) and 0 ≤ ε < 1. Then

Λε
k,‖·‖[P (λ);B] =

⋂
(X,Y )∈X

W ε
‖·‖[X

∗P (λ)Y ;X∗BY ]

=
⋂

(X,Y )∈X
{μ ∈ C : X∗BY ⊥ε

BJ X∗P (μ)Y }.
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