Some Results on Parallel Alternating Two-stage Methods

Guangbin Wang +, Xue Li

Abstract

In this paper, we present parallel alternating two-stage methods for solving linear system $A x=b$, where A is a symmetric positive definite matrix. And we give some convergence results of these methods for nonsingular linear system.

Keywords-alternating two-stage, convergence, linear system, parallel.

I. Introduction

FOR the solution of the large linear system

$$
\begin{equation*}
A x=b \tag{1}
\end{equation*}
$$

where A is a $n \times n$ square matrix, and x and b are n -dimensional vectors, the basic iterative method is

$$
\begin{equation*}
M x_{k+1}=N x_{k}+b, k=0,1,2, \ldots \tag{2}
\end{equation*}
$$

where $A=M-N$ and M is nonsingular.
Given a splitting $A=M-N$ (M is nonsingular), a classical iterative method produces the following iteration

$$
\begin{equation*}
x_{k+1}=M^{-1} N x_{k}+M^{-1} b, k=0,1,2 \ldots \tag{3}
\end{equation*}
$$

where $M^{-1} N$ is called the iteration matrix of the method. On the other hand, a two-stage method consists of approximating the linear system (3) by using another iterative procedure (inner iterations). That is, consider the splitting $M=F-G$ and perform, at each outer step $1, s(l)$ inner iterations of the iterative procedure induced by this splitting. Thus, the resulting method is two-stage iterative method:

$$
x_{k+1}=\left(F^{-1} G\right)^{s(k)} x_{k}+\sum_{j=0}^{s(k)-1}\left(F^{-1} G\right)^{j} F^{-1}\left(N x_{k}+b\right)
$$

, $\mathrm{k}=0,1,2 \ldots$
Alternating two-stage iterative method [1] has been studied to approximate the linear system (2) by using a inner iteration. Let $M=P-Q=R-S$ be two splittings of matrix M. In order to approximate (2), for each $k, k=1,2, \ldots$, we perform $s(k)$ inner iterations of the general class of iterative methods of the form

[^0]\[

$$
\begin{aligned}
& y_{j-\frac{1}{2}}=P^{-1} Q y_{j-1}+P^{-1}\left(N x_{k-1}+b\right) \\
& y_{j}=R^{-1} S y_{j-\frac{1}{2}}+R^{-1}\left(N x_{k-1}+b\right)
\end{aligned}
$$. \mathrm{j}=1,2 ··· \mathrm{~s}(\mathrm{k})
\]

Thus, the resulting method is alternating two-stage iterative method:

$$
\begin{aligned}
& x_{k}=\left(R^{-1} S P^{-1} Q\right)^{s(k)} x_{k-1}+ \\
& \sum_{j=0}^{s(k)-1}\left(R^{-1} S P^{-1} Q\right)^{j} R^{-1}\left(S P^{-1}+I\right)\left(N x_{k-1}+b\right) \cdot \mathrm{k}=1,2 \ldots
\end{aligned}
$$

On the other hand, with the development of parallel computation in recent years, the utilization of the parallel algorithms for the solution of large nonsingular linear system has become effective. Now we introduce the parallel alternating two-stage methods.
Given a parallel multisplitting of A, s.t.

$$
\text { (i) } A=M_{l}-N_{l} \text {, }
$$

(ii) $M_{l}=P_{l}-Q_{l}=R_{l}-S_{l}$,
(iii) $E_{l} \geq 0$ and $\sum_{l=1}^{a} E_{l}=I$,
where $1=1,2, \ldots$ a and I is the identity matrix.
Suppose that we have a multiprocessor with α processors connected to a host processor, that is, the same number of processors as splittings, and that all processors have the last update vector x_{k-1}, then the 1-th processor only computes those entries of the vector

$$
\begin{aligned}
& y_{l, j-\frac{1}{2}}=P_{l}^{-1} Q_{l} y_{l, j-1}+P_{l}^{-1}\left(N_{l} x_{k-1}+b\right) \\
& y_{l, j}=R_{l}^{-1} S_{l} y_{l, j-\frac{1}{2}}+R_{l}^{-1}\left(N_{l} x_{k-1}+b\right)
\end{aligned}, \mathrm{j}=1,2 \ldots \mathrm{~s}(\mathrm{k})
$$

With $y_{l, 0}=x_{k-1}$, or equivalently

$$
y_{l, j}=R_{l}^{-1} S_{l} P_{l}^{-1} Q_{l} y_{l, j-1}+R_{l}^{-1}\left(S_{l} P_{l}^{-1}+I\right)\left(N_{l} x_{k-1}+b\right)
$$

$j=1,2, \ldots s(k)$,
which correspond to the nonzero diagonal entries of E_{l}. The processor then scales these entries so as to be able to deliver the results to the host processor, performing the parallel multisplitting scheme

$$
\begin{equation*}
x_{k}=H(k) x_{k-1}+W(k) b, \mathrm{k}=1,2 \ldots \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& H(k)=\sum_{l=1}^{a} E_{l}\left[\left(R_{l}^{-1} S_{l} P_{l}^{-1} Q_{l}\right)^{s(l, k)}+\right. \\
& \left.\sum_{j=0}^{s(l, k)-1}\left(R_{l}^{-1} S_{l} P_{l}^{-1} Q_{l}\right)^{j} R^{-1}\left(S_{l} P_{l}^{-1}+I\right) N_{l}\right]
\end{aligned}
$$

and

$$
W(k)=\sum_{l=1}^{a} E_{l} \sum_{j=0}^{s(l, k)-1}\left(R_{l}^{-1} S_{l} P_{l}^{-1} Q_{l}\right)^{j}\left(R^{-1} S_{l} P_{l}^{-1}+R_{l}\right) .
$$

Then, we can obtain the next algorithm:

Algorithm 1 (PATS):

for any given initial vector x_{0}

$$
\begin{aligned}
& \text { for } k=1,2, \ldots \text { until convergent } \\
& \qquad \begin{array}{l}
\text { for } l=1,2, \ldots \alpha \\
y_{l, 0}=x_{k-l} \\
\quad \text { for } j=1,2, \ldots s(l, k) \\
P_{l} y_{l, j-\frac{1}{2}}=Q_{l} y_{l, j-1}+\left(N_{l} x_{k-1}+b\right) \\
R_{l} y_{l, j}=S_{l} y_{l, j-\frac{1}{2}}+\left(N_{l} x_{k-1}+b\right) \\
x_{k}=\sum_{l=1}^{a} E_{l} y_{l, j}
\end{array}
\end{aligned}
$$

Usually, we say that an parallel alternating two-stage method is stationary when $s(l, k)=s$, for all l, k, while an parallel alternating two-stage method is non-stationary if the number of inner iterations changes with the outer iteration k. We call them SPATS method and NSPATS method, respectively.

In this paper, our study concentrates on the parallel alternating two-stage method. With this aim, in the next section, we introduce the notation and preliminaries needed in this paper. In section 3, we present convergence conditions of these methods for solving nonsingular linear systems $A x=b$ when matrix A is a symmetric positive definite matrix. In section 4, we also give two relaxation parallel alternating two-stage methods, RPATS I and RPATS II. And we analyze their convergence conditions.

II. Notation and Preliminaries

We need the following definitions and results.
We say that a vector x is nonnegative, denoted $x \geq 0$, if all of its entries are nonnegative.

Definition 1: Let A be an $n \times n$ real matrix. We say that the splitting $A=M-N$ is P-regular if $M^{T}+N$ is definite positive.

Lemma 1: ([2]). Let $T_{1}, T_{2}, \cdots T_{k}, \cdots$ be a sequence of nonnegative matrices in $R^{n \times n}$. If exist a real number $0<\theta<1$, and a vector $v>0$ in R^{n}, such that $T_{j} v \leq \theta v$, for $j=1,2, \ldots$
, then $\rho(H(k)) \leq \theta<1$, where $H(k)=T_{k} T_{k-1} \cdots T_{2} T_{1}$, and therefore $\lim _{k \rightarrow \infty} H(k)=0$.

Lemma 2: For an n-vector $x>0$, the monotonic vector norm
$\|y\|_{x}=\min \{a>0:-a x \leq y \leq a x\}=\max _{1 \leq i \leq n}\left|\frac{y_{i}}{x_{i}}\right|$,which
induces the matrix norm $\|A\|_{x}$ that satisfies $\|A\|_{x}=\|A x\|_{x}$, and $\|A \mid x\|_{x}=\|A\|_{x}$. Furthermore, if $|A| x \leq \beta x$ for some $\beta \geq 0$, then $\|A\|_{x} \leq \beta$ [3]. Moreover, a real matrix A is positive semidefinite if

$$
\begin{equation*}
x^{T} A x \geq 0 \text { for all } x \neq 0 \tag{5}
\end{equation*}
$$

and positive definite if strict inequality holds in (5) [4]. Furthermore, it is well-known that for a symmetric positive definite matrix A the expression $\|x\|_{A}=\sqrt{x^{T} A x}$ defines a vector norm. We denote by $\|.\|_{A}$ both the vector norm defined by A and the corresponding induced matrix norm.

III. Convergence Theorems

Firstly, we deal with the convergence of the PATS method when A is a symmetric matrix.
Theorem 1 [5]: Let A be a symmetric positive definite matrix. Let $A=M-N=P-Q$ be P-regular splittings. Consider the matrix $T=P^{-1} Q M^{-1} N$, then $\rho(T)<1$. Moreover, the unique splitting $A=B-C$ induced by the iteration matrix T, such that $T=B^{-1} C$ is also P-regular .
Theorem 2 [6]: Let A be a symmetric positive definite matrix. Consider $A=M-N$ such that M is Hermitian and N is positive semidefinite. Let $M=F-G$ be a P-regular splitting. Assume further that the sequence of inner iterations $\{s(l)\}_{l=0}^{\infty}$ remains bounded. Then the two-stage iterative method converges to the solution of the linear system (1) for any initial vector x_{o}.
Theorem 3: Let A be a symmetric positive definite matrix. Consider $A=M_{l}-N_{l}, l=1,2, \ldots$, such that M_{l} is Hermitian and N_{l} is positive semidefinite. Let $M_{l}=P_{l}-Q_{l}=R_{l}-S_{l}$ be P-regular splittings. Assume further that the sequence of inner iterations $\{s(l)\}_{l=0}^{\infty}$ remains bounded. Then the PATS method converges to the solution of the linear system (1) for any initial vector x_{o}.
Proof: We suppose that $H(k)=\sum_{l=1}^{\alpha} E_{l} T_{l}(k), l=1,2, \ldots$, $k=0,1,2, \ldots$ where

$$
\begin{aligned}
& T_{l}(k)=\left(R_{l}^{-1} S_{l} P_{l}^{-1} Q_{l}\right)^{s(l, k)} \\
&+\sum_{j=0}^{s(l, k)-1}\left(R_{l}^{-1} S_{l} P_{l}^{-1} Q_{l}\right)^{j} R^{-1}\left(S_{l} P_{l}^{-1}+I\right) N_{l} \\
&=\left(R_{l}^{-1} S_{l} P_{l}^{-1} Q_{l}\right)^{s(l, k)}+\left[I-\left(R_{l}^{-1} S_{l} P_{l}^{-1} Q_{l}\right)^{s(l, k)}\right] M_{l}^{-1} N_{l}
\end{aligned}
$$

From Theorem 1, there is a unique pair of matrices B_{l}, C_{l}, $l=1, \quad 2, \quad \ldots$, such that $R_{l}^{-1} S_{l} P_{l}^{-1} Q_{l}=B_{l}^{-1} C_{l}$ and $M_{l}=B_{l}-C_{l}, l=1,2, \ldots$, is a P-regular splitting. Thus, $H(k)=\sum_{l=1}^{\alpha} E_{l} T_{l}(k)$ is the iteration matrix of a non-stationary two-stage method for the matrix $A_{l}=M_{l}-N_{l}$, with M_{l} Hermitian and N_{l} positive semidefinite and $M_{l}=B_{l}-C_{l}$ being P-regular. So

$$
\begin{aligned}
& H(k)=\sum_{l=1}^{\alpha} E_{l} T_{l}(k), l=1,2, \ldots, k=0,1,2, \ldots, \text { where } \\
& T_{l}(k)=\left(B_{l}^{-1} C_{l}\right)^{s(l, k)}+\left[I-\left(B_{l}^{-1} C_{l}\right)^{s(l, k)}\right] M_{l}^{-1} N_{l} \\
& \\
& =I-P_{l}(k) A
\end{aligned}
$$

where $P_{l}(k)=\left[I-\left(B_{l}^{-1} C_{l}\right)^{s(l, k)}\right] M_{l}^{-1}$,

$$
\left\|T_{l}(k)\right\|_{A}=\left\|I-P_{l}(k) A\right\|_{A}=\left\|A^{\frac{1}{2}}\left[I-P_{l}(k) A\right] A^{-\frac{1}{2}}\right\|_{2}
$$

$$
A^{\frac{1}{2}}\left[I-P_{l}(k) A\right] A^{-\frac{1}{2}} \text { is symmetric and }
$$

$$
\left\|A^{\frac{1}{2}}\left[I-P_{l}(k) A\right] A^{-\frac{1}{2}}\right\|_{2}=\rho\left(A^{\frac{1}{2}}\left[I-P_{l}(k) A\right] A^{-\frac{1}{2}}\right)
$$

$$
=\rho\left(I-P_{l}(k) A\right)=\rho\left(T_{l}(k)\right)
$$

From Theorem 1, $\rho\left(B_{l}^{-1} C_{l}\right)<1, \lim _{s(l, k) \rightarrow \infty}\left(B_{l}^{-1} C_{l}\right)^{s(l, k)}=0$,
so $\lim _{s(l, k) \rightarrow \infty} \rho\left(T_{l}(k)\right)=\rho\left(M_{l}^{-1} N_{l}\right)<1$, thus

$$
\begin{aligned}
\rho\left(T_{l}(k)\right) & <\rho\left(M_{l}^{-1} N_{l}\right)+\frac{1}{2}\left[1-\rho\left(M_{l}^{-1} N_{l}\right)\right] \\
& =\frac{1}{2}\left[1+\rho\left(M_{l}^{-1} N_{l}\right)\right]<1
\end{aligned}
$$

Let
$\theta_{k}=\max \left\{\rho\left(T_{l}(k)\right), s(l, k)=1,2, \cdots ; \frac{1}{2}\left[1+\rho\left(M_{l}^{-1} N_{l}\right)\right]\right\}$,
obviously, $\theta_{k}<1$.
We have $\rho\left(T_{l}(k)\right) \leq \theta_{k}<1, l=1,2, \ldots, k=0,1,2, \ldots$, let $\theta=\max \left\{\theta_{1}, \theta_{2}, \cdots \theta_{k}\right\}$, we can obtain

$$
\begin{aligned}
& \|H(k)\|_{A}=\left\|\sum_{l=1}^{\alpha} E_{l} T_{l}(k)\right\|_{A} \leq \sum_{l=1}^{\alpha}\left\|E_{l}\right\|_{A}\left\|T_{l}(k)\right\|_{A} \\
& =\sum_{l=1}^{\alpha}\left\|E_{l}\right\|_{A} \rho\left(T_{l}(k)\right) \leq \sum_{l=1}^{\alpha}\left\|E_{l}\right\|_{A} \theta_{k} \leq \sum_{l=1}^{\alpha}\left\|E_{l}\right\|_{A} \theta=\theta
\end{aligned}
$$

Since $\rho(H(k)) \leq\|H(k)\|$, it gets $\rho(H(k)) \leq \theta<1, k$ $=0,1,2, \ldots$. Thus the proof is completed.

IV. Relaxation Iteration Methods

Now we introduce the relaxation factor to the parallel alternating two-stage methods. Then, we can obtain the following two algorithms:
Algorithm 2 (RPATS I):
for any given initial vector x_{0} and $\omega \in(0,1)$

$$
\begin{aligned}
& \text { for } k=1,2, \ldots \text { until convergent } \\
& \qquad \begin{array}{l}
\text { for } l=1,2, \ldots \alpha \\
y_{l, 0}=x_{k-1} \\
\text { for } j=1,2, \ldots s(l, k) \\
P_{l} y_{l, j-\frac{1}{2}}=Q_{l} y_{l, j-1}+\left(N_{l} x_{k-1}+b\right) \\
R_{l} y_{l, j}=S_{l} y_{l, j-\frac{1}{2}}+\left(N_{l} x_{k-1}+b\right) \\
\quad x_{k}=\omega \sum_{l=1}^{a} E_{l} y_{l, j}+(1-\omega) x_{k-1}
\end{array}
\end{aligned}
$$

Algorithm 3 (RPATS II):
f or any given initial vector x_{0} and $\omega \in(0,1)$

$$
\text { for } k=1,2, \ldots \text { until convergent }
$$

$$
\begin{gathered}
\text { for } l=1,2, \ldots \alpha \\
y_{l, 0}=x_{k-l} \\
\text { for } j=1,2, \ldots s(l, k) \\
P_{l} y_{l, j-\frac{1}{2}}=\omega\left(Q_{l} y_{l, j-1}+\left(N_{l} x_{k-1}+b\right)\right)+(1-\omega) P_{l} y_{l, j-1} \\
R_{l} y_{l, j}=\omega\left(S_{l} y_{l, j-\frac{1}{2}}+\left(N_{l} x_{k-1}+b\right)\right)+(1-\omega) R_{l} y_{l, j-\frac{1}{2}} \\
x_{k}=\sum_{l=1}^{a} E_{l} y_{l, j}
\end{gathered}
$$

For the relaxation parallel alternating two-stage methods (RPATS I and RPATS II), we can similarly get the following convergence theorems.

Theorem 4: Let A be a Hermitian positive definite matrix. Consider $A=M_{l}-N_{l}, l=1,2, \ldots$, such that M_{l} is Hermitian and N_{l} is positive semidefinite. Let $M_{l}=P_{l}-Q_{l}=R_{l}-S_{l}$ be P-regular splittings, and $0<\omega<1$. Assume further that the sequence of inner iterations $\{s(l)\}_{l=0}^{\infty}$ remains bounded. Then the relaxation parallel alternating two-stage methods (RPATS I and RPATS

II) converge to the solution of the linear system (1) for any initial vector x_{0}.

The proof of the Theorem 4 is similar to the proof of Theorem 3, so we omit it.

REFERENCES

[1] H. Migallón, V. Migallón, J. Penadés, "Alternating two-stage methods for consistent linear system with applications to the parallel solution of Markov chains," Advances in Engineering Software, vol.41, pp.13-21,2010.
[2] B.L. Zhang, T.X. Gu, Z.Y. Mo, "Principles and methods of numerical parallel computation," National defense industry Press, Beijing, 1999.
[3] W. Rheinboldt, J. Vandergraft, "A simple approach to the Perron-Frobenius theory for positive operators on general partially-ordered nite-dimensional linear spaces," Mathematics of Computation, 27 (121) (1973) pp. 139-145.
[4] J.M. Ortega, Numerical Analysis, A second course, Academic Press, New York, NY, 1972. Reprinted by SIAM, Philadelphia, PA, 1992.
[5] Castel MJ, Migallón V, Penadés J. "Convergence of non-stationary parallel multisplitting methods for Hermitian positive denite matrices," Math Comput 1998;67(221): pp. 209-20.
[6] Migallón V, Penadés J. "Convergence of two-stage iterative methods for Hermitian positive denite matrices," Appl Math Lett 1997;10(3): pp. 79-83

Guangbin Wang received his Ph.D from Shanghai University, China in 2004.
Since 2004 he has been at Qingdao University of Science and Technology, China. His research interests include numerical linear algebra, matrix theory.

[^0]: Guangbin Wang and Xue Li are with the Department of Mathematics, Qingdao University of Science and Technology, 266061, China

 + Corresponding author. e-mail address: wguangbin750828@sina.com This work was supported by the National Natural Science Foundation of China (No. 11001144) .

