Some results on parallel alternating methods

Guangbin Wang ${ }^{+}$, Fuping Tan

Abstract

In this paper, we investigate two parallel alternating methods for solving the system of linear equations $A x=b$ and give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix. Furthermore, we give one example to show our results.

Keywords-nonsingular H-matrix, parallel alternating method, convergence.

I. Introduction

FOR the large system of linear equations

$$
\begin{equation*}
A x=b, \tag{1}
\end{equation*}
$$

where A is a nonsingular square matrix of order $n, x, b \in$ R^{n}. Benzi and Szyld [1] analyzed the following alternating method:

Given an initial vector $x^{(0)}$, for $k=0,1,2, \cdots$,

$$
\begin{aligned}
& x^{\left(k+\frac{1}{2}\right)}=M^{-1} N x^{(k)}+M^{-1} b \\
& x^{(k+1)}=P^{-1} Q x^{\left(k+\frac{1}{2}\right)}+P^{-1} b
\end{aligned}
$$

where $A=M-N=P-Q$ are two splittings of A. They proved its convergence under certain conditions when the coefficient matrix A is a monotone matrix or a symmetric positive definite matrix.

In paper [2], Climent and Perea introduced two parallel alternating iterative methods.
Assume that

$$
\begin{equation*}
A=M_{l}-N_{l}=P_{l}-Q_{l}, \quad l=1,2, \cdots, p \tag{2}
\end{equation*}
$$

where M_{l} and P_{l} nonsingular matrices; E_{l} satisfy $\sum_{l=1}^{p} E_{l}=I$ (I is an identity matrix), where E_{l} are diagonal and $E_{l} \geq 0$.

Method 1: Let $x^{(0)}$ be a starting vector, $\varepsilon>0$ is a given precision. For $k=1,2, \cdots$,

$$
\begin{aligned}
& x_{l}^{\left(k+\frac{1}{2}\right)}=\left(M_{l}^{-1} N_{l}\right)^{\mu(k, l)} x^{(k)}+\sum_{i=0}^{\mu(k, l)-1}\left(M_{l}^{-1} N_{l}\right)^{i} M_{l}^{-1} b \\
& x_{l}^{(k+1)}=\left(P_{l}^{-1} Q_{l}\right)^{\nu(k, l)} x_{l}^{\left(k+\frac{1}{2}\right)}+\sum_{i=0}^{\nu(k, l)-1}\left(P_{l}^{-1} Q_{l}\right)^{i} P_{l}^{-1} b \\
& x^{(k+1)}=\sum_{l=1}^{p} E_{l} x_{l}^{(k+1)}
\end{aligned}
$$

Guangbin Wang is with the Department of Mathematics, Qingdao University of Science and Technology, Qingdao, 266061, China.

Fuping Tan is with the Department of Mathematics, Shanghai University, Shanghai, 200444, China.

+ Corresponding author. E-mail: wguangbin750828@sina.com. This work was supported by Natural Science Fund of Shandong Province of China (Y2008A13).

If $\left\|x^{(k+1)}-x^{(k)}\right\|<\varepsilon$, then quit.
It is easy to notice that the iterative matrix of Method 1 is

$$
T=\sum_{l=1}^{p} E_{l}\left(P_{l}^{-1} Q_{l}\right)^{\nu(k, l)}\left(M_{l}^{-1} N_{l}\right)^{\mu(k, l)}
$$

Method 2: Let $x^{(0)}$ be a starting vector, $\varepsilon>0$ is a given precision. For $k=1,2, \cdots$,

$$
\begin{aligned}
x^{\left(k+\frac{1}{2}\right)}= & \sum_{l=1}^{p} E_{l}\left(M_{l}^{-1} N_{l}\right)^{\mu(k, l)} x^{(k)} \\
& +\sum_{l=1}^{p} E_{l}\left[\sum_{i=0}^{\mu(k, l)-1}\left(M_{l}^{-1} N_{l}\right)^{i} M_{l}^{-1}\right] b \\
x^{(k+1)}= & \sum_{l=1}^{p} F_{l}\left(P_{l}^{-1} Q_{l}\right)^{\nu(k, l)} x_{l}^{\left(k+\frac{1}{2}\right)} \\
& +\sum_{l=1}^{p} F_{l}\left[\sum_{i=0}^{\nu(k, l)-1}\left(P_{l}^{-1} Q_{l}\right)^{i} P_{l}^{-1}\right] b
\end{aligned}
$$

If $\left\|x^{(k+1)}-x^{(k)}\right\|<\varepsilon$, then quit.
It is easy to notice that the iterative matrix of Method 2 is

$$
S=\left[\sum_{l=1}^{p} F_{l}\left(P_{l}^{-1} Q_{l}\right)^{\nu(k, l)}\right]\left[\sum_{l=1}^{p} E_{l}\left(M_{l}^{-1} N_{l}\right)^{\mu(k, l)}\right]
$$

In this paper, we give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix.

II. Preliminaries

Let $A \in R^{n \times n}$. We denote by $A \geq 0$ a nonnegative matrix, $|A|$ the absolute value of matrix A, and $\rho(A)$ the spectral radius of A.

Definition 2.1 Let $A=B-C$ be a splitting of A. If $B^{-1} \geq 0, B^{-1} C \geq 0$, then $A=B-C$ is a weak regular splitting[3]. If $B^{-1} \geq 0, C \geq 0$, then $A=B-C$ is a regular splitting[4]. If B is an M-matrix and $C \geq 0$, then $A=B-C$ is an M -splitting[5].

In paper [2], a weak regular splitting is also called a weak nonnegative splitting of the first type.

It's obvious that an M-splitting is a regular splitting and a regular splitting is a weak regular splitting.

Definition 2.2([6]) Let $A \in R^{n \times n}$. $A=M-N(M, N \in$ $R^{n \times n}$) is called as an H -splitting if $<M>-|N|$ is an M matrix. If $<A>=<M>-|N|$, then $A=M-N$ is called as an H-compatible splitting.

III. Convergence Theorems

In this section, we give convergence theorems for the parallel alternating methods when the coefficient matrix is a nonsingular H-matrix.

Lemma 3.1[2] Let $A \in R^{n \times n}$ and $A^{-1} \geq 0$. If $A=$ $M_{l}-N_{l}=P_{l}-Q_{l}(l=1,2, \cdots, p)$ are all weak nonnegative splittings of the first type, then

$$
\rho(T)<1
$$

where

$$
T=\sum_{l=1}^{p} E_{l}\left(P_{l}^{-1} Q_{l}\right)^{\nu(k, l)}\left(M_{l}^{-1} N_{l}\right)^{\mu(k, l)}
$$

Lemma 3.2[2] Let $A \in R^{n \times n}$ and $A^{-1} \geq 0$. If $A=$ $M_{l}-N_{l}=P_{l}-Q_{l}(l=1,2, \cdots, p)$ are all weak nonnegative splittings of the first type, then

$$
\rho(S)<1
$$

where

$$
S=\left[\sum_{l=1}^{p} F_{l}\left(P_{l}^{-1} Q_{l}\right)^{\nu(k, l)}\right]\left[\sum_{l=1}^{p} E_{l}\left(M_{l}^{-1} N_{l}\right)^{\mu(k, l)}\right] .
$$

Lemma 3.3[7] If $A \in R^{n \times n}$ is a nonsingular H -matrix, then $\left|A^{-1}\right| \leq<A>^{-1}$.

Theorem 3.1 Let $A \in R^{n \times n}$ be a nonsingular H-matrix,

$$
A=M_{l}-N_{l}=P_{l}-Q_{l}(l=1,2, \cdots, p)
$$

are H -splittings while $B \in R^{n \times n}$ be a nonsingular M-matrix,

$$
B=<M_{l}>-\left|N_{l}\right|=<P_{l}>-\left|Q_{l}\right|(l=1,2, \cdots, p),
$$

then Method 1 converges to the unique solution of (??) for any starting vector $x^{(0)}$.

Proof: We will show that $\rho(T)<1$.
It is obvious that $\rho(T)<1$ if $\rho(|T|)<1$. From

$$
<M_{l}>-\left|N_{l}\right|=<P_{l}>-\left|Q_{l}\right|=B
$$

is a nonsingular M-matrix. So $<M_{l}>,<P_{l}>\quad(l=$ $1,2, \cdots, p$) are all M-matrices, and

$$
<M_{l}>-\left|N_{l}\right|=<P_{l}>-\left|Q_{l}\right|=B(l=1,2, \cdots, p)
$$

are M-splittings of B. So $M_{l}, P_{l}(l=1,2, \cdots, p)$ are all H matrices. Moreover,

$$
\left|M_{l}^{-1}\right| \leq<M_{l}>^{-1},\left|P_{l}^{-1}\right| \leq<P_{l}>^{-1}
$$

Thus we obtain

$$
\begin{aligned}
|T| & =\left|\sum_{l=1}^{p} E_{l}\left(P_{l}^{-1} Q_{l}\right)^{\nu(k, l)}\left(M_{l}^{-1} N_{l}\right)^{\mu(k, l)}\right| \\
& \left.\left.\leq \sum_{l=1}^{p} E_{l}\left(<P_{l}\right\rangle^{-1}\left|Q_{l}\right|\right)^{\nu(k, l)}\left(<M_{l}\right\rangle^{-1}\left|N_{l}\right|\right)^{\mu(k, l)} \\
& =\overline{\bar{T}} .
\end{aligned}
$$

We use Lemma 3.1 to see immediately that $\rho(\bar{T})<1$. Therefore, $\rho(|T|)<1$ and $\rho(T)<1$, we obtain the conclusion of this theorem.

If $B=<A>$ in Theorem 3.1, then we can obtain the following corollary.

Corollary 3.1 Let $A \in R^{n \times n}$ be a nonsingular H-matrix,

$$
A=M_{l}-N_{l}=P_{l}-Q_{l}(l=1,2, \cdots, p)
$$

are H -compatible splittings, then Method 1 converges to the unique solution of (??) for any starting vector $x^{(0)}$.

Theorem 3.2 Let $A \in R^{n \times n}$ be a nonsingular H-matrix,

$$
A=M_{l}-N_{l}=P_{l}-Q_{l}(l=1,2, \cdots, p)
$$

are H -splittings while $B \in R^{n \times n}$ be a nonsingular M-matrix,

$$
B=<M_{l}>-\left|N_{l}\right|=<P_{l}>-\left|Q_{l}\right|(l=1,2, \cdots, p),
$$

then Method 2 converges to the unique solution of (??) for any starting vector $x^{(0)}$.

Proof: We will show that $\rho(S)<1$.
It is obvious that $\rho(S)<1$ if $\rho(|S|)<1$. From

$$
<M_{l}>-\left|N_{l}\right|=<P_{l}>-\left|Q_{l}\right|=B
$$

is a nonsingular M-matrix. So $<M_{l}>,<P_{l}>(l=$ $1,2, \cdots, p)$ are all M-matrices, and

$$
<M_{l}>-\left|N_{l}\right|=<P_{l}>-\left|Q_{l}\right|=B(l=1,2, \cdots, p)
$$

are M-splittings of B. So $M_{l}, P_{l}(l=1,2, \cdots, p)$ are all H matrices. Moreover,

$$
\left|M_{l}^{-1}\right| \leq<M_{l}>^{-1},\left|P_{l}^{-1}\right| \leq<P_{l}>^{-1}
$$

Thus we obtain

$$
\begin{aligned}
|S| & =\left|\left[\sum_{l=1}^{p} F_{l}\left(P_{l}^{-1} Q_{l}\right)^{\nu(k, l)}\right]\left[\sum_{l=1}^{p} E_{l}\left(M_{l}^{-1} N_{l}\right)^{\mu(k, l)}\right]\right| \\
& \leq \sum_{l=1}^{p} F_{l}\left(<P_{l}>^{-1}\left|Q_{l}\right|\right)^{\nu(k, l)} \sum_{l=1}^{p} E_{l}\left(<M_{l}>^{-1}\left|N_{l}\right|\right)^{\mu(k, l)} \\
& =\overline{\bar{S}} .
\end{aligned}
$$

We use Lemma 3.2 to see immediately that $\rho(\bar{S})<1$. Therefore, $\rho(|S|)<1$ and $\rho(S)<1$, we obtain the conclusion of this theorem.

If $B=<A>$ in Theorem 3.2, then we can obtain the following corollary.

Corollary 3.2 Let $A \in R^{n \times n}$ be a nonsingular H-matrix,

$$
A=M_{l}-N_{l}=P_{l}-Q_{l}(l=1,2, \cdots, p)
$$

are H -compatible splittings, then Method 2 converges to the unique solution of (??) for any starting vector $x^{(0)}$.

Example

$$
A=\left[\begin{array}{ccc}
10 & 3 & 8 \\
4 & 10 & 0 \\
7 & 3 & 12
\end{array}\right]
$$

is a nonsingular H-matrix. Let

$$
\begin{aligned}
& M_{1}=\left[\begin{array}{ccc}
10 & 3 & 5 \\
5 & 10 & 0 \\
6 & 5 & 12
\end{array}\right] M_{2}=\left[\begin{array}{ccc}
10 & 3 & 6 \\
5 & 10 & 0 \\
6 & 5 & 12
\end{array}\right] \\
& P_{1}=\left[\begin{array}{ccc}
10 & 3 & 4 \\
5 & 10 & 0 \\
6 & 5 & 12
\end{array}\right] \quad P_{2}=\left[\begin{array}{ccc}
10 & 3 & 4 \\
5 & 10 & 0 \\
5 & 5 & 12
\end{array}\right]
\end{aligned}
$$

$N_{l}=M_{l}-A, Q_{l}=P_{l}-A(l=1,2), \mu(k, l)=\nu(k, l)=2$.

It's easy to test that

$$
\begin{aligned}
&\left\langle M_{1}\right\rangle-\left|N_{1}\right| \\
&=<M_{2}>-\left|N_{2}\right|=<P_{1}>-\left|Q_{1}\right| \\
&=\left.<P_{2}\right\rangle-\left|Q_{2}\right|=\left[\begin{array}{ccc}
10 & -3 & -8 \\
-6 & 10 & 0 \\
-7 & -7 & 12
\end{array}\right]
\end{aligned}
$$

is a nonsingular M-matrix, but

$$
\left[\begin{array}{ccc}
10 & -3 & -8 \\
-6 & 10 & 0 \\
-7 & -7 & 12
\end{array}\right] \neq<A>
$$

so

$$
A=M_{l}-N_{l}=P_{l}-Q_{l}(l=1,2)
$$

are H -splittings.
Case 1: We choose

$$
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad E_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

then

$$
T=\left[\begin{array}{ccc}
\frac{48}{7033} & -\frac{89}{5135} & -\frac{237}{10805} \\
-\frac{31}{12518} & \frac{123}{21529} & \frac{40}{9861} \\
-\frac{52}{17127} & \frac{212}{15969} & \frac{150}{9149}
\end{array}\right]
$$

Case 2: We choose $E_{1}=I / 3, E_{2}=2 I / 3, F_{1}=$ $3 I / 4, F_{2}=I / 4, l=1,2$, then

$$
S=\left[\begin{array}{ccc}
\frac{191}{31989} & -\frac{119}{7022} & -\frac{231}{12751} \\
-\frac{64}{28429} & \frac{19}{3855} & \frac{25}{6782} \\
-\frac{30}{11587} & \frac{75}{6682} & \frac{133}{8366}
\end{array}\right]
$$

$$
\rho(S)=\frac{163}{6917}<1
$$

References

[1] M.Benzi and D.B.Syzld, Existence and uniqueness of splttings for stationary iterative methods with applications to alternating methods, Numer. Math., vol.76, 309-321, 1997.
[2] J.-J.Climent, C.Perea, L.Tortosa and A.Zamora, Convergence theorems for parallel alternating iterative methods, Appl. Math. and Comp., vol.148, pp.497-517, 2004.
[3] L.Elsner, Comparisons of weak regular splittings and multisplitting methods, Numer.Math., vol.56, pp.283-289, 1989.
[4] R.S.Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[5] H. Schneider, Theorems on M-splittings of a singular M-matrix which depend on graph structure, Linear Algebra Appl., vol.58, pp.407-424, 1984.
[6] A.Frommer and D.B.Szyld, H-splittings and two-stage iterative methods, Numer Math., vol.63, pp.345-356, 1992.
[7] A. Ostrowski, Uber die determinant mit uberwiegenber hauptdiagonale, Comment Math. Heh., vol.10, pp.69-96, 1937.

