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Abstract—This paper establishes some closed formulas for
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for Riemann- Liouville and Caputo  impulsive fractiona
derivatives.

Keywords—Rimann- Liouville fractional calculus, Caputo
fractiona derivative, Dirac delta, Distributional derivatives, High-
order distributional derivatives.

I. INTRODUCTION

RACTIONAL calculus has been used in a set of applications,

mainly, to dea with modelling errors in differential

equations and dynamic systems. There are aso
applications in Signal Processing and sampling and hold
agorithms, [1-3]. Fractional integrals and derivatives can be
of non-integer orders and even of complex order. This
facilitates the description of some problems which are not
easily descxribed by ordinary calculus due to modelling
errors, [1-5]. There are severa approaches for the integra
fractional calculus, the most popular ones being the
Riemann-Liouville fractional integral. There is aso a
fractional Riemann- Liouville derivative. However, the well-
known Caputo fractional derivativearelessinvolved sincethe
associated integral operator manipulates the derivatives of the
primitive function under the integral symbol. This paper
extends the basic fractiona differ-integral calculus to
impulsive functions described through the use of Dirac
distributions and Dirac distributional derivatives, [5], of real
fractional orders. Inthe general case, it is admitted a presence
of infinitely many impulsive terms at certain isolated point of
the relevant function domains. Control Theory topicsin [6-9]
could be reformulated under thefractional formalism
considered in this paper.

I1. GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL
INTEGRAL
Let us denote the set of positive real numbers by
R, ={reR:r>0} and left-sided and right-sided L ebesgue
integrals, respectively, as:

[sa(r)dz:= lim [ g(r)dr  (the identification
tox=x"

X=X isusedfor all x in order to simplify the notation), and
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jé+ g(r)dz': :t Iim+ JE) g(‘l’)dT
— X

Now, consider rea functions f,f:R+ —R ,such that
jg(x—t)”’lf_(t)dt exists, VxeR ., fulfilling:

F(X) = F )+ Sy e K 1 806 x1)= F ()4 2y o K 1 9x-X)

5(x) denotes the Dirac delta distribution,
K50)=f (x7)- f(x;) with K R ; Viel(x)cz, ,

[5],and IMP:= [JIMP (x)= UlMP(x*)ofindexingset

xeR xeR

I (o) is the whole impulsive set defined via empty or
non-empty) partial impulsive strictly ordered denumerable
sets:
IMP(X)Zz{Xi eR,: f(xi*)— f(x;)=K,5(0), x, <x} )
of indexing set
|(X):={i € Zg, : x; eMP()}c1 (x* )z, , for each
xeR,;and
IMP (x )< IMP(x*),

::{xi eR,:f (xi*)— f(x;)=K;5(0),x; sx*}cR @)

of indexing set

I(x)c:l(x*)::{ieZOJr:xieIMP(X+)}cZ+ ,  for
each xeR,_ with the indexing set of IMP being
)= Ul ()= I (x*). If we are interested in

xeIMP(x)  xelMP(x" )

studying the fractional derivative of the impulsive function
f:R, »>Rthen f:R, - Ris non- uniquely defined as
f(x)=f(x) for xeR,\IMP , and f(x;)=f(x;) ,
£(x)= £ (x;)+ K 5(0)= F(x;)+K ; 50)
X; € IMP with f_(x+)eR( non-uniquely) defined being
bounded arbitrary (for instance, being zero or
f(x*)=£(x)) if xcIMP. Note that IMPand I (i) have

infinite cardinalsif there are infinitely many impulsive values
of the function f(t).

, for

Note that the existence of g (x=t)“~1f (t)dt implies that
of [o(x=t)“71f (t)dt= [ (x—t)# " (t)dt if xeIMP(x),
since jg (x—t)“~1f (t)dt exists, and that of

[ =t @)= [ (-t 1T @+ (e x )=t () 1 (%)
if xiell\AP(x*) ®)
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Theorem 2.1. The extended fractional Riemann- Liouville
integrals by considering impulsive functions are defined for
any fixed order e R, and all xeR, by

(34 ¢)(x):= % P (x-t)# Lt (t)dt

(#)
:1[ J‘:(X—t)ﬂflfi(t)dtwt Z(X—Xi)”’l(f (Xi*)—f(xi))j

r(u) iel(x)

:ﬁ S [ - @)t
1

ﬁ

iel(x)ufo} X

+m :;(x) (Xft)h—lf(t)dt+ie§)(x,xi)u—1(f (XT)* ; ()q))
(4)
H +1)._ 1 xt u-1
(J f)(x )-—mfo (x—t)“~1 (t)dt
:r%,) [ -t o +i€l(zx+()x—xi)”l(f (x;)- (K))]

:ﬁ 3 rfl (x—t)#~1f (t)dt

iel(xyuio}

+r(lﬂ) > (x=xi) 3t xi ) 1 %) ®)

iel(x")

(J 0 f)(x+)z(J 0 f)(x):: f (x)

where I':Rg, > R, is the /7 - function , [1-5] and

n:IMP—>2Z , is defined by
n(x)=card I (x)= card IMP(x). O

Note that if xelMP then

br b )ri X [ b0t

e 3 ()M (x)- 1 (%) (®)

r(f“)ieux)

and if xgIMP , since I(x")=1(x) |, then

(04 o) (o # 1),

2517-9934
NO:9y 2HENERALIZED RIEMANN-LIOUVILLE FRACTIONAL
DERIVATIVE
Assume that feC ™ (R, ,R) and its m—th derivative
exists everywherein R . Then, the Caputo fractional
derivative of order x>0 with m-1<u(eR,)<m ,
meZ, isforany xe R, :

(1)=& | " (a7 1)
—;( d jm(fé(x—t)“”‘lf(t)dtj @)

- F(m—y) dx
The following particular cases follow from this formula
for g=m-1:
: 1 X L.
(@ p=-1; m=0yields (D f)(x)z L f (t)dt whichis
the standard integral of the function f . This case does not
verifies the “derivative constraint "0<m-1< u(eR,)<m
leading to an integral result.
(b) ) u=0; m=1yields (D °f)(x)= f(x) which so that

DOf isthe identity operator
(©) u=1; m=2yields (D11 )(x)= £ U (x)
(d) u=2;m=3 yidds (D 2f)(x)= f @(x) which is the

standard first- derivative of the function f.

Compared to the paralld cases with the Caputo fractional
derivative, note that the Riemann- Liouville fractional
derivative, compared to the Caputo corresponding one, does
not depend on the conditions at zero of the function and its
derivatives. Define the Kronecker delta & (a,b) of any pair of

redl numbers (a,b)as &(ab)=1if a=band &(a,b)=0if
a #band then evaluate recursively the Riemann — Liouville
fractional derivative of order x>0 from the above formula
by using Leibniz’s differentiation rule by noting that , since
u#zm-j;Vijl€z,)>1 , only the differentia part
corresponding to the differentiation of the integrand is non
zerofor j >m—u . Thisyieldsthe following result:

Theorem 3.1. Assume that feC™?(R,,R) and

f (mYexigts everywherein R, and that f (t) is integrable
on R, , then:

(04 1)) = ——— [ %j "( -0 o)

r(m-u)
o)
[ a1 (90 (0 m-)

) f ™ (x)5 (1, m-12)
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“Faalax) (L

-l Y5(um-1)

F(m—#)
e {zn[w]] (05 (r,m—i)

[ﬁ[]-#]](]: —t)” ’”l)f(t)dtj ®

If fePCX(R,,R) with f *)(x) being discontinuous of
firs  dlass then ™ x)=s U (x)  with
j(x)=m-1-Kk(x), one uses to obtain the right value of (8)
the perhaps high-order distributional derivatives formula:

| f (m-l)(x+)_ f (m—l)(x) | -

<—1X>tk'|f ()t 0 () 50)=0 (@)
to yield

i )xt)= 1
or )l
[ %‘@ 020 ) (280 )| 50) 1)
+[ni lm_[ [J—#J ()6 (s, m-i)

i=1l j=i+l

+[ﬁ [i —u]][ [ (X—t)‘(”*l)f(t)dtj] (10)

If g=m-1then

(D m-1¢ )(x)
<m1>(x)+Eﬁ:[j - ]}( I ey miod]

provided  that ( jg (x—t) e+ g (t)dt) exists  for
xeR , (which is guaranteed if f(t) is Lebesgue-integrable
onR,), feC™? (R, ,R)and f ™Lexists everywherein

R. . The correction (10) applies when the derivative does not
exist. o

If u=m-1with m-1<u(cR,)<mthen after defining
the impulsive sets, its associated indexing sets and the
function f:R , —R asfor the extended Riemann- Liouville
fractional integral, one gets:

S s

- [10-w]|( -0t @)at)

F(m—,u) j=0

j*;“ (x—t) D¢ (t)dt

r(m /1) =0 Jiet(xyu{o} Xi

[H [J-m] [ICRIRGTOE

iel (x)

[ [t e F e+ 3 (e-x,) (e (e )- 1 %)
(13)

IV. GENERALIZED CAPUTO FRACTIONAL DERIVATIVE
Assume that feC ™21(R, ,R) and its m—th derivative
exists everywhere in R, . Then, the Caputo fractional
derivative of order x>0 with m-1<u(eR,)<m
meZ, isforany xe R, :
(Df f)(x)::(J m-u f (m))(x)
1

- ) Fx-nmete M ()

;m=1<pu<m, meZ _, xeR,
The following particular cases occur with gz=m-1leading
to

(D))=t ™)t = t ™D (x)— ¢ Do) (15

(8) u=—1; m=0yields (D1 1)(x)= f D (x)- f V(o*)
which is an integral result f . Note that this case does not
verifies the “derivative constraint” 0< ,u(e R +) <m leading

to an integral result.

(b)) u=0: m= 1yie|ds

(D2f)x)= f £ 0o+ )= £ (x)-

(c) u=1; m= 2y|elds (D f)(x) £ @ (x
(d) u=2; m=3yields (D* f)(x): f D(x)-f

We can extend the above formula to real functions with
impulsive m-th derivative as follows. Assume that

feC™?(R,,R) with bounded piecewise (m-1)-th
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derivative  existing  everywhere in R, ¥ _ 1 J-x (x—t)m’”’lf (m)(t)dt

M)y dME) T(m—u) b
f (x)z—m being impulsive with

dx 7 (=)™ 1 ) ) 09l x)
0(x,)=k, 5(0)= (1 "V )£ M (x,)) 000
(19)

. VX cIMP , equivalently , Viel(w), a the eventua where n: IMP—Z , is a discrete function defined by
discontinuity points x; >0 a the impulsive set n(x)=card | (x)=card IMP(x). o

IMP:= [JIMP (x), where the partial impulsive sets are

xeR
re-defined as follows:

IMP(x)::{xieR o f ("Fl)(x,*) £ (x,)=K; , x; <x}cIMP(x*)
(16)

|MP(X+)Z:{Xi eR ,:f (”H)(x,*) £ (x,)=K, , x; <x* }cIMP(x*)
17

Now, consider feC™(0,00) with

m
f (m)(x)z%&x) being amost everywhere piecewise
X

continuous in R, except possibly on a non-empty discrete
impulsive set IMP .Define a non-impulsive real function

f:R, >R defined as M (x)=fM(x) for
xeRAMP  ,  and £ ™Mx)=fFM(x,) |
£ M(x)= T (x, )+ Kk, 5(0) for x; € IMP

with F™(x* )= f™(x) ; xeIMP ( defined being
bounded arbitrary (for instance, zero) if xelMP. Through a

similar reasoning as that used for Riemann- Liouville
fractional integral by replacing the function f: R, — R by

its m-th derivative, one obtainsthe following result:

Theorem 4.1. The Caputo fractional derivative of order
peR, saisfyingm-1<u<m;meZ  and al xeR, is
given below:

(Df‘ f)(x):: 1

r(m-p)
1

i) LX (x—t)™#LF () dt

F(m—,u

3 e ) ) £ D x alx-x)

+7
F(m_'u)iel(x)

(X x-t)™ Lt (Me)ae

1 X i1 -
- = (k=)™ (M) it
F(m_ﬂ)iel(x)zu{o} J.X‘

1 X _
- x—t) ™41 (M) gt
r(m-u) J.Xﬁm (=) ©

b 3 (e ") £ (x-x)

F(m*ﬂ)iel(x)

ek )=

) 1 (=)™ ) )t

+

(18)

Notethat if xelMP then

(Di’ f)(x*):
: (gt )
r(m_ﬂ)iel(x*z):u{O} Lr (X t) o (t)dt

rT:llf,u) Z (X—xi)m—p—l(f (m—l)(xr)_f (m_l)(xi))ﬁ(X—Xi)
iel(x")

(D# f)(X)+(X—X ())""”'l(f (“1)(Xﬁ<x))—f ™3(x )6 (0)

(D4 f)x)= " (x—t)™#L () ot
(D )() - )IE|(X)U I

+ 1 w—x ) aL(§ D) () f M) (Y s(x—x
P, 2 o)™ e otoex)

and if H(x)=1(x)
(D,{‘ f)(x+):(Df‘ f)(x) . The above formalism applies

x¢IMP |, since , then

when f (™R + > R is piecewise continuous with
isolated first- class discontinuity points, that is
fePC ™(R, ,R) implying that feC™2(R,,R). A
more general situation arises when the discontinuities can
point-wise arise for points of the function itself of for any

successive derivative up- till order m. This would lead to a
more general description than that given as follows. Define

partial sets of positiveintegersas k :={1,2,.... .k }
Assume that fePCJ (R, ,R) and x is a discontinuity
point of first dlass of f ()(x) for some j em-1uL1{0}.

Then, f (i*/) (x) are impulsive for /e m—j of high order
being increasing with ¢ . Definethe (j+1) — th impulsive sets
of thefunctionfon (0,x)cRas:

|MF’j+1(X)I={Z€R+IZ< X, O<|f m(z*)— f (j)(z)|<oo} ;

jem-10{0}, xeR, (20)
Thisleads directly the definition of the following impulsive
sets:

IMP,,, :={x<R, 0<[t x*)-f (J)(x)|<oo}
= UxeR IMP,.; (x) (21)

IMP:={xeR.: 0<|f x*)- 1 0)x)| <o, some j em—10 {0}

- UXER ( jem-1iu{o} IMPJ”( )j (22)

which can be empty Thus , if zelIMP,; then

¢ (1) (X +): f (i-9(x) exists with identical left and right
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limits, f m(x*)—f ()(x)=K =K (x)0
t ()(x)=Ks(0) with successive higher-order derivatives

represented by higher- order Dirac distributional derivatives

The above definitions yield directly the following simple
results:

Assertion 5.2. xelMP=xe IMPJ- for a unique
j=ji(x)em.
Proof: Proceed by contradiction. Assume that

xe (MR, NIMP,3) for i, j(=i )e m=1u {0} .Then:
0<|f (i)(x+)—f (i)(x)|<oo
0<|f (j)(x+)—f (j)(X)|<oo

Assume with no loss of generality that j =i+k >i for some
k(sm-i-1)eZ, . Then,

|f (i)(x+)_ f (j)(x)|:|f (i+k)(x+)_ f (i+k)(x)|
D 0100 50) =0
withx eR . If |f (i)(x+)—f (i)(x)|¢0 which contradicts

0<|f(i)(x+)—f(i)(x)|<oosothati:j. =

Assertion 5.3. xe IMP=

[XE IMP; < 3 aunique j = j (x)=max ‘ f (i‘l)(x*)—f (i‘)(x)<oo]
Furthermore, such a satisfies

| f (j‘l)(x+)—f (1—1)(x)|>o.

unique  j=j(x)

Proof: The existence is direct by contradiction. If
—3j=j(x)em-1u{0} such that

| f m(x*)—f (j)(x)|<oo then xgIMP . Now, assume
there exist two nonnegative
=i (x)=| 1 (-0 () ¢ 1) (9| <e0 and
j:j(x)=i+k:| f (i+k-1) (x*)—f (”k’l)(x)|<oo;for some

ke m—i.Butfor x>0,

integers

(-1)*k!
K

:| § (+k-1) (x+)—f (i+k-1) (X)|<OO

which is a contradiction. Then,

xe IMP; =3 | = j (x) = max | f (-1 (x*)—f (i-) (x)|<oo

which is unique. Also, from the definition of the impulsive
sets IMP(x),

£ 00 )1 (D) [ 5(0)

0 =

™ NPBARE )1 (09| <oom el o o) 1MPY)

Now , assume that xelU; (o) IMPi(X) . Thus

0<| f (J'—l)(x+)—f (j_l)(x)|<00:>| f (i)(x+)—f (j)(X)|:oo

from the definition of the impulsive
Then, xeIMP j(x).The opposite logic implication

sets.

i = (x)=max | £ D ()1 (i_l)(x)|<oo:> xe IMP,
iem
is proved. Then, it has been fully proved that x e IMP =
[XE IMP; <3 aunique j = j (x)=max ‘ f 00 (x*)ff () (X)<oo}

Now, establish again a contradiction by assuming that
P=00=] £ 0D ) 6 () = max

[ £ 0 )1 09 (0| =0<0; Vkem
what contradictsx € IMP. This proves that the unique j=j(x)
implying and being implied by xelMP; satisfies
| f (j_l)(x+)—f (j_l)(x)|>0. =

Using the necessary — high order distributional derivatives,
one gets that

xeIMP = f W@)J—ﬂ"”%
X

(f (i)(x+),f (i)(x))g(o)
. with j em-1U{0} being uniquely defined so that
0<|f () (x*)- 1 )(x)| <e0.. Thus, the m-th distributiona
derivative of f:R _— Rcan berepresented as:

£ M(x)= ™ (x)

(1) (m—j,)!
+z:x,euv|P“+1 Xim—i. I

, XeR |
with ji=j i(xi) being uniquely defied for each x; € IMP so
that X €IMP; , where f e C™ (R, ,R) with everywhere
continuous first-derivative defined as f ()(x)=f ()(x) ;
xeR,, f(0)=f (0). The above formula is applicable if
fePC™R,,R) but it is
f ePC M(R, ,R) yielding:

aso applicable if

if xelMP

fm0(x)= f (M2 x)
f (m—l)(x+ ): f(m—l)(X)er(f G )(X+ ),f(j)(x))é(o)

x M1

if xelMPand j<m-1
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f(m—l)( ):f( )( )
ml( )

xelMPand j :m—l

(f (m’l)(x* )—f(m’l)(x)) if

foraunique j = j(x)em-1u {0} from Assertion 1. Denote
further sets related to impulses as follows:

IMP(x):={ze IMP:z<x} ; ||V|P(X+)Z:{Ze IMP:z< x}
; VXeR .

being indexed by two subsets of integers of the same
corresponding cardinals defined by:

I (x)=]=j(x) indexing the members z; of IMP(x) in
increasing order
I (x*), being either 1 (x) or I (x)+1, indexing the members

z;of IMP(x*) inincreasing order

The following result holds:

Theorem 5.4. The Caputo fractiona derivative of
f:R,—>R of order uekR,
satisfyingm-1<u<m;meZ , andal xeR, isafter using
distributional derivatives becomesin the most general case:
1 1 (m)
D f)(x):= ——— [1(x=t)™#~+f \M(t)dt
(D2 )= s 60 0
1

v [ [ (xe=t)™# 1 F () i

l"(m—,u
i Z (-l) m—j(xi}l(x_x , ) m-u-1

iel(x)

1 X\+1 -
= " (x=t)™ e (1) dt
F(m_'u)iel(x)u{o} Xi

m%;,)fi ety
( —u) .euz(:x)(l)mJ W
*<i'”f;f§xm>,< 3'1(f“<*'>>(xr)—f“‘*'”< e

(D#f)(xt):= Tyl e o

;) L* (x—t)™ 4L (M) gt

F(m—,u

1 Mj0 L (g _ ) maL
e, O
. ((m— j)(ﬁi_g—xé)!_l (£ 60D 7 )= 06, ))

Vol:5, No:9, 25_)11

R xi” (x=t)™# 1§ (M) dt
r(m-pu) iel(x")u{o} 'L‘

T 1 22(1)mJ Yx—x;)m#*
)Iel(x)
)

X—()((m_;lj)()rilj?ryl (f (J(X.))(X;r )_f(J(X.))(Xi )) (24)
[m]
Note that |(D*”f)<x+)=oo it x=x;eIMP , as
expected.
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