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Abstract—This paper establishes some closed formulas for
Riemann- Liouville impulsive fractional integral calculus and also
for Riemann- Liouville and Caputo  impulsive fractional
derivatives.

Keywords—Rimann- Liouville fractional calculus, Caputo
fractional derivative, Dirac delta, Distributional derivatives, High-
order distributional derivatives.

I. INTRODUCTION

RACTIONAL calculus has been used in a set of applications,
mainly,  to  deal with modelling errors in differential
equations and dynamic systems. There are also

applications in Signal  Processing and sampling and hold
algorithms, [1-3]. Fractional integrals and derivatives can be
of non-integer orders and even of complex order. This
facilitates the description of some problems which are not
easily descxribed by ordinary calculus due to modelling
errors, [1-5]. There are several approaches for the integral
fractional calculus, the most popular ones being the
Riemann-Liouville fractional integral. There is also a
fractional Riemann- Liouville derivative. However, the well-
known Caputo fractional derivative are less involved since the
associated integral operator manipulates the derivatives of the
primitive function under the integral symbol. This paper
extends the basic fractional differ-integral calculus to
impulsive functions described  through the use of Dirac
distributions and Dirac distributional derivatives, [5], of real
fractional orders. In the general case, it is admitted a presence
of infinitely many impulsive terms at certain isolated point of
the relevant function domains. Control Theory topics in [6-9]
could be reformulated under thefractional formalism
considered in this paper.

II. GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL

INTEGRAL

Let us denote the set of positive real numbers by
0r:r RR and left-sided and right-sided Lebesgue

integrals, respectively, as:

dglim:dg
t

xxt

x
00

(the identification

xx is used for all x in order to simplify the notation), and
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Now, consider real functions RR:f,f ,such that

dttftxx
0

1 exists, Rx ,  fulfilling:

Ii iiIMPx ii xxKxfxxKxf)x(f
i

x denotes the Dirac delta distribution,

iii xfxfK 0 with RiK ; ZIi ,

[5], and
RR xx

xIMPxIMP:IMP of indexing set

I is the whole impulsive set defined via  empty or

non-empty) partial impulsive strictly ordered denumerable
sets:

xxKxfxfxxIMP iiiii ,0:: R (1)

of indexing set

ZZ xIxIMPx:i:xI i0 , for each

Rx ; and

xIMPxIMP

RR xx,Kxfxf:x: iiiii 0 (2)

of indexing set

ZZ xIMPx:i:xIxI i0 , for

each Rx with the indexing set of IMP being

xIMPxxIMPx

xIxII . If we are interested in

studying the fractional derivative of the impulsive function

RR:f then RR:f is non- uniquely defined as

xfxf for IMPx \R , and ii xfxf ,

00 iiiii KxfKxfxf , for

IMPx i with Rxf ( non-uniquely) defined being

bounded arbitrary  (for instance, being zero or

xfxf ) if IMPx . Note that IMPand I have

infinite cardinals if there are infinitely many impulsive values
of the function f(t).

Note that the existence of dttftxx
0

1 implies that

of dttftxdttftx
xx
0

1
0

1 if xIMPx ,

since dttftxx
0

1 exists, and that of

iii
xx

xfxfxxdttftxdttftx ii 1
0

1
0

1

if xIMPx i (3)
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Theorem 2.1.  The extended fractional Riemann- Liouville
integrals by considering impulsive functions are defined for
any fixed order R and all Rx by

tdtftx:xfJ
x
0

11

ii
)x(Ii

i

x
xfxfxxtdtftx 1

0

11

0

111

)x(Ii

x

x
tdtftx

i

i

ii
)x(Ii

i

x

x
xfxfxxtdtftx

xn

111

(4)

tdtftx:xfJ
x
0

11

ii

)x(Ii

i

x
xfxfxxtdtftx 1

0

11

0

111

)x(Ii

x

x
tdtftx

i

i

ii

)x(Ii

i xfxfxx 11
(5)

xf:xfJxfJ 00

where RR 0: is the - function , [1-5] and

ZIMP:n is defined by

xIMPcardxIcardxn . □

Note that if IMPx then

0

111

)x(Ii

x

x
tdtftxxfJ

i

i

ii

)x(Ii

i xfxfxx 11

xnxnxn xfxfxxxfJ 1

0

111

)x(Ii

x

x
tdtftxxfJ

i

i

ii
)x(Ii

i xfxfxx 11
(6)

and if IMPx , since )x(I)x(I ,  then

xfJxfJ .

III. GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL

DERIVATIVE

Assume that RR ,Cf m 1 and its thm derivative

exists everywhere in R . Then, the Caputo fractional

derivative of order 0 with mm R1 ,

Zm is for any Rx :

xfJ
xd

d
xfD mm

:

tdtftx
xd

d

m
x mm

0
11

(7)

The following particular cases  follow  from this formula
for 1m :

(a) 01 m; yields tdtfxfD
x

0

1 which is

the standard integral of  the function f . This case does not
verifies the “derivative constraint ” mm R10

leading to an integral result.

(b) ) 10 m; yields )x(fxfD 0 which so that

fD 0 is the identity operator

(c) 21 m; yields xfxfD 11

(d) 32 m; yields xfxfD 22 which is the

standard first- derivative of the function f.

Compared to the parallel cases with the Caputo fractional
derivative, note that the Riemann- Liouville fractional
derivative, compared to the Caputo corresponding one, does
not depend on the conditions at zero of the function and its
derivatives. Define the Kronecker delta b,a of any pair of

real numbers b,a as 1b,a if ba and 0b,a if

ba and then evaluate recursively  the  Riemann – Liouville

fractional derivative of order 0 from the above formula

by using Leibniz´s differentiation rule by noting that , since
1Zj;jm , only the differential part

corresponding to the differentiation of the integrand is non
zero for mj . This yields the following result:

Theorem 3.1. Assume that RR ,Cf m 2 and
1mf exists  everywhere in R and that tf is integrable

on R , then:

xfD tdtftx
xd

d

m
x mm

0
11

11 m

xd

d

m

11
0

2 m,xftdtftxm
x

m

1
1 1 m,xf

m
m
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tdtftxm
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d

m

x
mm

0
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1

1

1
1 1 m,xf

m
m
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m

i
m

i

m

ij

2

1

1

1

1

tdtftxj
m

xm

j
0

1
1

0

1
(8)

If RR ,PCf k with xf k being discontinuous of

first class  then xxf )x(jm 1 with

xkmxj 1 , one uses to obtain the right value of (8)

the perhaps high-order distributional derivatives formula:

xfxf mm 11

0
1 11 xfxf
x

!k kmkm
k

k

(9)

to yield

m
xfD

1

10
1 11 m,xfxf

x

!xk xkmxkm
xk

xk

im,xfj i
m

i

m

ij

2

1

1

1

tdtftxj
xm

j
0

1
1

0

(10)

If 1m then

xfD m 1

tdtftxjxf
x m

m

j

m

0

1

0

1 (11)

provided that tdtftx
x

0
1 exists for

Rx (which is guaranteed if tf is Lebesgue-integrable

on R ), RR ,Cf m 2 and 1mf exists  everywhere in

R . The correction (10) applies when the derivative does not

exist. □

If 1m with mm R1 then after defining

the  impulsive sets, its associated  indexing sets and the

function RR:f as for the  extended Riemann- Liouville

fractional integral, one gets:

xfD

tdtftxj
m

xm

j
0

1
1

0

1

0

1
1

0

11

)x(Ii

x

x

m

j

tdtftxj
m

i

i

tdtftxj
m

x

x

m

j xn

1
1

0

1

ii
)x(Ii

i

m

j

xfxfxxj
m

1
1

0

1

(12)
1

0

1 m

j

j
m

xfD

ii
xIi

i
x

xfxfxxtdtftx 1

)(
0

1

(13)

IV. GENERALIZED CAPUTO FRACTIONAL DERIVATIVE

Assume that RR ,Cf m 1 and its thm derivative

exists everywhere in R . Then, the Caputo fractional

derivative of order 0 with mm R1 ,

Zm is for any Rx :

xfJ:xfD mm
*

tdtftx
m

mx m
0

11
(14)

; mm 1 , Zm , Rx

The following particular cases occur with 1m leading

to

011
0

1 mmmxm
* fxfdttfxfD (15)

(a) 01 m; yields 0111 fxfxfD *

which is an integral result f . Note that this  case does not
verifies the “derivative constraint” mR0 leading

to an integral result.

(b) ) 10 m; yields

00000 fxffxfxfD *

(c) 21 m; yields 0111 fxfxfD *

(d) 32 m; yields 0222 fxfxfD *

We can extend the above formula to real functions with
impulsive thm derivative as follows. Assume that

RR ,2mCf with bounded piecewise thm 1
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derivative existing everywhere in R and

m

m
m

xd

xfd
xf being impulsive with

00 11
i

m
i

m
ii

m xfxfKxf

; IMPxi , equivalently , Ii , at the eventual

discontinuity points 0ix at the impulsive set

Rx
xIMP:IMP ,  where the partial impulsive sets are

re-defined as follows:

xIMPxxKxfxfxxIMP iii
m

i
m

i ,:: 11R

(16)
xIMPxxKxfxfxxIMP iii

m
i

m
i ,:: 11R

(17)

Now, consider ,Cf m 01 with

m

m
m

xd

xfd
xf being almost everywhere piecewise

continuous in R except possibly on a non-empty discrete

impulsive set IMP .Define a non-impulsive real function

RR:f defined as xfxf mm for

IMPx \R , and i
m

i
m xfxf ,

0ii
m

i
m Kxfxf for IMPx i

with xfxf mm ; IMPx ( defined being

bounded arbitrary  (for instance, zero) if IMPx . Through a

similar reasoning as that used for Riemann- Liouville
fractional integral by replacing the function RR:f by

its m-th derivative, one obtains the  following result:

Theorem 4.1. The Caputo fractional derivative of order
R satisfying mm 1 ; Zm and all Rx is

given below:

tdtftx
m

:xfD mx m
* 0

11

tdtftx
m

m
x

m

0

11

ii
m

i
mm

)x(Ii
i xxxfxfxx

m
1111

0

111

)x(Ii

m
x

x

m tdtftx
m

i

i

tdtftx
m

m
x

x

m

xn

11

ii
m

i
mm

)x(Ii
i xxxfxfxx

m
1111

(18)

tdtftx
m

:xfD mx m
* 0

11

tdtftx
m

m
x

m

0

11

ii
m

i
mm

)x(Ii

i xxxfxfxx
m

1111

(19)
where ZIMP:n is a discrete function defined by

xIMPcardxIcardxn . □
Note that if IMPx then

xfD *

m

1

0

11

)x(Ii

m
x

x

m tdtftx
i

i

ii
m

i
mm

)x(Ii

i xxxfxfxx
m

1111

0111
* xn

m
xn

mm
xn xfxfxxxfD

m
xfD *

1

0

11

)x(Ii

m
x

x

m tdtftx
i

i

ii
m

i
mm

)x(Ii
i xxxfxfxx

m
1111

and if IMPx , since )x(I)x(I ,  then

xfDxfD ** . The above formalism applies

when RR:f m 1 is piecewise continuous with

isolated first- class discontinuity points, that is

RR ,PCf m 1 implying that RR ,Cf m 2 . A

more general situation arises when the discontinuities can
point-wise arise for points of the function itself of for any
successive derivative up- till order m. This would lead to a
more general description than that given as follows. Define

partial  sets of positive integers as k,....,,:k 21

Assume that RR ,PCf j and  x is a discontinuity

point of first class of xf j for some 01mj .

Then , xf j are impulsive for jm of high order

being increasing with .  Define the (j+1) – th impulsive sets
of  the function f on Rx,0 as:

zfzf,xz:z:xIMP jj
j 01 R ;

01mj , Rx (20)

This leads directly the definition of the following impulsive
sets:

xfxf:x:IMP jj
j 01 R

Rx j xIMP 1 (21)

010 mjsome,xfxf:x:IMP jjR

Rx jmj
xIMP 101

(22)

which can be empty . Thus , if 1jIMPz then

xfxf jj 11 exists with identical left and right
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limits, 0xKKxfxf jj and

0Kxf j with successive higher-order derivatives

represented by higher- order Dirac distributional derivatives

The above definitions yield directly the following simple
results:

Assertion 5.2. jIMPxIMPx for a unique

mxjj .

Proof: Proceed by contradiction. Assume that

11 ji IMPIMPx for 01mij,i .Then:

xfxf ii0 ;

xfxf jj0

Assume with no loss of generality that ikij for some

Z1imk . Then,

xfxfxfxf kikijj

0
1

xfxf
x

!k ii
k

k

with Rx . If 0xfxf ii which contradicts

xfxf ii0 so that ji . □

Assertion 5.3. IMPx

xfxfmaxxjjuniqueaIMPx ii

mi
j

11

Furthermore, such a unique j=j(x) satisfies

011 xfxf jj .

Proof: The existence is direct by contradiction. If

01mxjj such that

xfxf jj then IMPx . Now, assume

there exist two  nonnegative integers

xfxfxii ii 11 and

xfxfkixjj kiki 11 ; for some

imk . But for 0x ,

0
1 11 xfxf
x

!k ii
k

k

xfxf kiki 11

which is a contradiction. Then,

xfxfmaxxjjIMPx ii

mi
j

11

which is unique. Also, from the definition of the impulsive
sets xIMP i ,

xIMPxxfxf iji
jj

0
11

Now , assume that xIMPx iji 01 . Thus,

xfxfxfxf jjjj 110

from the definition of the impulsive sets.
Then, xIMPx j .The opposite logic implication

j
ii

mi

IMPxxfxfmaxxjj 11

is proved. Then, it has been fully proved that IMPx

xfxfmaxxjjuniqueaIMPx ii

mi
j

11

Now, establish again a contradiction by assuming that

maxxfxfxjj kk 11

011 xfxf ii ; mk

what contradicts IMPx . This proves that the unique j=j(x)

implying and being implied by jIMPx satisfies

011 xfxf jj . □

Using the necessary – high order distributional derivatives,
one gets that

0
1

xfxf
x

!jm
xfIMPx jj

jm

jm
m

; with 01mj being uniquely defined so that

xfxf jj0 . Thus, the m-th distributional

derivative of RR:f can be represented as:

xfxf mm

ii
j

i
j

IMPx jm
i

i
j

xxxfxf
x

!jm
ii

iji i

i

1

1-

, Rx

with iii xjj being uniquely defied for each IMPxi so

that
iji IMPx , where RR ,Cf m 1 with  everywhere

continuous first-derivative defined as xfxf jj ;

Rx , 00 ff . The above formula is applicable if

RR ,PCf m but it is also applicable if

RR ,PCf m yielding:

xfxfxf mmm if IMPx

xfxf mm

0
!1-

xfxf
x

jm
xfxf jj

jm

jm
mm

if IMPx

xfxf mm 11

0
!11-

1
11 xfxf

x

jm
xfxf jj

jm

jm
mm

if IMPx and 1mj
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xfxf mm 11

xfxfxfxf mmmm 1111 if

IMPx and 1mj

for a unique 01mxjj from Assertion 1. Denote

further sets related to impulses as follows:

xz:IMPz:xIMP ; xz:IMPz:xIMP

; Rx

being indexed by two subsets of integers of the same
corresponding cardinals defined by:

xjjxI indexing the members iz of xIMP in

increasing order

xI , being either xI or xI +1, indexing the members

iz of xIMP in increasing order

The following result holds:

Theorem 5.4. The Caputo fractional derivative of
RR:f of order R

satisfying mm 1 ; Zm and all Rx is after using

distributional derivatives becomes in the most general case:

tdtftx
m

:xfD mx m
* 0
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=
m

1
tdtftx mx m

0
1
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m

)x(Ii
i

xjm xxi

ii
xj

i
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xjm
i

i xxˆxfxf
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1

0
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)x(Ii
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x
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i

i
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x

x

m
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i
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i

i
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(23)
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m
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* 0
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= tdtftx
m

m
x

m

0
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1-

1 m

)x(Ii

i
xjm xx

m
i

i
xj

i
xj

xjm
i

i xfxf
xx

!xjm
ii

i 1

1

=
0

111

)x(Ii

m
x

x

m tdtftx
m

i

i

11
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1 m

)x(Ii

i
xjm xx

m
i

i
xj

i
xj

xjm
i

i xfxf
xx

!xjm
ii

i 1

1
(24)

□

Note that xfD * if IMPxx i , as

expected.
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