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Abstract—In this article, we would like to show that there is no 

cut point of any point in a plane, but there exists the cut locus of a 
point in a flat torus. By the results, we would like to determine the 
structure of cut locus of a flat torus. 
 

Keywords—Cut locus, flat torus, geodesics. 

I. INTRODUCTION 
great circle is the intersection of a sphere and a plane that 
passes through the center of the sphere. Suppose our 

earth is a sphere, the equator is a great circle, as is the 
meridian as line of longitude connecting the North Pole and 
the South Pole. Lines of latitude or parallels are not great 
circle since their centers are not the center of the earth. A 
geodesic in a surface is defined as the shortest path connecting 
two points in that surface. It was known that the shortest path 
between any two points on a sphere is an arc of a great circle. 
Thus, great circles are geodesics on a sphere [1]-[3]. There 
may be more than one geodesic connecting a given pair of 
points. For example, there are infinitely many geodesics 
connecting the North Pole and the South Pole on the globe. 

Let a and b are antipodal points in any great circle. Thus a
and b are joined by semi great circle γ . With the symmetric 
property on a sphere, there exists γ�  as is the other half of 
great circle. Here we get γ γ≠ � , ( ) ( )l lγ γ= � , where ( )l ⋅  denotes 
length of the curve. Let c  and d  are antipodal points in the 
same great circle as a and b .By extending the point b to the 
point d along the great circle, the length [ , , , ]( | )a c b dl γ is longer 

than the length [ , ]( | )a dl γ� . In this case b  is called a cut point 

of a . Analogously a  is called a cut point of b . Therefore, it is 
trivial that the north pole and the south pole in the same great 
circle are cut point to each other on a sphere. 

On the right circular cylinder, the circle or parallel that is 
the cross sections of the cylinder, the generating curve or 
meridian and the helix which joined any two points are 
geodesics [4],[5]. Choose any two points on the cylinder; it is 
possible to connect them through an infinite number of 
helices. Among these geodesics, there exist the minimal 
geodesics between the two points. By the result of the great 
circle on a sphere, any antipodal pairs along a parallel are cut 
locus to each other on the cylinder. Let aτ  be the opposite 
meridian to a point a  on the cylinder. Consider any point b  
in aτ , there exists a helix γ  that is a minimal geodesic joining 
a to b . According to the symmetric property with respect to 
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the plane containing a  and aτ  there exists γ�  joined a  to b  
on the opposite face of cylinder. Here we getγ γ≠ � , ( ) ( )l lγ γ= �
. In this case b  is called a cut point of a . That is, the opposite 
meridian to a  which contained the set of all cut points to a  is 
the cut locus of a [6]. The rigorously definition will define in 
the next section. 

Thus it is interesting to study cut locus on a surface. In this 
article, we would like to determine some properties of the cut 
locus on a flat torus. 

II. BASIC THEORY 
Here, let us review the basic theory concern on properties of 

cut locus which can be found in [2], [7]-[13]. 

A. Surface of Revolution 
A surface of revolution is a surface obtained by rotating a 

plane curve in 3R where the rotation is about a line that does 
not intersect the curve and is contained in the plane containing 
the curve. Without loss of generality we may assume that the 
curve is a unit speed planexz −  curve and the axis of rotation 
is the axisz − . 

Let ( ) : ( ( ),0, ( )),c t r t z t=  where ( ) 0r t > for all t be xz − plane 
curve without self-intersection. The surface of revolution can 
then be covered by coordinate patch of the form

2( , ) : ( ( ) cos , ( ) sin , ( )), ( , ) .x t r t r t z t t Rθ θ θ θ= ∈  
The curves on a surface of revolution obtained by holding 

θ constant and varying t are called meridians or longitudes, 
and the curves on the surface obtained by holding t constant 
and varying θ are circles of latitude or parallels (Fig. 1). 

 

 
Fig. 1 Surface of revolution 
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A sphere of radius r  is obtained by rotating a semicircle of 
radius r  centered at the origin. A typical coordinate patch is 
given by 

 
2( , ) ( cos cos , cos sin , sin ), ( , ) .x r r r Rϕ θ ϕ θ ϕ θ ϕ ϕ θ= ∈  

 
A torus of large radius R  and small radius r is obtained by 

rotating a circle in the planexz − with radius r  and centered at 
the point ( ,0,0)R , as in Fig. 2, has a coordinate patch in the 
form 

 
2( , ) (( cos )cos , ( cos )sin , sin ),( , ) .x R r R r r Rϕ θ θ ϕ θ ϕ θ θ ϕ= + + ∈  

 

 
Fig. 2 Torus 

 
A surface M  is called a complete surface if every Cauchy 

sequence of point of M converges on M . Thus the Euclidean 
3E is complete. Moreover, any closed subset M of 3E  is 

complete. That is any Cauchy sequence { }iP of points in M is 

also Cauchy sequence of point in 3E , which has a limit point
p . Since M  is closed, p M∈ , hence M is complete. 

One of the types of geometry object are manifolds, and a 
surface is a two dimensional manifold. In manifold, the plane 
is represented by 2R , while 1R is a real line. A unit circle in 

2R is denoted 1S , defined by 1 2{ | 1}S x R x= ∈ = . If we let
2S denotes a unit sphere in 3R , thus 2 3{ | 1}S x R x= ∈ = . 

Then 1 1 2 1S R R R× ⊂ ×  is a right circular cylinder in 3R  and
1 1 2 2S S R R× ⊂ ×  is a torus in 4R . 

Let 3M R⊂  be a complete connected surface and let p M∈  

be a point. A vector v  in 3R  is a tangent vector to M at p if 
there exists a curve : ( , )c Mε ε− → for some number 0ε >

such that (0)c p= and (0)c v′ = . The collection of all tangent 
vector to M at p is denoted pT M , and is called the tangent 

plane to M at p . 

B. Geodesics 

Let : [ , ]a b Mγ → be a C∞ curve on a complete connected 
surface M . The curve γ is called a geodesic on M if ( )sγ ′′ is 
orthogonal to the tangent space ( )sT Mγ for each [ , ]s a b∈ . If

: [ , ]a b Mγ → is a geodesic of M then 2( ) 0d t
dt

γ ′ = or

( ), ( ) 0t tγ γ′′ ′< >= . 

Geodesics of a plane: Let 3{ | , }P x R x a b= ∈ < >= be a 

plane orthogonal to the unit vector 3a R∈ . If : [ , ]a b Pγ →  is 
an arbitrary differentiable curve on P , thus ( ),t a bγ< >=  for 
each [ , ]t a b∈ . 

We have ( ), 0t aγ ′′< >= , that is ( )( ) , [ , ]tt T P t a bγγ ′′ ∈ ∀ ∈ . 

Hence γ  is a geodesic if and only if 0γ ′′ = , that is 

( )t ct dγ = + where 3,c d R∈ . Therefore, the geodesics of a 
plane are the straight lines parameterized by the arc length in 
the plane. 

Geodesics of a sphere: Let γ  be a differentiable curve 

parameterized by the arc length on a unit sphere 2S centered 

at a point 3a R∈ . We have 2 2( )t a rγ − = with 0r > for all t
.By differentiating this expression two times, we obtain

( ) , ( ) 1t a tγ γ ′′< − >= − . Since the tangent plane 2
( ) ( )tT S rγ is 

the orthogonal component of the radius vector ( )t aγ − , we 

may have 2
1( ) ( ( ) )t t a
r

γ γ′′ = − − . Thus, γ  is a geodesic if and 

only if γ  satisfies the differential equation 
 

2 ( ) ( ) 0.r t t aγ γ′′ + − =  
 

With the condition 2 2( )t a rγ − = and 2( ) 1tγ ′ = , we have 

( ) cos sint tt a p rv
r r

γ = + + , where 2 2p r= , 2 1v =

, 0p v< >= . That is the geodesics of a sphere are the great 
circles determined by the plane spanned by p  and v , which 
passes through the center of the plane. 

Geodesics of a cylinder: Let C  be the right circular 
cylinder of unit radius whose axis is the z -axis of 3R  and let 

: [ , ]a b Cγ →  be a differentiable curve on C  given by
( ) ( ( ), ( ), ( ))t x t y t z tγ = . Let γ  is a geodesic if and only if 

( )( ( ), ( ), ( )) tx t y t z t T Cγ′′ ′′ ′′ ⊥
 

for each [ , ]t a b∈ . Here we get

( ( ), ( ), ( )) ( ( ), ( ),0)x t y t z t x t y t′′ ′′ ′′ & . 
Suppose that γ  is parameterized by arc length, thus

2 2 2 2( ) 1 ( ) ( ) ( ) .t x t y t z tγ ′ ′ ′ ′= = + +  

By differentiating 2 2( ) ( ) 1x t y t+ =  two times, we may 

have 2( ) ( ) ( ) ( ) 1 ( ) .x t x t y t y t z t′′ ′′+ = − + Hence the curve γ is 
a geodesic of a cylinder if and only if

2( ) (1 ( ) ) ( ) 0x t z t x t′′ ′+ − = , 2( ) (1 ( ) ) ( ) 0y t z t y t′′ ′+ − = and
( ) 0z t′′ = . 
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Suppose (0) (1,0,0)r = and (0) (0, , )r a b′ = where 2 2 1a b+ = . 

Then ( )z t bt= and 2 2( ) ( ) ( ) ( ) 0x t a x t y t a y t′′ ′′+ = + = , and so 
x  and y are in the form sin cos , ,at at Rλ μ λ μ+ ∈ . Thus 

( ) (cos ,sin , )t at at btγ = with 2 2 1a b+ = . Here we get the 
geodesics of a cylinder are circular helix including its straight 
lines and circles as a limit case.  

Hopf-Rinow Theorem for a complete connected surface M  
is stated that every geodesic can be extended indefinitely in 
either direction, or else it form a closed curve, and, for a 
distinct points p  and q  on M , there exists a minimal 
geodesic joining p and q . 

In a plane, the geodesics are straight line, and any two 
points p  and q  can be joined by a unique line segment with 

length ( , )d p q . Here ( , ) : inf{ ( );d p q l c c= is piecewise C∞

curve on M joining p  and q }. 
On a sphere, the geodesics are the great circles and any two 

points p  and q  which are not antipodal points can be joined 
by two great circular arcs (major arc and minor arc), of which 
only one has length ( , )d p q . Moreover, between two 
antipodal points p  and q  there exist infinitely many great 
circular arcs with the same length ( , )d p q . 

On a right circular cylinder, any two points p  and q on the 
same generating curve can be joined not only by the 
generating curve with the length ( , )d p q  but also infinitely 
many circular helices of varying pitch, which wind around the 
cylinder and all are geodesics. 

C. Cut Point and Cut Locus 
Let

1[0, ]| tγ  be a unit speed minimal geodesics emanating 

from a point (0)p γ=  of a complete connected surface M .If 
for all number 2 1t t> , for all geodesic extension 

2[0, ]| tγ is not 

minimal anymore, then 1( )tγ is called a cut point of p along γ . 
The cut locus of a point p is the set of all cut points along a 

minimal geodesic emanating from p  and denotes the set by

pC . 

Klingenberg Lemma: If 1( )tγ  is the cut point of (0)p γ=
along γ  then there exist two distinct minimal geodesics α
and β emanating from p  to 1( )tγ  such that ( ) ( )l lα β= . 

D. Covering Space 

Let M� and M be subsets of 3R . We will call : M Mπ →� , a 
covering map if 
1. π  is continuous and ( )M Mπ =� , 
2. each point p M∈ has an open neighborhood pU  in M  

such that for each p , 1( )pUπ −  is a disjoint union of 

open sets in M� . 
Then M� is called a covering space of M . 

Here we have, : M Mπ →� is a universal covering space if 
and only if M� is simply connected and : M Mπ →� is a 
covering space. 

For example, let 3P R⊂ be a plane in 3R . By fixing a point
q P∈  and two orthogonal unit vectors 1 2,e e P∈  with origin 
at 0q , the coordinates ( , )u v  for any point p P∈ are given by 

0 1 2q q ue ve− = + . 

Let 3 2 2{( , , ) | 1}S x y z R x y= ∈ + =  be the right circular 
cylinder whose axis is the z -axis, and let : P Sπ → be the 
map defined by ( , ) (cos ,sin , )u v u u vπ = . 

The geometrical meaning of this map is to wrap the plane 
P  around the cylinder S  into an infinite number of times. 

 

 
Fig. 3 The map : P Sπ →  

 
We would like to show that π  is a covering map. Let 

consider 0 0( , )u v P∈ , the mapping is limiting to the band

0 0{( , ) , }R u v P u u uπ π= ∈ − ≤ ≤ +  which covers S  minus 
the generating curve. Thus π  is continuous and ( )P Sπ = . 

Next, let p  is any point on S  and p pU S τ= −  where pτ  is 

the opposite meridian to p . We would like to show that 
1( )pUπ −  is a disjoint union of open set of M� . 

Let 0 0( , )u v P∈ be a point such that 0 0( , )u v pπ = and 
choose the band nV given by 

 

0 0{( , ) | (2 1) (2 1) }nV u v P u n u u nπ π= ∈ + − < < + + , 
 

0, 1, 2,...n = ± ± . It is clearly that if m n≠  then n mV V φ∩ =  

and 1( )U n p
n

V Uπ −= . 

Thus, the plane P  is a covering space of the cylinder S . 
Since P  is simply connected, here we get : P Sπ →  is a 
universal covering space which is a flat cylinder in this article. 

We now intend for the torus case. Let 2R  be a plane with 
coordinates ( , )x y  and 2 2

, :m nT R R→ be the map translation 

, ( , ) ( , )m nT x y x m y n= + + where m and n are any integers. 

Consider the equivalence relation on 2R given by 
( , ) ( , )x y x m y n+ +∼  where m  and n  are any integers. Let 

2: R Tπ →  be the normal projection map
,( , ) { ( , )m nx y T x yπ = for all integer ,m n }. Thus, in each open 

unit square whose vertex have integer coordinates, there is 
only one representative of T and T be a torus obtained by 
identifying opposite side of a square and 2: R Tπ → is a 
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universal covering space which is a flat torus in this article. 
(Fig. 4) The point , 1,..., 4ip i = on each corner of a flat torus 

in 2R is the only one point p on a torus T , that is 
, 1,..., 4ip p i= = . 

 

 

Fig. 4 The map 2: R Tπ →  
 

Let 1 1:M S R= ×  is a right circular cylinder with the metric
2 2 2 2ds dr r dθ= + where ( , )r θ denote a polar coordinates. By 

the universal covering space : ,M Mπ →� we get 1 1:M R R= ×�  

is a flat cylinder with the metric 2 2 2ds dr dθ= + . For a torus
1 1:M S S= × , the metric is 2 2 2 2 2( cos )ds r d R r dφ ϕ θ= + +  

where ( , )θ ϕ rectangular coordinates are, R  is a large radius 

and r  is a small radius. Here we get a flat torus 1 1:M R R= ×�

with the metric 2 2 2ds d dθ ϕ= + . 

III. THE MAIN RESULTS 
In this section we would like to verify some statements that 

we have mentioned in the first section then we will present the 
main results of this article. 

Lemma 1: Any line segment in a plane is a minimal 
geodesic. 

Lemma 2: There is no cut point of any point in a plane. 
Proof: Without loss of generality we may assume 
: (0,0)p = be a point in a plane P . 
Suppose there exists a cut point q of p  along a minimal 

geodesic γ  joining (0)p γ=  to 1( )q tγ= . Thus for all number

2 1t t> , for all geodesics extension 
2[0, ]| tγ  is not minimal 

anymore. 
Here we get a contradiction, by Lemma 1. 
Lemma 3: Let M be a complete simply connected surface. 

Let  
p  be a point on M . The cut locus pC of p M∈  has a local 

tree structure which does not contain a cycle. 
Proof: Suppose the cut locus pC  of p M∈  contains a 

cycle in M .  
From Jordan theorem, there exists an interior bounded by 

pC . Let x  be a point in an interior. Since M  is complete and 

simply connected, by Hopf-Rinow theorem, there exists a 
minimal geodesic γ  joining p to x and γ intersects pC at q . 

Here we get [ , ]| p xγ is the extension of [ , ]| p qγ .  

Since q is a point in pC , thus q is a cut point.  

Since q is a cut point of p , the extension [ , ]| p qγ is not 

minimal anymore. This is a contradiction. 
That is pC of p M∈ does not contain a cycle in a complete 

simply connected surface M . 
Lemma 4: The cut point of any point p on a sphere is the 

antipodal point to p . 
Proof: We may suppose that { }NC S=  where N  is the 

north pole and S  is south pole. 
There exists the meridian joining N  to S . Since a meridian 

is a half circle of the great circle and is a minimal geodesic, 
here we get by Klingenberg Lemma, S is a cut point of N .  

Hence { } NS C⊂ . 

Conversely, let 2: [0, ) (1)Sγ ∞ →  be a curve on a unit 

sphere 2 (1)S  such that : (0)N γ= and : ( )S γ π= . Here we get 

[0, ]| πγ is a half circle of the great circle. 

Consider the geodesic extension [0, ]| tγ where 2 .tπ π> >

here we get [0, ]( | )tl tγ = , and 
 

[0, ]( ) 2 ( | ) 2 2 .tl l tγ π γ π π π π= − = − < − =�  
 
Thus the geodesic extension is not minimal anymore. 

 Then { }NC S⊂ . 
 Therefore, the cut locus of any point in a sphere is the 
antipodal point to that point. 

A. On the Cut Locus in a Flat Cylinder  

Lemma 5: Let 1 1 2 2 2: ( , )M R R ds dr dθ= × = +� denote a flat 

cylinder of revolution. Let p be a point on M�  with ( ) 0pθ = , 
then the cut locus pC  is the opposite meridian to p . 

Proof: Let { | ( ) }p q M qτ θ π= ∈ =�  be the opposite 

meridian to .p M∈ �  
For any q of pτ , there exists a minimal geodesic γ joining

p  to q . According to the symmetric property, there exists γ�  
which is the reflection of γ  with respect to pτ . 

Here we get γ γ≠� and ( ) ( )l lγ γ=� . Thus by Klingenberg 
lemma, q is a cut point of p . 

Hence p pCτ ⊂ . 

Conversely, suppose q  is a cut point of p and pq τ∉ . 

Let 0 ( )qθ π< < . 
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Since q is a cut point of p , there exists a minimal geodesic 
γ  joining p to q  where (0)p γ=  and 1( )q tγ= . For all 
number 2 1t t> , for all geodesic extension 

2[0, ]| tγ is not 

minimal anymore. Here we get a contradiction by Lemma 1. 
Hence p pC τ⊂ . 

Therefore, cut locus of any point in a flat cylinder is the 
opposite meridian to that point. 

B. On the Cut Locus in a Flat Torus 

Lemma 6: Let 1 1 2 2 2: ( , )M R R ds dr dθ= × = +� denote a flat 

torus. Let p be a point on M� such that ( ( ), ( )) (0,0)p pθ ϕ = and 
, 1,..., 4ip p i= = , then the cut locus pC of p is the meridian 

opposite to p  union the parallel opposite to p . 

Proof: Let q be a point on M� . If ( ) ( )q qθ π ϕ= =  it is 
clearly that q is a cut point of p . 

Thus we will consider the case ( )qθ π≠ or ( )qϕ π≠ . 

Let q be a point on M� such that ( )qϕ π= , 0 ( ) 2qθ π< < . 

Since M� is complete, there exists a minimal geodesic γ  
joining 1p  to q . With the symmetric property to the parallel
ϕ π= , there exists a minimal geodesic γ�  joining 4p  to q . 
Thus q is a cut point of p along γ . If we consider a minimal 
geodesic joining 2p  to q  and 3p to q , the result is the same 
as above. 

The proof is similar if we choose ( )qθ π= , 0 ( ) 2qϕ π< < . 

Here we get{( , ) } pM Cθ ϕ θ π ϕ π∈ = ∪ = ⊂� . 

Conversely, suppose q  is a cut point of p  and 

{( , ) }q Mθ ϕ θ π ϕ π∉ ∈ = ∪ =� . Let 0 ( ) 2qθ π< < and

0 ( ) 2qϕ π< < . 
Since q  is a cut point of p , there exists a minimal geodesic 

γ joining p  to q where (0)p γ=  and 1( )q γ θ= . For all 
number 2 1θ θ> , for all geodesic extension 

2[0, ]| θγ
 

is not 

minimal anymore. Here we get a contradiction by Lemma 1. 
Therefore the proof is completed. 

The flat torus that we had discussed in Lemma 6 is 
generated by a rectangle as a covering space. The rectangle is 
a special case of a parallelogram. In general, a parallelogram 
with the angle equals π  is called a rectangle. Thus we would 
like to determine the structure of the cut locus of a general flat 
torus which a covering space is a parallelogram by using the 
property of the orthogonal bisectors. 

Let p  and q  be distinct points in a plane P . A point x is 
equidistant to p and to q if ( , ) ( , )d p x d q x= . The set of all 
points equidistant to p  and to q is the line orthogonal and 
passes through the midpoint of the line segment joining p to

.q This line is called the orthogonal bisector. 
The orthogonal bisector to each side of a triangle meets at 

one point interior to the triangle. Thus the triangle is divided 

into three sectors, each sector bounded by two orthogonal 
bisectors and two sides of triangle adjacent to the orthogonal 
bisectors. 

Let q be the meeting point for the orthogonal bisectors of a 
triangle 1 2 3p p p thus 1 2 3( , ) ( , ) ( , )d p q d p q d p q= = . 

Let consider a parallelogram 1 2 3 4 1 ,   
2

p p p p p π
∠( . There 

are two meeting points x and y  of the orthogonal bisector to 
each side of the parallelogram. 

If we join x  to y  , this line is the orthogonal bisector to the 
minor diagonal of the parallelogram or the diagonal opposite 
to 1p . 

The midpoint of the line segment between x and y is the 
bisector of the main diagonal of the parallelogram or the 
diagonal passes through 1p . 

If we are identifying the opposite side of the parallelogram, 
we get the torus with , 1,..., 4ip p i= = . 

Let α be the orthogonal bisector to the minor diagonal of 
the parallelogram, and , 1,..., 4i iβ =  be the orthogonal 
bisector to each side of parallelogram. 

If
2

p π
=( , a parallelogram is then a rectangle. For the 

rectangle, the two meeting points x and y will be the same 
point or x y= . Here we get only two orthogonal bisectors 
which intersect at x , and x  is also the bisector of both 
diagonal of rectangle. The union of the two orthogonal 
bisectors of the rectangle is the cut locus of point p  where
( ( ), ( )) (0,0)p pϕ θ = , which has been proved in Lemma 6. 

From the knowledge above, we may assume that the cut 
locus of the flat torus generated by the parallelogram as a 
covering space is the union of all orthogonal bisector interior 
the parallelogram. Thus, we will state the main theorem of this 
article as following. 

Theorem: Let 1 1 2 2( , )M R R ds d dθ ϕ= × = +� denote a flat 
torus. Suppose ( , )θ ϕ are not rectangular coordinates, then the 

cut locus of a point , 1,..., 4ip p i= = on M� is the union of the 
orthogonal bisector to each side of the flat torus and the 
coincident line joining the intersection between each pairs of 
the orthogonal bisector. 

Proof: Without loss of generality, we may assume that

( , )
2
πθ ϕ ∠(  , and we will consider one half of the flat torus 

which is divided by the minor diagonal. 
Let p  be a point on M� such that , 1,..., 4ip p i= = and

( ( ), ( )) (0,0)p pθ ϕ =  . Let pL  be the union of the orthogonal 

bisector of the triangle that is a half part of a flat torus. 
Suppose q is a point on the orthogonal bisector incident to 

the line segment joining 1p to 2p , by the property of the 
orthogonal bisector of a triangle, there exist two minimal 
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geodesics γ and γ� joining 1p to q and 2p to q . Thus q is a cut 
point of p along γ . 

Here we get p pL C⊂ . 

Conversely, suppose q is a cut point of 1p and pq L∉ . 

We may assume that q is in the sector that contain 1p .Since
q is a cut point of 1p , there exists a minimal geodesic γ
joining 1p to q . The other geodesic emanating from 2 3 4, ,p p p
to q are all longer than γ since they intersect the appropriate 
orthogonal bisector, while γ is not intersect any orthogonal 
bisectors. 

Since q is a cut point of 1p , 1[ , ]p qγ  is a minimal geodesic 

joining 1 (0)p γ= to 1( )q γ θ= . For all number 2 1θ θ> , for all 

2[ , ( )]pγ γ θ is not minimal anymore. Here we get a 
contradiction by Lemma 1. 

Hence pq L∈ .Thus q pC L⊂ . 

For this reason the proof is completed. 

IV. CONCLUSION 
Here we have proved that no cut point of any point p  in a 

plane. For any point p  on a flat cylinder, there exists the cut 
locus of p  as is the opposite meridian to p . For any point p
of a flat torus generated by the rectangle as a covering space, 
cut locus is the opposite meridian to p  union the parallel that 
is a geodesic opposite to p . The structure of cut locus of a 
general flat torus which generate by the parallelogram as a 
covering space is the union of the orthogonal bisector to each 
side of the flat torus and the incident line joining the 
intersection between each pairs of the orthogonal bisector. 
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