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Abstract—In this paper, getting an high-efficiency parallel algo-
rithm to solve sparse block pentadiagonal linear systems suitable
for vectors and parallel processors, stair matrices are used to con-
struct some parallel polynomial approximate inverse preconditioners.
These preconditioners are appropriate when the desired target is to
maximize parallelism. Moreover, some theoretical results about these
preconditioners are presented and how to construct preconditioners
effectively for any nonsingular block pentadiagonal H-matrices is
also described. In addition, the availability of these preconditioners
is illustrated with some numerical experiments arising from two
dimensional biharmonic equation.
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I. INTRODUCTION

PENTADIAGONAL matrix is a general and important type
of special matrices, these types of matrices are widely

used in areas of science and engineering. For example, using
finite difference method or finite element method to discrete
partial differential equations (PDEs) in 2D or 3D, leads often
to large sparse block pentadiagonal linear systems [1], [2], [3],
[4], [5], [6], [7], [8]. As well as, Linear algebraic equations of
the form (1) are obtained, In this paper, we consider a special
linear system of the form

Ax = b, x, b ∈ Rn, (1)

where A ∈ Rn×n is a large sparse block pentadiagonal matrix
blocked in the form⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13

A21 A22 A23

A31 A32 A33

. . .
. . .

. . .
. . .
An−2,n−1 An−2,n

An−1,n−1 An−1,n

An,n−2 An,n−1 An,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

It is assumed that the diagonal blocks Aii of A are square ma-
trices with the same order. For the above block pentadiagonal
matrix (2), we briefly denote

A = pentadiag(Ai,i−2, Ai,i−1, Aii, Ai,i+1, Ai,i+2),

where i = 1, · · · , n, n ≥ 3. In fact, a stair matrix defined
in [29] can be regarded as a special block pentadiagonal
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matrix (see Definition 2.1 of Section 2), we use analogous
representations of [29] to definite a new type of stair matrix.

In principle, there are two groups of methods for the
solution of linear systems (1). One group of methods are
the so-called direct methods, or elimination methods, that is,
the exact solution is determined through a finite number of
arithmetic operations (in real arithmetic without considering
the roundoff errors). It is not efficient to obtain the exact
solution of (1) by using a direct method such as Gaussian
elimination, if the coeffient matrix A is large and sparse, Since
A is a large sparse matrix, direct methods become prohibitively
expensive because of a lot of fillin elements. Iterative methods
therefore competitive with direct methods provided the number
of iterations that are required to converge is either independent
of n or scales sublinearly with respects to n, As an alternative,
we usually consider nonstationary iterative methods-conjugate
gradient method and Krylov subspace methods such as BCG
[19], GMRES [32], and BiCGSTAB [33], etc. However, in
general, the convergence of Krylov subspace methods is not
guaranteed or may be extremely slow [11], [31]. Hence, the
original problem (1) must be transformed into a more tractable
form. To do so, preconditioned Krylov subspace methods are
widely used, that is, we consider an easily invertible matrix
M called the preconditioning matrix or preconditioner and
apply the iterative solvers either to the left preconditioned
linear system MAx =Mb or to the right preconditioned linear
system AMy = b, where y = M−1x (as well as considering
the fast multipole methods).

Generally speaking, the preconditioner M should be chosen
so that MA or AM is a good approximation to the identity
matrix and has to satisfy the following three conditions [24]:
(1) AM (or MA) should have aclusteredspectrum;
(2) M should be efficiently and suitable computable in paral-
lel;
(3) ”M × vector” should be fast and time-saving to compute
in parallel.

Recently, various preconditioners have been widely intro-
duced in the literature [11], [31]. Often used preconditioners
are block Jacobi preconditioners, polynomial preconditioner or
incomplete LU-decompositions of A [13]. But these precon-
ditioners either lead to unsatisfactory convergence or are not
easily implemented for parallel computation [13]. However,
Noting that H.B. Li et al. present a new stair matrix splitting
for block tridiagonal matrix by using ideas of [29] and struc-
tures some new parallel preconditioners for block tirdiagonal
linear systems suitable for vectors and parallel processors [36].
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A very promising preconditioner is the sparse approximate
inverse (SAI) preconditioner [11], [18], [20], [31], which is a
sparse matrix M that directly approximates the inverse of the
coefficient matrix A, i.e.,

M ≈ A−1, (3)

Thus, in the basic iterative scheme only matrix-vector multipli-
cations with M appear and it is not essential to solve a linear
system in M like in the incomplete LU-approach. However,
A−1 is a full matrix in general, and hence not for every sparse
matrix A there will exist a good sparse approximate inverse
matrix M .

Another interesting approach is the polynomial precondi-
tioners [31], based on a splitting, A = P − Q, of A, where
P is nonsingular. If H = P−1Q and ρ(H) < 1 (Here, ρ(H)
denotes the spectral radius of H), then (see [30], Theorem
3.4.1) one has

A−1 = (

∞∑
i=1

Hi)P−1, (4)

The Neumann expansion (4) suggests taking the matrix Mm =
P (I + H + H2 + · · · + Hm−1)−1 for m = 1, 2, 3, . . .,
as an approximation to A. This matrix is called the m-
step polynomial preconditioner [9]. Thus, depending on the
splitting A = P−Q, specific preconditioners may be obtained.

To obtain efficient algorithms in parallel systems, a gen-
eralization is introduced in [12], [16], [17] using multisplit-
tings:given k splitting A = Pl −Ql, l = 1, 2, . . . , k, of A, the
m-step preconditioner is defined by

M−1 = 1
k (I +W +W 2 + · · ·+Wm−1)(P−1

1 +

· · ·+ P−1
k ) and W = 1

k

∑k
l=1 P

−1
l Ql.

(5)

Hence, according to the above SAI and the m-step polynomial
preconditioner, the purpose of this paper is to propose some
new parallel polynomial approximate inverse preconditioners
for the above block pentadiagonal matrix (2) and the corre-
sponding computation can be done in parallel based on sparse
block matrix-vector multiplications.

The remainder of this paper is organized as follows. In
Section 2, we present some notations, definitions and pre-
liminary results on stair matrices, which we refer to later. In
Section 3, by exploiting stair matrices, we describe how to
construct the block polynomial preconditioners effectively for
the special type of matrix (2) and their theoretical properties
are investigated. In Section 4, we present some numerical
results of the preconditioned BiCGSTAB method with our
polynomial preconditioners, and these results are compared
with those polynomial preconditioners using standard block
Jacobi splitting. Finally, some conclusions are drawn.

II. PRELIMINARIES AND NOTATIONS

In this section, we will recall some properties of stair
matrices defined in [29]. These properties will be useful in
the following sections since iterative methods based on these
matrices can be easily performed on a parallel computing
platform.

From now on, we shall use the following notations and
definitions: Let Rn and Cn×n(Rn×n) be the n-dimensional

real vector space and the set of all n × n complex (real)
matrices, respectively. We denote A = (aij) an n × n
matrix and set offdiag(A) = A − diag(A). For two matrices
A = (aij) and B = (bij), A ≤ B denotes aij ≤ bij for all i
and j,and A ≥ B denotes aij ≥ bij for all i and j.

We now recall stair matrices (see Definition 2.1) and their
properties (see Theorem 2.1) introduced in the first part of
[29]. All notations are similar to those in [29].

Definition 2.1: An n× n block pentadiagonal matrix

A = pentadiag(Ai,i−2, Ai,i−1, Aii, Ai,i+1, Ai,i+2),

is called a stair matrix if one of the following conditions is
satisfied.

(I)

⎧⎪⎨
⎪⎩

Ai,i−2, Ai,i+2 �= 0, i = 3, . . . , 3 + 4�n−3
4

�;
Ai,i−1 �= 0, i = 2, 3, . . . , 2 + 4�n−3

4
�, 3 + 4�n−3

4
�;

Ai,i+1 �= 0, i = 3, 4, . . . , 3 + 4�n−3
4

�, 4 + 4�n−3
4

�;
Aii �= 0, i = 1, . . . , n.

(II)

⎧⎪⎨
⎪⎩

Ai,i−2, Ai,i+2 �= 0, i = 1, 5, . . . , 1 + 4�n−3
4

�, 5 + 4�n−3
4

�;
Ai,i−1 �= 0, i = 4, 5, . . . , 4 + 4�n−3

4
�, 5 + 4�n−3

4
�;

Ai,i+1 �= 0, i = 1, 2, . . . , 1 + 4�n−3
4

�, 2 + 4�n−3
4

�;
Aii �= 0, i = 1, . . . , n.

Where Aij �= 0 stand for the block entries of previous
block pentadiagnoal matrix constraining invariant, others of
the block matrix are zero, and a stair matrix is of type I if
condition I is satisfied and is of type II if condition II holds.

According to its form, a stair matrix is denoted by

A = stair(Ai(i−2), Ai(i−1), Aii, Ai(i+1), Ai(i+2)).

In particular,

A = stair1(Ai(i−2), Ai(i−1), Aii, Ai(i+1), Ai(i+2)),

and

A = stair2(Ai(i−2), Ai(i−1), Aii, Ai(i+1), Ai(i+2)),

represent a stair matrix of type I and a stair matrix of type II,
respectively.

Theorem 2.1: An n× n block stair matrix

A = stair(Ai(i−2), Ai(i−1), Aii, Ai(i+1), Ai(i+2)),

is nonsingular if and only if Aii, i = 1, 2, · · · , n are nonsin-
gular. Furthermore, if A is nonsingular, then

A−1 = stair(Bi(i−2), Bi(i−1), Bii, Bi(i+1), Bi(i+2)), (6)

where the block Bij are given by

Bij =

⎧⎨
⎩

−A−1
ii AijAjj , if j = i− 1, i+ 1;

A−1
ii , if j = i;

Sij , if j = i− 2, i+ 2.
(7)

In fact, where Sij = Aij − Ai,j+1A
−1
j+1,j+1Aj+1,j (j = i −

2, i+ 2) are well-known Schur complements.
For example, a 5 × 5 block stair matrix is of the form as

follows ⎛
⎜⎜⎜⎜⎝

A11

A21 A22

A31 A32 A33 A34 A35

A45 A45

A55

⎞
⎟⎟⎟⎟⎠ ,

A stair matrix of type I
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⎛
⎜⎜⎜⎜⎝

A11 A12 A13

A22 A23

A33

A43 A44

A53 A54 A55

⎞
⎟⎟⎟⎟⎠ ,

A stair matrix of type II

If det(A) �= 0, then, by Theorem 2.1, we, respectively, have
that ⎛

⎜⎜⎜⎜⎝
A−1

11

U21 A−1
22

U31 U32 A−1
33 U34 U35

A−1
44 −A−1

44 A45A
−1
55

A−1
55

⎞
⎟⎟⎟⎟⎠ , (8)

The inverse matrix of a stair matrix of the type I

where U21 = −A−1
22 A21A

−1
11 , U32 = −A−1

33 A32A
−1
22 , U34 =

−A−1
33 A34A

−1
44 , U35 = A−1

33 (A34A
−1
44 A45 − A35)A

−1
55 and

U31 = A−1
33 (A32A

−1
22 A21 −A31)A

−1
11 . or⎛

⎜⎜⎜⎜⎝
A−1

11 L12 L13

A−1
22 −A−1

22 A23A
−1
33

A−1
33

−A−1
44 A43A

−1
33 A−1

44

L53 L54 A−1
55

⎞
⎟⎟⎟⎟⎠ . (9)

The inverse matrix of a stair matrix of the type II

where L12 = −A−1
11 A12A

−1
22 , L54 = −A−1

55 A54A
−1
44 ,

A−1
11 (A12A

−1
22 A23 − A13)A

−1
33 , L53 = A−1

55 (A54A
−1
44 A43 −

A53)A
−1
33

Applying Theorem 2.1, we immediately obtain the fol-
lowing Algorithm I to compute the inverse matrices of stair
matrices.

Algorithm I: Let

A = stair(Ai(i−2), Ai(i−1), Aii, Ai(i+1), Ai(i+2))

be a nonsingular block stair matrix and

A−1 = stair(Bi(i−2), Bi(i−1), Bii, Bi(i+1), Bi(i+2))

If (A is of the type I)
for i = 1 : 1 : n

Bii = A−1
ii

endfor i
for i = 2 : 4 : 2 + 4�n−3

4 � and i = 3 : 4 : 3 + 4�n−3
4 � and

i = 4 : 4 : 4 + 4�n−3
4 �

Bij = −A−1
ii AijAjj , j = i− 1, i+ 1

endfor i
for i = 3 : 4 : 3 + 4�n−3

4 �
Bij = A−1

ii (Ai,j+1A
−1
j+1,j+1Aj+1,j − Aij)A

−1
jj , j = i −

2, i+ 2
endfor i
endif
If (A is of the type II)
for i = 1 : 1 : n

Bii = A−1
ii

endfor i
for i = 4 : 4 : 4 + 4�n−3

4 � and i = 5 : 4 : 5 + 4�n−3
4 � and

i = 1 : 4 : 1 + 4�n−3
4 � and i = 2 : 4 : 2 + 4�n−3

4 �
Bij = −A−1

ii AijAjj , j = i− 1, i+ 1
endfor i
for i = 1 : 4 : 1 + 4�n−3

4 � or i = 5 : 4 : 5 + 4�n−3
4 �

Bij = A−1
ii (Ai,j+1A

−1
j+1,j+1Aj+1,j − Aij)A

−1
jj , j = i −

2, i+ 2
endfor i
endif

where Bii = 0, if i < 1 or i > n. A remarkable feature of
the algorithm I is its high parallelism. For example, if A is a
stair matrix of the type I, first, for all i, the computations of
Bii can be fulfilled by different processors at same time, and
then proceed to compute Bij in parallel for i = 2 : 4 : 2 +
4�n−3

4 �, i = 3 : 4 : 3+4�n−3
4 � and i = 4 : 4 : 4+4�n−3

4 � at
the same time. Thus, if n is reasonably large, we may achieve
fair parallelism.

III. FACTORIZED SPARSE APPROXIMATE INVERSE BLOCK
POLYNOMIAL PRECONDITIONERS FOR BLOCK

PENTADIAGONAL MATRICES

Now, based on the above analysis, we construct an effective
block polynomial preconditioner for any nonsingular block
pentadiagonal H-matrix.

Let A = pentadiag(Ai,i−2, Ai,i−1, Aii, Ai,i+1, Ai,i+2) as
in (2), and a representation A = S−P is called a stair-splitting
of A when S = stair(Ai,i−2, Ai,i−1, Aii, Ai,i+1, Ai,i+2) is
nonsingular. If ρ(S−1P ) < 1, then the stair-splitting is a
convergent splitting of A and one has

A−1 = (I − S−1P )−1S−1, (10)

and

A−1 ≈Mm = (I − S−1P + (S−1P )2 + · · ·
+(S−1P )m−1)S−1, m = 1, 2, . . . .

(11)

The matrix Mm is called the m-step polynomial precon-
ditioner for block pentadiagonal matrices. If the terms that
have been dropped in the Neumann series (11) are of small
norm, the matrix Mm is close to A−1 and it can be used
an effective preconditioner. Quantifying the ”deviation” gives
‖A−1 −Mm‖2 = O(‖S−1P‖m2 ).

Remark 3.1: It is worth noting that the condition
ρ(S−1P ) < 1 is not too difficult to be satisfied in general [22],
[25], [26], [27], [35], see also the following Theorems 3.1 and
3.2. In addition, the matrix S−1P is also very interesting that
if S is a stair matrix of type I, then S−1 is the same form as
S (see, Theorem 2.1 or (2.3)) and the 1+4�n−3

4 � columns of
S−1P are zero vectors, if S is a stair matrix of type II, then
S−1 is the same form as S and the 3 + 4�n−3

4 � columns of
S−1P are zero vectors.

To show that ρ(S−1P ) < 1 holds in many of cases, we
need to recall the following definitions and lemmas in [15]
[34]:

Definition 3.1: A nonsingular matrix A = (aij) ∈ Cn×n is
said to be
(a) a nonsingular M -matrix, if aij ≤ 0 for any i �= j, and
A−1 ≥ 0 (i.e., A is a monotone matrix);
(b) a nonsingular H-matrix, if its comparison matrix 〈A〉 is an
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invertible M -matrix, where 〈A〉 = (〈aij〉) ∈ Rn×n is defined
by

〈aij〉 =
{ |aii|, for i = 1, 2, . . . , n;

−|aij |, for i �= j, i, j = 1, 2, . . . , n.
(12)

Definition 3.2: A splitting A = K − N is called a regular
splitting of A if K is nonsingular, K−1 ≥ 0, and N ≥ 0.

Lemma 3.1: Let A be a nonsingular M -matrix and B =
(bij) be a real matrix. If the elements of B satisfy the relations

aii ≤ bii, aij ≤ bij ≤ 0, i �= j, 1 ≤ i, j ≤ n,

then B is also a nonsingular M -matrix. Moreover, B−1 ≤
A−1.

Theorem 3.1. If A is a nonsingular M -matrix as in (2), then
the stair-splitting A = S − P is a convergent splitting of A,
i.e., ρ(S−1P ) < 1.

Proof : Since A = S − P is a stair-splitting and A is a
nonsingular M -matrix, then P ≥ 0 and S ≥ A. By Lemma
3.1, we know that S is also an M -matrix and S−1 ≥ 0, that
is, the stair-splitting A = S − P is a regular splitting of A.
Therefore, the result easily follows by Theorem 3.13 of [34].
The proof is completed.

In fact, according to Theorem 4.2 of [21], when A is
a nonsingular H-matrix, the above convergent theorem also
holds:

Theorem 3.2: Let

A = pentadiag(Ai,i−2, Ai,i−1, Aii, Ai,i+1, Ai,i+2) ∈ Cn×n,
as in (2). If A is a nonsingular H-matrix, then the stair-splitting
A = S−P is a convergent splitting of A, i.e., ρ(S−1P ) < 1.

Proof : Without loss of generality, we can assume that A =
stair2(Ai(i−2), Ai(i−1), Aii, Ai(i+1), Ai(i+2)). Let

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 0 0
0 C2 0 0
0 0 C3 0 0

0 B4 C4 0 0
A5 B5 C5 0 0

. . . . . . . . . . . . . . .
Cm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 D1 E1

0 C2 D2 0
0 0 C3 0 0

0 0 C4 0 0
0 0 C5 D5 E5

. . . . . . . . . . . . . . .
Cm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and D = diag(C1, C2, ..., Cm). Then we have that

LD−1U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 D1 E1

0 C2 D2 0
0 0 C3 0 0

0 B4 C4 0 0
A5 B5 C5 D5 E5

. . . . . . . . . . . . . . .
Cm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= stair2(Ai, Bi, Ci, Di, Ei) = S.

Thus S = LD−1U is a sparse block factorization of A (see
[14]), which is also a particular case of Theorem 4.2 of [21].
Therefore, ρ(S−1P ) < 1, i.e., the conclusion holds.

The above analysis bases mainly on characteristics of the
coefficient matrix A. For the general estimate of the spectral
radius ρ(S−1P ) and even the condition number, some efforts
have been made in [23], [25], [26], [28].

Next, let us observe that the eigenvalue distribution of the
transformed coefficient matrices with the m-step polynomial
preconditioner (11) to show the convergence rate of the
preconditioned linear systems.

Theorem 3.3: Let A = S−P be a convergent stair-splitting
of block pentadiagonal matrix A, then the preconditioned
matrix T =MmA with Mm as in (11) has at least 2+ �n−3

4 �
eigenvalues at 1, and other eigenvalues satisfy that

σ(T ) = 1− (σ(S−1P ))m, (13)

where σ(C) denotes the arbitrary eigenvalue of matrix C.
Proof : Since A = S − P , obviously, we have that
MmA = (I + S−1P + (S−1P )2 + · · ·+ (S−1P )m−1)S−1A
= (I + S−1P + (S−1P )2 + · · ·+ (S−1P )m−1)S−1(S − P )
= (I + S−1P + (S−1P )2 + · · ·+ (S−1P )m−1)(I − S−1P ),

(14)

that is, MmA is a polynomial of matrix S−1P , therefore it
easily follows that (13) holds for arbitrary eigenvalue of the
matrix S−1P.

In addition, noting that matrix S1−P has at least 2+�n−3
4 �

zero eigenvalues (If S is a stair matrix of type I, then the
1+4�n−3

4 � columns of S−1P are zero vectors, if S is a stair
matrix of type II, then the even columns of S−1P are zero
vectors), so the preconditioned matrix T =MmA has at least
3 + 4�n−3

4 � eigenvalues at 1.
When the splitting A = S − P is convergent, i.e.,

ρ(S−1P ) < 1, then for any of eigenvalues of T , we have
that |σ(T )| ∈ (0, 2). Especially when m is enough large,
all of eigenvalues of T will have aclusteredspectrum at 1.
Next, let us illustrate this phenomenon by the Fig. 1 and
Fig. 2, where m = 3 and PDE1 matrix (see it in Section
4) is arised from the numerical solution of two dimensional
biharmonic equaiton [1]. In practice, the general difficulty
of obtaining a converging splitting A = M − N as shared
by the task of constructing a preconditioner, lie in finding a
simple and computationally efficient M , The idealized case
is when M−1N is sparse while (M−1N)j decays to zero
very quickly as j → ∞ so we can take a small number of
terms in Neumann’s series in accurately approximating A−1

and equally we can take

S(A−1) ⊂ S((I +M−1N)m), with m = 3. (15)

However, when m is very large, the computation of the poly-
nomial preconditioner Mm has also very high cost. Therefore,
how to improve the preconditioner Mm is very key problem
especially when m is not very large. Next, some schemes are
presented as follows for the polynomial preconditioner Mm

when m = 3:
Method 1: we consider a special type of polynomial

preconditioner (a kind of accelerated relaxation method for
preconditioner)

Mh
3 = (I + S−1P + h(S−1P )2)S−1, (16)
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Fig. 1. Spectrum of A for PDE1 matrix.
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Fig. 2. Spectrum of M3A for PDE1 matrix.

where the parameter h is real number, which control the rate
of convergence of the transformed coefficient matrices Mh

3 A.
However, the problem arises how to choose h so that the
condition number of Mh

3 A is as small as possible. Obviously,
this problem is computationally expensive, and in general we
have to rely on heuristics to obtain an estimate in the following
numerical experiments (see Section 4).

Obviously, when h = 1, we obtain again the classical m-
step polynomial preconditioner (see (3.2)). For the precondi-
tioner Mh

3 , the parameter h should be chosen to produce a
good preconditioner. Generally speaking, estimating h can be
formulated as the problem of finding hmin as to minimize
Cond(Mh

3 A), i.e.,

hmin = argmin
h
Cond(Mh

3 A). (17)

However, this minimization is computationally expensive and
we have also to rely on heuristics to obtain an estimate, that
is, for those matrices with the same structure of nonzeros,
we choose the optimum parameter h of lower order matrix
as the optimum parameter of this kind of matrices. Numerical
experiments show that this method is very efficient to quickly

obtain a better parameter h, see the following Example 4.1.
Method 2: Additive polynomial preconditioner, by consider-

ing two different splittings of the matrix A and then averaging
the updates of each splitting, that is, for different splittings of
the matrix A:

A = S1 − P1 = S2 − P2,

where S1 and S2 are stair matrices of type I and type II
(see Definition 2.1), respectively. Similar to (5), we have the
following additive polynomial preconditioner using methods
for weighted mean for m = 1, 2, . . . ,

Mλ
m = 1

1+λ (I + L+ · · ·+ Lm−1)(S−1
1 + λS−1

2 ),

L = 1
1+λ (S

−1
1 P1 + λS−1

2 P2).
(18)

Obviously, if the matrix A is symmetric, it is easily proved that
especial M1

m(λ = 1) is also symmetric (Note that S1 = ST2 ).
In fact, if the matrix A is symmetric and positive definite (we
say that a matrix P is positive definite if xTPx > 0 for all
real nonzero vectors x, see [10]), then M1

m is also symmetric
and positive definite, that is, it is a valid preconditioner for
the system in (1):

Theorem 3.4: Let A = S1 − P1 and A = S2 − P2 be two
stair-splittings of the symmetric and positive definite matrix
A. If S1 (or S2) is positive definite, then the matrix M1

m is
also symmetric and positive definite if one of the following
conditions is satisfied
(1) m is odd;
(2) m is even, and ρ(H) < 1.

Proof : Since A is symmetric, then S1 = ST2 . By Theorem
2.2 and Corollary 2.3 of [10], the results immediately follow.

IV. NUMERICAL EXPERIMENTS

In this section, some numerical experiments will be de-
scribed. The goal of these experiments is to examine the
effectiveness of the polynomial preconditioners Mm, Mh

3 and
Mλ
m for the BiCGSTAB Krylov subspace method [31].
All the numerical experiments were performed in Fortran

PowerStation 4.0, to produce our preconditioners, in conjunc-
tion with MATLAB R2010a, to implement the iterations. The
machine we have used is a acer PC-Pentium (R)4, CPU2.20
GHz, 2.00 GB of RAM. In all of our runs we used a zero
initial guess, and the right-hand-side vector b is taken as the
vector of all ones. The iterative process ends when the residual
satisfies

‖r(k)‖2
‖r(0)‖2 < 10−6,

where r(k) is the residual vector after k-th iterations.
In addition, it should be mentioned that the preconditioned

matrix Mh
3 A (MmA or Mλ

mA) does not need to be formed
explicitly since Mh

3 v (Mmv or Mλ
mv) can be computed for

any vector v from a sequence of matrix-by-vector products.
In experiments, to further reduce computational cost, we may
solve them based on the vector and parallel processors. For
example, to compute w =Mh

3 v, we write

w =Mh
3 (I + (I + (I + hS−1P )S−1P )S−1v,
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and then apply the following Algorithm II to obtain the vector
w in a nested manner.

Algorithm II:
Input S, P, h and v.
Output w.

Step 1: Let S−1v = w1 and solve the linear systems Sw1 = v
to obtain w1 by using the following parallel Algorithm III.
Step 2: Compute w2 = Pw1 by the matrix-by-vector product.
Step 3: Let S−1w2 = w3 and solve the linear systems Sw3 =
w2 to obtain w3 by using Algorithm III.
Step 4: Compute w4 = Pw3 by the matrix-by-vector product.
Step 5: Let S−1w4 = w5 and solve the linear systems Sw5 =
w4 to obtain w5 by using Algorithm III.
Step 6: Output w = w1 + w3 + hw5.

Algorithm III ([29]): This algorithm solves the block stair
linear system Ax = b, where A is a stair matrix. The solution
overwrites b.
If (A is of the type I)
for i = 1 : 4 : 1 + 4�n−3

4 � and i = 5 : 4 : 5 + 4�n−3
4 �

bi = A−1
ii bi

endfor i
for i = 2 : 4 : 2 + 4�n−3

4 �
bi = A−1

ii (bi −Ai,i−1bi−1)
endfor i
for i = 4 : 4 : 4 + 4�n−3

4 �
bi = A−1

ii (bi −Ai,i+1bi+1)
endfor i
for i = 3 : 4 : 3 + 4�n−3

4 �
bi = A−1

ii (bi − (Ai,i−1A
−1
i−1,i−1Ai−1,i−2 −Ai,i−2)bi−2 −

Ai,i−1A
−1
i−1,i−1bi−1 −Ai,i+1A

−1
i+1,i+1bi+1 +

(Ai,i+1A
−1
i+1,i+1Ai+1,i+2 −Ai,i+2)bi+2)

endfor i
endif
If (A is of the type II)
for i = 3 : 4 : 3 + 4�n−3

4 �
bi = A−1

ii bi
endfor i
for i = 2 : 4 : 2 + 4�n−3

4 �
bi = A−1

ii (bi −Ai,i+1bi+1)
endfor i
for i = 4 : 4 : 4 + 4�n−3

4 �
bi = A−1

ii (bi −Ai,i−1bi−1)
endfor i
for i = 1 : 4 : 1 + 4�n−3

4 �
bi = A−1

ii (bi −Ai,i+1A
−1
i+1,i+1bi+1 + (

Ai,i+1A
−1
i+1,i+1Ai+1,i+2 −Ai,i+2)bi+2)

endfor i
for i = 5 : 4 : 5 + 4�n−3

4 �
bi = A−1

ii (bi −Ai,i−1A
−1
i−1,i−1bi−1 + (

Ai,i−1A
−1
i−1,i−1Ai−1,i−2 −Ai,i−2)bi−2)

endfor i
endif

where bi = 0, if i < 1 or i > n. It is readily seen that
in block case, Algorithm III needs n matrix-vector products
of the form Aijbj , j = i − 2, i − 1, i + 1, i + 2, n vector
additions and solving n small linear systems of the form A−1

ii d.
Obviously, this algorithm has relatively high parallelism. For

example, if A is a stair matrix of the type I, first, for
all i = 1 : 4 : 5 + 4�n−3

4 � the computations of A−1
ii bi

can be fulfilled by different processors at same time. Then
bi = A−1

ii (bi−Ai(i−1)bi−1) are easily computed in parallel for
even i = 2 : 4 : 2 + 4�n−3

4 �, and bi = A−1
ii (bi −Ai(i+1)bi+1)

are easily computed in parallel for i = 4 : 4 : 4 +
4�n−3

4 �. also bi = A−1
ii (bi − (Ai,i−1A

−1
i−1,i−1Ai−1,i−2 −

Ai,i−2)bi−2 − Ai,i−1A
−1
i−1,i−1bi−1 − Ai,i+1A

−1
i+1,i+1bi+1 +

(Ai,i+1A
−1
i+1,i+1Ai+1,i+2 − Ai,i+2)bi+2) are not hardly com-

puted for i = 3 : 4 : 3 + 4�n−3
4 �. Thus, the high parallelism

of Algorithm II is achieved if all Aij are small blocks (see
[29]).

Let us consider the linear system of the form

Ax = b, , x, b ∈ Rn, (19)

where the matrix A is a block pentadiagnoal matrix, which
arises from the numerical solution of two dimensional bihar-
monic equation as follows (see [1]):

�2u =
∂4u

∂x4
+ 2

∂4u

∂x2∂2y
+

∂4u

∂y4
= f(x, y), 0 ≤ x, y ≤ 1. (20)

Next, we use three uniform meshes of n1 = 1/51, n2 = 1/61
and n3 = 1/71 refer to the mesh sizes in the x-direction
and y-direction, which lead to three matrices of order n =
50 × 50 and n = 60 × 60 and n = 70 × 70, respectively,
the corresponding matrices are called PDE1, PDE2, PDE3.
Their characteristics are given in Table I, where n denotes the
order of matrix, the function nz(A) denotes the number of
nonzero elements of A and Cond(A) represents the condition
number of matrix A and diagonal dominance of matrices can
abbreviated to ”DD”.

TABLE I
CHARACTERISTICS OF TEST MATRICES PDE1-3.

Matrices Size(n) nz(A) DD Symmetric Cond(A)
PDE1 2500 31504 No Yes 5.9e+005
PDE2 3600 45604 No Yes 1.2e+006
PDE3 4900 45178 No Yes 2.2e+006

Now, we compare the above three polynomial precondi-
tioners using block stair-splitting with polynomial precon-
ditioners using block Jacobi splitting A = D − C, where
D = diag(A11, A22, · · · , Amm). For convenience, we denote
the corresponding block Jacobi polynomial preconditioners by

JMh
3 = (I +D−1C + h(D−1C)2)D−1,

Especially, let

JM3 = (I +D−1C + (D−1C)2)D−1.

Comparisons are made in terms of the similar ILU(0) method
among the diagonal blocks Aii of A to yield the corresponding
matrices A−1

ii . The results are presented in Tables II and III
for various matrices, respectively. The symbol ”No precond”
means that no preconditioner is used.

As it can be seen, the application of these block stair-
splitting preconditioners greatly improves the convergence rate
corresponding to classical block Jacobi splitting ones and so
reduces the number of iterations in almost all of cases.
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TABLE II
NUMBER OF ITERATIONS OBTAINED WITH BICGSTAB USING THE PRECONDITIONERS M3 , Mh

3 AND FOR MATRIXES PDE1-3 AND DIFFERENT
PARAMETERS h.

Mh
3

Matrices No precond M3 h = 0.5 h = 1.5 h = 3 h = 6 h = 10 h = 20
PDE1 377 81 81 74 62 55 52 50
PDE2 534 108 133 118 89 76 72 70
PDE3 717 152 163 137 131 101 98 92

Next, by using the heuristic method and (17), we obtain
an estimate for the optimum parameter h for matrices PDE1-
3 with the same pattern of nonzero elements. First of all, we
simulate, by computer, the function Cond(Mh

3 A)for the lower
order matrix PDE1, see Fig. 3.
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Fig. 3. The function Cond(Mh
3 A) changes as the parameter h increase, where A =

PDE1.

We observe (or compute) that the condition number of
Mh

3 A is minimum when h = 12. Thus we choose h = 12
as anoptimumparameter for this kind of matrices. Now we
test this conjecture for different parameters h (see Table IV).
Obviously, the results of Table IV conform to our hypothesis,
which confirms our method.

V. CONCLUSIONS

In this paper, exploiting the stair-splitting technique and
polynomial preconditioners, we develop the ideas of Axelsson
[11], Saad [11] and H. B. Li [36] et al. introduce some new
parallel polynomial approximate inverse preconditioners for
the block pentadiagonal matrix in the form (1.2), whose com-
putation can be done in parallel based on sparse blocks matrix-
vector multiplications. If we view block tridiagonal matrix as
a special type of block pentadiagonal matrix, then we obtain
a new stair matrix splitting about block tridiagonal matrix,
we also can structure some new parallel preconditioners for
block tridiagonal linear systems. Moreover, theoretical analysis
shows that our schemes are effective for any nonsingular block
pentadiagonal H-matrices or symmetric positive definite block
pentadiagonal matrices, see Theorems 3.2 and 3.4. Finally, The

robustness of these preconditioners is also analyzed by some
numerical experiments.

As it can be seen, the efficiency of these new precondi-
tioners is confirmed. However, we have to rely on heuristics
to obtain an estimate for the optimum parameters h and λ in
Mh

3 and Mλ
3 since their computations are expensive(especially

for Mλ
3 ), see Section 4. In addition, because there has no large

and reliable parallel processor in our laboratory, and therefore
only theoretic analysis is presented, computational time for
the preconditioners and for the solution of the systems is not
narrated in this article. These problems are of important and
interest, which will be further investigated and solved in a later
work.
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