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Abstract—The aim of this paper is to exhibit some properties of 

local topologies of an IVS. Also, we Introduce ISG structure as an 
interesting structure of semigroups in IVSs. 
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I. INTRODUCTION 
HE concept of IVS ( Indexed Variable System) has been 
introduced in [ 2, 4 ] and some properties of such systems 

has studied. We use the following definition: 
A.   Definition 

An IVS is a triple ),,( RX Ξ  which satisfies the following 
conditions, 
1)   X  is a nonempty set; 
Ξ  is a collection of membership-congruent relations 
{ }

Rrr ∈
=  where R  is a subset of interval ]1,0[  such that 

R∈1  and, 
2) for each Xyx ∈, there exists Rr ∈  such that yx r= ; 

3) If yx r=  then xy r= ; 

4) yx 1= iff x  and y  are not different objects. Viz, the 

set { }yx,  has one unique element. 
In [2, 4] we have seen that every IVS is a metric space and 

conversely. Also; the relation indexed identity is not an 
equivalence relation. Moreover, we have seen in [3] that every 
one-to one fuzzy set [5] on a nonempty set X  can introduce 
an IVS on X .Also; we have the following interesting result 

B. Theorem[2]. 

Let X  be an IVS and for nonempty set Y ; YXf →: is 
an arbitrary function. Then )( Xf be an IVS. 

II.   LOCAL TOPOLOGY 
In this section we review the main results in [3] and state 

some consequences. 

A. Theorem. 
Let X  be an IVS. For each Xx ∈ , there exists a local 

topology on X (called Local Topology with respect to x  
or generated by x  ). 
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Proof. Let ),,( RX Ξ  be an IVS, for each Xx ∈ and Rr ∈  
define  

 
{ }rsyxRsXyxN sr ≥=∈∃∈= ,:;)( 

 
 It's obvious that )( xN r is a nonempty set for each Xx ∈  

and XxN =)(0 . Also for each Rrr ∈′, ; such that rr ′≤  

we have )()()( xNxNxN rrr ′′ =∩ . Moreover, if Iiir ∈)( is 

a sequence of elements of R  then )()( xNxN sr
Ii i

=
∈
∪ ; 

where { }Iirs i ∈= ;inf  so, the set 

{ } { }Φ∈= ∪RrxNx r ;)()(τ  is a topology on X . 

  

B. Example. 
Assume that { }521 ...,,, xxxX =  be an IVS and the set of 

properties { }
Rrr ∈

==Ξ  is defined by table below: 

TABLE I  
INDEXED IDENTITY RELATIONS BETWEEN X ELEMENTS 

 1x  2x  3x  4x  5x  

1x
 

1  
3
2

 3
2

 3
1

 3
1

 

2x
 3

2

 

1  
3
2

 3
2

 3
2

 

3x
 3

2

 3
2

 

1  
3
1

 3
1

 

4x
 3

1

 3
2

 3
1

 

1  
3
2

 

5x
 3

1

 3
2

 3
1

 3
2

 

1  

 
For the element 1x  of X  we have: 

{ }11
3
311 )()( xxNxN ==    ,   

{ } ,,,)( 3211
3
2 xxxxN =

{ } XxxxxxxN == 543211
3
1 ,,,,)(    ,   XxN =)(

3
0  

And hence; 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==Φ= XxNxNxNxNx )()(),(),(,)( 1
3
01

3
11

3
2111τ  

Also, 
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⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=Φ= XxNxNx )(),(,)( 2
3
2212τ ,   

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=Φ= XxNxNxNx )(),(),(,)( 3
3
13

3
2313τ    , 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=Φ= XxNxNxNx )(),(),(,)( 4
3
14

3
2414τ    , 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=Φ= XxNxNxNx )(),(),(,)( 5
3
15

3
2515τ  

 
     In addition we state some discrete properties of local 

topologies. 

C. Theorem. 
Every local topology is a topological base. 
Proof. It's clear. 

By the set theory, we can state the next result. 

D. Theorem. 
Every local topology is a chain. Moreover, that is a lattice. 
Proof. Between each two arbitrary elements of a local 
topology there exists relation ⊆ . For each Xx ∈  and 

)()(,)(
21

xxNxN rr τ∈  either )()(
21

xNxN rr ⊆  or 

)()(
12

xNxN rr ⊆  . Also, if 21 rr ≤  ; we have: 

 
)()()(

121
xNxNxN rrr =∪ and 

)()()(
221

xNxNxN rrr =∩ . 

 
Thus; local topology has the supremum and infemum 
properties. Hence it’s a lattice. 
 

E. Theorem 
Assume that A  and B  are two closed subsets of a local 
topology )( xτ  . Then either BA ⊆  or AB ⊆  . 

Proof. If BA ⊆  the proof is complete; if not, cA  and cB  are 
open. Consequently; there exists )(,)( xNxN rr ′  such that 

)(,)( xNBxNA r
c

r
c

′==  . If BA ⊄  then cc AB ⊄ and so 

)()( xNxN rr ⊄′  , From other wise for every 

)(,)( xNxN rr ′ either )()( xNxN rr ⊆′  or 

)()( xNxN rr ′⊆  ; thus we obtain that )()( xNxN rr ′⊆  . 

Hence, cc BA ⊆  . It shows that AB ⊆  . 
 

Our next result is about Lebesgue number[ 1 ] of a local 
topology: 

F. Theorem. 
The Lebesgue number (denote by ε  ) of each open cover 
in a local topology is not grater than one. 

Proof. By the definition of )( xN r  ( the elements of a local 

topology ), one can see that when r  decreasing, )( xN r  will 

be grate. In fact, 1  is the greatest radiuses of neighborhoods  
and other radiuses are less than 1. So, its clear that 1≤ε .  

 In addition, we explain and exhibits some concepts and 
results of topologies. 

 By the Lindelof  theorem [ 1 ] , every open cover of a 
subset of nℜ  , can be      reduced to an at most countable 
subcover. This theorem extend to each IVS as below: 
 

G. Theorem. ( Lindelof ) 
Every subcover of a subset A  of an IVS X  by a local 
topology )( xτ  can be reduce to an open subset. 
Proof. Let { }

IiiO
∈

 ( where ℜ⊆I  is the set of indexes) is an 

open cover of A   .i.e. )( xO i τ∈  for each Ii ∈  . By theorem 

E { }
IiiO

∈
has a supremum member ∗O such that 

{ }ii OOOOIi ∈⊆∈∀ ∗∗ ,;  ,  . Hence, *O is open and the 

proof  is complete. 
 

H. Corollary. 
Let X  be an IVS and )( xτ be a local topology for X . 
Every subset E  of X is compact iff there exists 

)()( xxN r τ∈ such that )( xNE r⊆ . 

Proof. By theorem  G  its clear. 
 

An equivalence proposition to above corollary is as follow: 
 

Every subset E  of an IVS X is compact iff for each open 
cover { }

Rrr xNG
∈

= )(  of E ; infemum of set 

{ }GxNRr r ∈∈= )(;η  

 is again in η  . 

III.  INDEXED SEMIGROUP STRUCTURE (ISG)    
Our results in this section will limit to some interesting 

examples. First attend to following definition: 

A. Definition. 

Let X be an IVS and XXX →×∗:  is a function satisfies 
the next properties: 
1)    XyxXyx ∈∀∈∗ ,; ; 
2)    Xzyxzyxzyx ∈∀∗∗=∗∗ ,,;)()(  (Associativity ); 
3)  there exists Xe ∈  such that for each RrXx ∈∈ ,  if 

xex r=∗  then xxe r=∗  (Identity element); 

4) for each Xx ∈  there exists Xx ∈−1  such that 
xxx r=∗ −1  implies that xxx r=∗−1  . (Inverse element). 
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),( ∗X  is called Indexed Semigroup. (ISG for short ). 
Moreover, ),( ∗X  is called Abelian ISG if it has the additional 
property: 
5)   Xyxxyyx ∈∀∗=∗ ,; . 

B. Corollary. 

Every group ),( ∗X  is an ISG where X is an IVS. 

Proof. Its clear. 
 
The converse of the above Corollary is not true. Counter 

example is in below: 
 

C. Example. 

Let { }2,1,0=X  by the following properties. 

{ }componentisxdprimeisxcoddisxbevenisxa )(,)(,)(,)(=Ξ  
By the assumption 0  and 1 both not prime and component. 
The table of indexed relations between members of X is: 
 

TABLE II 
INDEXED IDENTITY RELATIONS BETWEEN X ELEMENTS 

 0  1  2  

0  1 4
2  

4
3  

1 4
2  1 4

1  

2  4
3  

4
1  1 

 

Thus,
⎭
⎬
⎫

⎩
⎨
⎧=

4
3,

4
2,

4
1,1R  and ( )RX ,,Ξ  is an IVS. 

Define action on X  by the following Table III. ),( ∗X  is 
an ISG. It is easy to see that X  is closed and associative. 0  is 
an identity element of X  and we can get 

2)2(,1)1(,0)0( 111 === −−− ; 
Because 

02)2()2()2()2(

;02)1()1()1()1(

4
3

11
4
3

11

==∗=∗

==∗=∗

−−

−−

  

and  
00)0()0()0()0( 1

11 ==∗=∗ −− . 

 
From the table its obvious that∗  is abelian. In the above 

ISG, inverse of members is not unique. If we get 2)1( 1 =−  

and 1)2( 1 =−  then 

02)2()2()2()2(

;02)1()1()1()1(

4
3

11
4
3

11

==∗=∗

==∗=∗

−−

−−

 . 

 
TABLE III 

ACTION OF ∗  BETWEEN ELEMENTS OF X 

∗  0  1  2  

0  0  1 2  

1 1 2  2  

2  2  2  2  

 
This examples show that an ISG may be not a group. 

There are many examples of ISG’s that persuade us to study 
the ISG structures. One of the importance is the set of all 
propositions by actions ∧∨ ,  , where ∧∨ ,  are the conjunction 
and disjunction of propositions and this is the propose of next 
studies. 
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