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theory of Gröbner bases and some applications of Gröbner bases to
graph coloring problem, automatic geometric theorem proving and
cryptography.
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I. INTRODUCTION

We know from the Hilbert Basis Theorem that any ideal
I in a polynomial ring over a field is finitely generated.
However, through of all generators for I, we try to find the best
generators to describe the ideal. More precisely we are looking
for a generator G for I in order to answer the following
questions [2], [8]:

1) Equality of ideals:
Reduced Gröbner bases are unique for any given ideal
and monomial ordering, and also often computable in
practice. Thus one can determine if two ideals I, J are
equal by looking at their reduced Gröbner bases.

2) Ideal membership problem:
Let R = K[x1, . . . , xn] be a polynomial ring, given an
ideal I ∈ R where I = 〈f1, . . . , fs〉, and given f ∈
R, determine whether f ∈ I? If so, can we compute
h1, . . . , hs ∈ R such that f = h1f1 + · · ·+ hsfs?
To do this, we compute a Gröbner basis G for I, then
f ∈ I if and only if the reminder of the dividing f by
G is 0.

3) Solving a system of polynomial equations:
One of the most important applications of Gröbner basis
is the solving of a system of polynomial equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f1(x1, . . . , xn) = 0
f2(x1, . . . , xn) = 0

...
fm(x1, . . . , xn) = 0

(1)

To do this, at the first we compute a Gröbner basis
G = {g1, g2,1, g2,2, . . . , g2,r2 , . . . , gn,1, gn,2, . . . , gn,rn}
for the ideal generated by f1, f2, . . . , fm with respect to
lexicographical order. In general we obtain the following
form for our equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(x1) = 0
g2,1(x1, x2) = 0, . . . , g2,r2(x1, x2) = 0
...
gn,1(x1, . . . , xs) = 0, . . . , gn,rn(x1, . . . , xs) = 0

(2)
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It is often easy to compute the solutions of the later
system of polynomial equations.

4) Existence of solutions:
The system of polynomial equations 1 has a solution
if and only if the Gröbner basis of {f1, . . . , fm} is not
equal to {1}.

5) Number of solutions:
The system of polynomial equations 1 has a finite
number of solutions if and only if any Gröbner basis
of {f1, . . . , fm} has the following property: For every
variable xi, there exists a polynomial such that its
leading term with respect to the chosen term ordering is
a power of xi.

To compute a Gröbner basis we need a division algorithm
in K[x1, . . . , xn], like the division algorithm in K[x]. Unfortu-
nately since there are multiple variables and multiple divisors,
the remainder of this division is not unique. Hence if the
remainder of the division of f by f1, . . . , fm is equal to zero
then f is in the ideal generated by f1, . . . , fm, but if the
remainder is not equal to zero we don’t know whether f is in
the ideal generated by f1, . . . , fm?

However, if we choose a good divisor, then the remainder is
unique regardless of the order of the divisors. These divisors
are called a Gröbner basis.

In order to define a Gröbner basis, we first need to intro-
duce some notations. If we fix a term order �, then every
polynomial f has a unique leading monomial denoted by
LM(f) = xα, this is the largest monomial xα with respect
to the term order � which occurs with nonzero coefficient in
the expansion of f . The coefficient of the leading monomial
xα is called the leading coefficient of f and denoted by
LC(f), finally the leading term of f is defined by LT (f) =
LC(f)LM(f) [8].

Definition 1 (Gröbner basis) A Gröbner basis for an ideal
I in K[x1, . . . , xn] is a generating set G = {g1, . . . , gm} such
that the set {LT (gi) : 1 ≤ i ≤ n} is a generator set for the
ideal generated by LT (I) = {LT (f) : f ∈ I} [8].

If the monomial order � is fixed, then every ideal I in
K[x1, . . . , xn] has a unique reduced Gröbner basis.

There is some algorithms to compute the Gröbner bases, B.
Buchberger presented a such algorithm in his PhD thesis [7].
Later, Faugere presented the F4 and F5 algorithms, which are
improved versions of the principal Buchberger algorithm [9],
[10].

II. THE 3-COLORABLE PROBLEM

There is a well-known problem in graph theory called the
3-color problem. Given a graph, we would like to know that
if it can be three colored. Specifically, let G be a graph with n
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vertices, and suppose that any two vertices share at most one
edge. Can each vertex be colored with 3 colors in such a way
that adjacent vertices do not have the same color?

Problem: Given a graph G, find an assignment of 3 colors
to the vertices of G such that two vertices connected by an
edge have different colors.

The Gröbner basis technique can be applied to solve this
problem([1], [2]).

Gröbner bases can be used to determine whether or not
a system of equations has a solution, and thus are a simple
way to solve the system of equations associated with graph
colorings.

Let G(V,E) be a graph with vertices V = {1, . . . , n}.

Definition 2 (k-coloring) A k-coloring of G is a function from
V to a set of k colors such that adjacent vertices have distinct
colors.

Given a graph G, find an assignment of 3 colors to the
vertices of G such that two vertices connected by an edge
have different colors.

Let ζ = e
2πi
3 and assign to each vertex one of 1, ζ, ζ2

(representing the 3 colors), where ζ is a cube root of unity.
Recall that a cube root of unity satisfies ζ3 = 1. Notice that
1 and ζ2 are the other two cube roots of unity. Also recall
Euler’s formula, ζ = e

2πi
3 = cos 2πi

3 + i sin 2πi
3 = − 1

2 + i
√
3
2 .

For the n vertices of k labeled by the variables x1, . . . , xn
therefore the condition that we assign to each vertex a cube
root of unity means we must have:

x3i − 1 = 0 (3)

for i = 1, . . . , n. Now the condition that adjacent vertices i, j
have assigned a different root of unity is characterized by the
equation

x2i + xixj + x2j = 0. (4)

Recall that each vertex will have a color, hence

x3i = x3j = 1.

Then for adjacent vertices

x3i − x3j = (xi − xj)(x
2
i + xixj + x2j ) = 0 (5)

Since we want xi and xj to have different colors, the only
way to satisfy equation 5 is

x2i + xixj + x2j = 0. (6)

Consider each pair of adjacent vertices in the above graph.
Let I be the ideal in K[x1, . . . , xn] generated by these poly-
nomials.

Theorem 3 A graph is 3-colorable if and only if the set
of polynomials associated with our graph have a common
solution in the complex numbers.

Now suppose that the polynomials associated with adjacent
vertices have a common solution. This means that there exists
xi, xj such that x2i + xixj + x2j = 0 for all pairs of adjacent
vertices. Notice that xi �= xj for this to be true. Then x3i−x3j =

0 and we know from above that xi and xj will be assigned
different colors. Hence the graph is 3-colorable.

Therefore, G is 3-colorable if and only if V (I) �= ∅ if and
only if I �= 〈1〉, this is true if and only if, B, the corresponded
Gröbner basis of I, is not equal to {1}. In this case we can
solve the equations to get a specific coloring.

III. APPLICATION IN CRYPTOGRAPHY

There are several general purpose algorithms for Jacobian
arithmetic, specially for superelliptic and Cab curves, some
efficient algorithms are described in [3], [12], [14] and [6].
The closely related arithmetic of cubic curves with several
points at infinity is treated in [17]. The algorithms use the
representation of Jacobian elements by polynomials and rely
on rather heavy techniques of symbolic computation like LLL,
Hermite normal form and Gröbner basis computation. On a
high level, to compute the addition of two ideals I1 and I2 a
unifying description can be obtained as follow:

Algorithm 1
1) Compute a Gröbner basis for I := I1I2
2) Select some u ∈ I and an integral ideal J in the class

of I−1, such that J = uI−1.
3) Put e := minCab

{h | h ∈ J}.
4) Put RED(I) := eJ−1 = e

uI.

Arita represents ideals of K[C] by their Gröbner bases with
respect to the Cab order, and chooses u as the Cab minimum
of I. His approach relies on Buchberger’s algorithm, whose
complexity in the Cab setting is not quite clear.

In [12] and [14], ideals are represented by their Hermite
normal forms as K[X]-modules, or equivalently by their
Gröbner bases with respect to the lexicographic order. The
natural choice for u is then the minimum with respect to this
order. The minimum for the Cab order can be computed via
a variant of LLL for function fields due to Paulus ([16]).

In [4], a new algorithms for realizing the arithmetic in the
Jacobians of superelliptic cubics is described. This approach
follows the framework of Algorithm general reduction . Rep-
resenting ideals by their lexicographic Gröbner bases, one can
use the FGLM algorithm ([11]) to find the Cab minimum. In
[5], closed formula for the reduced ideal in the case of C34 is
obtained.

IV. AUTOMATIC GEOMETRIC THEOREM PROVING

One surprising application of Gröbner bases is “Automatic
Geometric Theorem Proving”, which use the method of
Gröbner bases to prove some problems arising from geometry.

The main key is to translate the hypothesis and conclusions
of a theorem to the polynomials language. Then determine
whether the thesis lay in hypothesis condition or not. If the
conclusion polynomials all belong to the ideal generated by the
hypothesis polynomials, then they are true, as are all geometric
statements corresponding to polynomials in the ideal.

We introduce this, by an example from [8].
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Theorem 4 (The Circle Theorem of Appolonius)
Consider a right triangle spanned by A, B, and C,
with the right angle at A. The midpoints of the three sides of
the triangle, and the foot of the altitude drawn from A to the
edge �BC, all lie on one circle.

The coordinates of the triangle are as follows: we place A
at (0, 0), B at (u1, 0), and C at (0, u2), where u1 and u2
are arbitrary. The three midpoints at the sides M1, M2, and
M3 have their coordinates respectively at (x1, 0), (0, x2), and
(x3, x4). Expressing that M1 is the midpoint of the edge
spanned by A and B imposes the condition h1 = 2x1−u1 = 0.
The second condition h2 = 2x2 − u2 = 0 is imposed by
stating that M2 is the midpoint of the edge spanned by A and
C. For M3 we have two conditions: h3 = 2x3 − u1 = 0 and
h4 = 2x4 − u2 = 0.

For the foot of the altitude H we choose coordinates
(x5, x6). Then we formulate two hypotheses. First: h5 =
x5u1 − x6u2 = 0 expresses that the line segment AH is
perpendicular to the edge BC. Second: h6 = x5u2 + x6u1 −
u1u2 = 0 means that the points B,H , and C are collinear. To
formulate these conditions we use the slopes defined by the
segments.

Finally, we consider the statement that the three midpoints
and H lie on a circle by saying that the circle through the three
midpoints must also contain H . Let (x7, x8) be the coordinates
of the center O of the circle. We have two more conditions:
M1O = M2O and M1 = M3O, given respectively by h7 =
(x1−x7)2+x28−x27− (x8−x2)2 = 0 and h8 = (x1−x7)2+
x28 − (x3 − x7)

2 − (x4 − x8)
2 = 0.

The eight hypothesis form the following system

f(u,x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2x1 − u1 = 0
2x2 − u2 = 0
2x3 − u3 = 0
2x4 − u4 = 0
x5u1 − x6u2 = 0
x5u2 + x6u1 − u1u2 = 0
(x1 − x7)

2 + x28 − x27 − (x8 − x2)
2 = 0

(x1 − x7)
2 + x28 − (x3 − x7)

2 − (x4 − x8)
2 = 0

With respect to these eight hypotheses, the conclusion must
then be that HO =M1O, expressed by

g = (x5 − x7)
2 + (x6 − x8)

2 − (x1 − x7)
2 − x28 = 0.

The theorem is true if g belongs to the ideal spanned by the
polynomials which vanish over the zero set of the hypotheses.

APPENDIX A
APPENDIX

As a proof of our work, the following maple code attached,
it determines a given graph is 3-colorable or not?

>restart:
>#Create the system of equations
x[i]ˆ3-1=0 for i=1,...,n
># that n is number of variable (number of
graph vertex);
>crit1:=proc(L)
>local F:
>F:=x->xˆ3-1:
>#L:={seq(x[i],i=1..n)}:
>map(F,L):
>end:
>#############
>crit1({x[1], x[2], x[3], x[4]}):
>#Create the system of equations
x[i]ˆ2+x[i]*x[j]+x[j]ˆ2=0 for i=/=j
># that x[i] and x[j] are vertices that
connected by an edge;
>#############
>crit2:=proc(L)
>local F,k,sys,n:
>n:=nops(L):
>F:=(i,j)->x[i]ˆ2+x[i]*x[j]+x[j]ˆ2:
>sys:={}:
>for k to n do
>sys:=sys union {map(F,op(L[k]))}:
>od:
>sys,indets(sys):
>end:
>#############
>crit2({[1,2],[2,3],[4,3],[2,4]}):
>#This procedure return true if a graph is
3-colorable or false in otherwise;
># the input L is a representation of a
graph, which
># any pair (i,j) in L means that x[i] is
connected to x[j]
># by an edge;
>#############
>colorable:=proc(L)
>local sys,vars:
>sys,vars:=crit2(L):
>sys:=sys union crit1(vars):
>Groebner[Basis](sys,plex(op(vars))):
>if member(1,%) then RETURN(false) else
RETURN(true) fi:
>end:
>#############
>colorable({[1,2],[2,3],[4,3],[2,4]});
> true
>exam1:=[[1,2],[1,5],[1,6],[2,3],[2,4],[2,8],[3,4]

,[3,8],[4,5],[4,7],[5,6],[5,7],[6,7],[7,8]
>colorable(exam1);
> true
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