
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:9, 2007

516

Abstract—This paper presents a hybrid algorithm for solving a

timetabling problem, which is commonly encountered in many
universities. The problem combines both teacher assignment and
course scheduling problems simultaneously, and is presented as a
mathematical programming model. However, this problem becomes
intractable and it is unlikely that a proven optimal solution can be
obtained by an integer programming approach, especially for large
problem instances. A hybrid algorithm that combines an integer
programming approach, a greedy heuristic and a modified simulated
annealing algorithm collaboratively is proposed to solve the problem.
Several randomly generated data sets of sizes comparable to that of
an institution in Indonesia are solved using the proposed algorithm.
Computational results indicate that the algorithm can overcome
difficulties of large problem sizes encountered in previous related
works.

Keywords—Timetabling problem, mathematical programming
model, hybrid algorithm, simulated annealing.

I. INTRODUCTION
IMETABLING problems arise in a wide variety of fields
including education, transportation, sports, and healthcare

institutions. It is well known that the timetabling problem is
NP-complete [1]. Here, we focus on a special class of
timetabling problems, known as the university course
timetabling problem. This problem is commonly encountered
in many universities throughout the world. It can be further
classified into five different sub-problems: teacher assignment,
course scheduling, class-teacher timetabling, student
scheduling, and classroom assignment [2].

This paper deals with the first two sub-problems
simultaneously. The problem faced in teacher assignment is
how to assign and schedule the teachers to the courses and
course sections by taking some factors, such as teachers’
preferences and the number of courses offered, into
consideration. The timetabling process will then be continued
with scheduling course sections to time periods, which is

Manuscript received June 15, 2007.
Aldy Gunawan is with the Department of Industrial and Systems

Engineering, National University of Singapore, 1 Engineering Drive 2,
S(117576), Singapore (phone: 65-6516-2008; fax: 65-6516-1434; e-mail:
aldygunawan@nus.edu.sg).

Kien Ming Ng is with the Department of Industrial and Systems
Engineering, National University of Singapore, 1 Engineering Drive 2,
S(117576), Singapore (e-mail: isenkm@nus.edu.sg).

Kim Leng Poh is with the Department of Industrial and Systems
Engineering, National University of Singapore, 1 Engineering Drive 2,
S(117576), Singapore (e-mail: isepohkl@nus.edu.sg).

known as the course scheduling problem. From the literature,
we notice that most of the papers only focus on one of the sub-
problems. For example, papers about the course scheduling
problem often assume that the teacher assignment problem has
been solved earlier before solving the course scheduling
problem.

Many approaches have been proposed for solving
timetabling problems, such as exact algorithms and heuristics.
The emphasis of this paper is to develop a hybrid algorithm to
solve the problem. Another contribution of this paper is to
consider both the teacher assignment and course scheduling
problems simultaneously. This problem becomes more
complex than if teaching assignment and course scheduling
problems are considered separately.

The rest of the paper is organized as follows: Section II
gives related works of the timetabling problem. A detailed
description of the timetabling problem is presented in Section
III. Section IV briefly describes a proposed mathematical
programming model for the problem. A proposed hybrid
algorithm is then described in Section V, and the results of the
computational experiments are reported and discussed in
Section VI. Finally, an overall conclusion and suggestions for
further research work are given in Section VII.

II. RELATED WORKS
The timetabling problem is one of the scheduling problems

that has been extensively studied and published in Operations
Research literature over the last 25 years [3]. The solution
approaches range from graph coloring to heuristic algorithms,
including mathematical programming models and
metaheuristics as well.

For many years, the main focus of research in the
timetabling problem was on the application of a single
solution approach. A large variety of such approaches have
been tried out, such as an integer programming approach [4],
tabu search [3], and simulated annealing [5]. Recently, some
researchers have attempted to combine several approaches,
such as hybridization of exact algorithms and metaheuristics.
Hybrid algorithms exploit the strength of different methods by
applying them to problems that can be solved efficiently.

The hybridization of exact algorithms and metaheuristics
can be categorized into two classes, commonly known as
collaborative and integrative combinations [6]. Collaborative
combination refers to the algorithms that are executed
sequentially, intertwined or in parallel. These algorithms
exchange information, but are not part of each other. In

Solving the Teacher Assignment-Course
Scheduling Problem by a Hybrid Algorithm

Aldy Gunawan, Kien Ming Ng, and Kim Leng Poh

T

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:9, 2007

517

integrative combinations, one algorithm is a subordinate
embedded component of another algorithm.

One of the earlier related papers in the university course
timetabling problem that has applied the idea of hybrid
algorithms was presented by Weare et al. [7]. This paper
proposed a hybrid genetic algorithm that combines a direct
representation of the timetable and heuristic crossover
operators. Petrovic and Yang [8] presented a combination of
case-based reasoning system and the Great Deluge Algorithm
for solving examination timetabling problems. Some other
applications of the hybrid algorithm in timetabling problems
were also presented by Chiarandini and Stützle [9], Duong and
Lam [10] and Merlot et al. [11].

One of the latest applications of the hybrid algorithm for
timetabling problem was presented by Chiarandini et al. [12].
It describes a hybrid metaheuristic algorithm for solving the
university course timetabling problem. The entire framework
that consists of the successive application of several heuristics
is promising in achieving good results.

III. PROBLEM DESCRIPTION
The timetabling problem that we address has arisen in the

context of a university in Indonesia. In every new semester,
several courses are offered to students. Each course can be
divided into different sections due to the classroom capacity
constraint and the number of students registered. Teachers are
allowed to choose the courses that they are willing to teach
based on their preferences, along with their preferred days and
time periods.

As mentioned earlier, the primary problem discussed in this
paper is the combination of two sub-problems: teacher
assignment and course scheduling problems. Instead of
solving these sub-problems separately, we focus on how to
solve them simultaneously by taking the requirements of both
sub-problems into consideration.

Some efforts in this area of research have already been
started by using the mathematical programming approach [13,
14], in which it is shown that timetabling problems with data
sizes comparable to that of an institution can be solved with
the help of the models. However, it is found that mathematical
programming models were not an effective way for finding the
existence of an optimal solution, especially for large-scale
timetabling problems. Thus, the design of heuristic approaches
was proposed.

Although each university has some unique combination of
requirements, the most common forms of requirements that
might also be encountered in other universities would be
accommodated in the model. The requirements imposed are as
follows:
a) For each course, only one section can be conducted in every

time period.
b) Each teacher has to teach at least one course and cannot

teach more than a certain number of courses.
c) The number of teachers who can teach each course is

limited.
d) All course sections have to be spread evenly throughout a

week, so that for a particular course, only one section can be

conducted every day.
e) Each teacher can only teach at most one course section in a

particular time period.
f) The number of course sections taught cannot exceed the

number of classrooms available during each time period.
g) All sections for a particular course must be scheduled.
h) Each course section can only be taught by one teacher.
i) Each teacher will not be assigned courses that he/she is

unable to teach.
j) All the course sections taught by a teacher will be spread out

evenly during a week.
k) Each course section has to be scheduled in a certain number

of time periods consecutively.
The above requirements would be accommodated in the

proposed mathematical programming model and regarded as
hard constraints that cannot be violated.

IV. MATHEMATICAL PROGRAMMING MODEL
In order to compare the solutions obtained by an integer

programming approach and proposed hybrid algorithms, the
problem is formulated as a mathematical programming model
(model [A]). Let I, J, and K be the set of teachers, courses, and
course sections, respectively. Every teacher i will teach some
course sections based on their course preference list Ji,
where JJ i ⊂ and he/she must not teach more than Ni courses.
PCij is the value given by teacher i on the preference to be
assigned to teach course j. The number of teachers teaching
course j is also bounded by the minimum and maximum
values, LTj and UTj. The set of sections of course j is denoted
by Kj, while Sj is the number of sections of course j.

The timetable is in the form of a weekly schedule with the
set of days in a week being denoted by L, and the set of time
periods being denoted by M. In this paper, each time period
has the same duration. Each course section has to be scheduled
into time periods based on the number of time periods
required. The number of classrooms available per time period
is limited by Clm. We assume that Clm = C for all l∈L and
m∈M. The value given by teacher i on the preference to be
assigned to teach in day l and time period m is denoted as
PTilm.

Some of the decision variables defined are as follows:
Xijklm = 1 if teacher i teaches course j section k on day l and at

time period m, 0 otherwise (all i∈ I, all j∈ J, all
k∈Kj, all l∈L, all m∈M)

Pij = 1 if teacher i teaches course j, 0 otherwise (all i∈I, all
j∈J)

In our problem, the objective function (1) below reflects a
preference function that needs to be maximized. It refers to the
preferences of assigning course j to teacher i and the
preference of scheduling course j and section k to time period
m and day l. It is assumed that these preferences are equally
important.

[Model A]
∑ ∑ ∑ ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈ ∈ ∈ ∈

×+×
Ii Jj Ii Jj Kk Ll Mm

ijklmilmijij
j

XPTPPCMax (1)

Some of the main constraints encountered in our
timetabling problem are depicted next and the full details of

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:9, 2007

518

this mathematical programming model (model [A]) can be
found in [14].

Requirement a:
∑ ∑
∈ ∈

≤
Ii Kk

ijklm
j

X 1 (all j∈J, all l∈L, all m∈M) (2)

Requirement b:
∑
∈

≤≤
Jj

iij NP1 (all i∈I) (3)

Requirement c:
∑
∈

≤≤
Ii

jijj UTPLT (all j∈J) (4)

Requirement f:
∑ ∑ ∑
∈ ∈ ∈

≤
Ii Jj Kk

ijklm
j

CX (all l∈L, all m∈M) (5)

{ }1,0∈ijklmX

 (all i∈I, all j∈J, all k∈Kj, all l∈L, all m∈M) (6)

{ }1,0∈ijP (all i∈I, all j∈J) (7)

V. PROPOSED HYBRID ALGORITHM
In this section, we describe the proposed hybrid algorithm

for solving the problem. It combines an integer programming
approach, a greedy heuristic and a simulated annealing
algorithm sequentially. The proposed algorithm consists of
three phases: (1) pre-processing, (2) construction, and (3)
improvement.

The first phase deals with pre-processing data. Each course
j has a list of teachers, Ij, who are sorted in non-increasing
order of the given preferences for each teacher i being
allocated to course j. The given time period preferences (day l
and time period m) for each teacher i are also sorted in non-
increasing order, with the list being called LMi. The time
complexity for these processes is O(|I|2|J|) and O(|I||L|2|M|2),
respectively. The details are described in Algorithm 1 as
shown in Fig. 1 below.

Fig. 1 Pseudocode of the pre-processing phase

The primary purpose of the construction phase is to build an

initial feasible solution. The problem is divided into two sub-
problems. The first sub-problem, which deals with the teacher
assignment problem, is considered as an easy problem that can
be solved optimally by an integer programming approach. The
constraints related to the teacher assignment problem are taken
into consideration.

The resulting mathematical programming model (Model
[B]), which is a part of model [A], is proposed. We define
some additional decision variables:

ijkX ′ = 1 if teacher i teaches course j section k, 0 otherwise
 (all i∈I, all j∈J, all k∈Kj)

ijP′ = 1 if teacher i teaches course j, 0 otherwise
 (all i∈I, all j∈J)

Model [B] is then formulated as follows:
∑ ∑
∈ ∈

′×
Ii Jj

ijij PPCMax (8)

subject to

⎥
⎥
⎥

⎤

⎢
⎢
⎢

⎡ ′
=′ ∑

∈ jKk j

ijk
ij S

X
P (all i∈I, all j∈J) (9)

∑
∈

≤′≤
Jj

iij NP1 (all i∈I) (10)

∑
∈

≤′≤
Ii

jijj UTPLT (all j∈J) (11)

0=′ijkX (all i∈I, all j∉Ji, all k∈Kj) (12)

∑
∈

=′
Ii

ijkX 1 (all j∈J, all k∈Kj) (13)

{ }10,X ijk ∈′ (all i∈I, all j∈J, all k∈Kj) (14)

{ }1,0∈′ijP (all i∈I, all j∈J) (15)

The objective function (8) reflects a course preference
function that needs to be maximized. Equation (9) indicates
that if teacher i teaches at least one section of course j, the
value of ijP′ will be 1, meaning that teacher i teaches course j.

Here, ⎡ ⎤a denotes the smallest integer greater than or equal
to a. This equation involves nonlinear functions of the
decision variables and these can always be linearized by
adding some additional constraints. Equation (10) ensures that
teachers have to teach at least one course and cannot exceed
their maximum number of courses allowed. Equation (11)
limits the number of teachers for each course. Equation (12)
ensures that teachers will not be assigned courses that they are
unable to teach. Equation (13) assumes that each course
section can only be taught by one teacher. Finally, equations
(14) and (15) impose the 0-1 restrictions on the decision
variables ijkX ′ and ijP′ .

The solution obtained from this sub-problem is then treated
as the initial solution for the next sub-problem. The second
sub-problem, which deals with the course scheduling problem,
is difficult to solve especially when the problem size is large.
Therefore, it would be solved by a simple greedy heuristic
instead. The ideas of a simple greedy heuristic as well as the
parameter values used are similar to that of the heuristic
proposed by Gunawan et al. [14]. The time complexity of this
phase is O(|I||J||K||L||M|). The entire process in the construction
phase is briefly outlined in Algorithm 2 as shown in Fig. 2.

Fig. 2 Pseudocode of the construction phase

Algorithm 2: CONSTRUCTION PHASE ()
(1) Solve Model [B], determining ijkX ′ and ijP′

(2) For j = 1 to |J|
(3) For k = 1 to Sj
(4) Allocate course j section k to time periods
(5) Calculate the objective function value
(6) Set the solution obtained as the initial solution,
 initial

Algorithm 1: PRE-PROCESSING PHASE ()
(1) For j = 1 to |J|
(2) construct Ij
(3) For i = 1 to |I|
(4) construct LMi

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:9, 2007

519

In the improvement phase, we propose a modified simulated
annealing (SA) algorithm. SA was originally developed by
Kirkpatrick et al. [15] for finding good solutions to a wide
variety of combinatorial optimization problems, such as the
traveling salesman problem, machine scheduling problem and
timetabling problem. The SA algorithm is a type of local-
search heuristic algorithm that avoids getting trapped at a local
maximum by accepting “downhill” moves which decrease the
objective function value using a probabilistic acceptance
criterion.

The acceptance or rejection of a downhill move is
determined by a random acceptance function that is equal to
exp (-Δ/T). T is the control parameter, called temperature in
analogy with the physical annealing process and Δ is the
difference of objective function values between two
successive moves.

The most commonly used cooling schedule, geometric
cooling schedule, together with a specific type of
neighborhood structure, is applied to our problem. An
additional modification is also introduced in order to further
improve the quality of the solutions. We apply the
intensification strategy that is originally from the tabu search
(TS) algorithm. Suppose there is no improvement of the
solution obtained within a certain number of iterations
(LIMIT), the solution search is focused and started from the
best solution obtained so far. The following figures represent
the details of the improvement phase.

Fig. 3 Pseudocode of the improvement phase

 After an initial solution is obtained from the previous

phase, two operations are performed in order to seek better
improvements by exploring the neighborhoods of the current
solution. These two operations are re-allocation of teachers to
courses and course sections, followed by re-scheduling of
these changes into days and time periods. The details of the
neighborhood improvement are described in Algorithm 4.

Fig. 4 Pseudocode of the improvement phase

The first operation is started by choosing course j randomly,

followed by finding another teacher without violating the
maximum load constraint. Two possible neighborhood
structures are considered: the new teacher will be added to the
list of teachers who teach course j or the new teacher will
replace the teacher who has been allocated to course j. Both
alternatives are selected randomly.

The second operation is to schedule the changes in teacher
assignment. The new teacher is allocated to the previous day

Algorithm 3: MODIFIED SIMULATED ANNEALING ()
(1) Set the temperature T = T0
(2) Set the current solution, current = initial
(3) Set the temporary solution, temp = initial
(4) Set the best solution, best = initial
(5) Set the total number of iterations without improvement,

numb_iter_no_improv = 0
(6) Set limit = 0
(7) While the total number of iterations, numb_iter is less

than the preset maximum number of iterations, max_count
do:

(8) Repeat neighbor_moves times:
(9) Apply NEIGHBORHOOD IMPROVEMENT ()
(10) Update temperature iter_numbiter_numb TT ×=+ α1

(11) If (numb_iter_no_improv > limit)
 /* intensification strategy */
(12) Set the current solution, current = best
(13) Set the temporary solution, temp = best
(14) Return to the best solution, best

Algorithm 4: NEIGHBORHOOD IMPROVEMENT ()
(1) Choose course j∈J randomly
(2) Set old_teacher = the teacher who teaches course j, if

there is more than one teacher, choose one randomly
(3) Find another teacher i∈ Ij (new_teacher) for being

allocated to course j
(4) If new_teacher does exist:
 /* teacher replacement is feasible */
(5) Choose a random number r1 uniformly from [0, 1]
(6) If (r1 < 0.5) AND (the number of sections of course j

 taught by old_teacher > 1) AND (the number of
 teachers allocated to course j < the maximum allowed):

(7) Choose the number of sections replaced by
 new_teacher randomly, numb

(8) Replace old_teacher with new_teacher for
 selected sections

(9) Else /* replacement process */
(10) set numb = the total number of sections of course j

 taught by old_teacher
(11) Replace old_teacher with new_teacher for

 numb sections
(12) For a = 1 to numb
(13) Set old_period = the current time (day and time

 periods) of course j section a
(14) Check feasibility if new_teacher is allocated to

 old_period
(15) If feasible
(16) Allocate new_teacher to old_period
(17) Else
(18) Find the new time randomly for course j section a,

 new_period
(19) If new_period is feasible
(20) Update the current solution, current
(21) Else
(22) Set the current solution, current = temp
(23) Break
(24) If teacher replacement and course scheduling does exist
(25) Calculate the change of the objective function value Δ
(26) If Δ ≤ 0
(27) Accept the new allocation
(28) Else
(29) Choose a random number r2 uniformly from [0, 1]
(30) If r2 < e – Δ/T then accept the new allocation
(31) If new allocation is accepted
(32) Set temp = current
(33) If current is better than best
(34) Set best = current
(35) Else
(36) Set the current solution, current = temp
(37) Else
(38) Set the current solution, current = temp

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:9, 2007

520

and time periods scheduled for the previous teacher without
violating the constraints. Otherwise, a new set of day and time
periods has to be found. The time complexity of exploring the
neighborhood of both operations is O(|I||J||K||L||M|).

VI. COMPUTATIONAL EXPERIMENTS
The proposed algorithm was coded in C++ and tested on an

Intel Pentium IV 2.6 GHz CPU with 512 MB RAM under the
Microsoft Windows XP Operating System. Experiments were
performed using the data sets from [14]. The characteristics of
the data sets are summarized in Table I. Each data set consists
of five randomly generated data instances.

As mentioned earlier, the initial solution is generated in the
construction phase by using an integer programming approach
and a simple greedy heuristic. In the improvement phase,
experiments to verify the best parameter configuration for the
proposed algorithm were performed. The parameters of the
proposed algorithms are chosen to ensure a compromise
between the computational time and the solution quality. The
values of the parameters used in the computational study are
summarized as follows: initial temperature (T) = 10,000, the
cooling factor (α) = 0.95, the number of neighbor moves =
|I||L|, the number of iterations = |I||L||M|, and LIMIT =
0.05|I||L||M|.

The software used to solve the problems is ILOG OPL
Studio 4.2. Table II summarizes the average objective function
values obtained and the average CPU times required (in
seconds). The results from the hybrid algorithm are also
presented and compared against the solutions found by OPL
Studio as well.

However, the optimal solution for data instances in the data
sets 20×40_1, 20×40_2, 30×60_1 and 30×60_2 could not be
computed within the time limit of 24 hours. The OPL Studio
can only provide the best known solutions for some instances
and these solutions might not be optimal. For such cases, we
report the best known solutions obtained for comparison
purposes.

In general, the performance of the hybrid algorithm has
been encouraging. In terms of CPU time, it takes less time
than the OPL Studio. It is noticed that the proposed algorithm
is more effective than the integer programming approach in
dealing with large problems as some of the problems that
could not be solved by the integer programming solver of OPL
Studio can be easily solved by the proposed hybrid algorithm.

The percentage deviation of the objective value obtained by
the proposed algorithm from the best known/optimal objective
function value, which is defined by Pct = (best known/optimal
objective function value – objective function value obtained by
hybrid algorithm) / (best known/optimal objective function
value) × 100, is calculated. We observe that the proposed
heuristic is able to yield good solutions with the percentage
deviation from the best known/optimal solutions being less
than 18% (Table II).

TABLE I

DATA SETS
Data set Number of

teachers
Number

of
courses

Minimum
number of
sections

Maximum
number of
sections

Number
of days

Number of time
periods per day

Maximum
load per
teacher

Number of
classrooms
available

10×20_1 10 20 2 3 5 8 4 10
10×20_2 10 20 2 4 5 8 4 10
20×30_1 20 30 2 3 5 8 3 15
20×30_2 20 30 2 4 5 8 3 15
20×40_1 20 40 2 3 5 8 4 15
20×40_2 20 40 2 4 5 8 4 15
30×60_1 30 60 2 3 5 8 4 20
30×60_2 30 60 2 4 5 8 4 20

TABLE II

COMPARISON OF BEST KNOWN/OPTIMAL SOLUTIONS AND THE HYBRID ALGORITHM’S SOLUTIONS
Solution obtained by OPL Studio Solution by the Hybrid algorithm

Data set

Average
objective

function value

Average CPU
time

(in seconds)

Average
objective

function value

Average CPU
time

(in seconds)

Average Pct of
objective
function

value
10×20_1 7,766 1,183.11 6,612 0.42 14.87
10×20_2 7,934 1,273.15 6,536 0.41 17.48
20×30_1 10,875 9,746.36 9,554 7.14 12.46
20×30_2 13,468 36,019.99 11,362 11.00 15.55
20×40_1 13,742 86,400.00 11,884 10.31 13.55
20×40_2 16,865 86,400.00 13,932 20.36 17.70
30×60_1 20,900 86,400.00 18,610 78.00 10.17
30×60_2 24,560 86,400.00 21,008 120.34 14.96

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:9, 2007

521

VII. CONCLUSION
In this paper, we have addressed teacher assignment and

course scheduling problems simultaneously and proposed a
collaborative hybrid algorithm for solving this problem. The
hybrid algorithm combines an integer programming approach,
a greedy heuristic and a modified simulated annealing
algorithm sequentially.

The experiments conducted in this paper suggest that the
proposed hybrid algorithm is capable of overcoming the
limitations of an integer programming approach on large data
sets. The results obtained are also compared against the best
known/optimal solutions generated by commercial software.
We conclude that the hybrid algorithm yields good solutions
within reasonable amount of computation time.

There are some possible areas of further research arising
from our work. We can look into ways of improving the
proposed hybrid algorithms. This would include using other
types of hybrid algorithms and developing other neighborhood
structures to solve the model more efficiently and yield better
solutions. Finally, the mathematical programming model can
always be extended to adapt to different characteristics and
requirements of other universities.

REFERENCES
[1] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and

multicommodity flow problems,” SIAM Journal of Computing, vol.5,
pp. 691-703, 1976.

[2] M.W. Carter, and G. Laporte, “Recent developments in practical course
timetabling,” (1998), in Practice and Theory of Automated Timetabling
II, Lecture Notes in Computer Science, vol.1408, ed by E. Burke, and
M. Carter, New York: Springer-Verlag, pp. 3-19, 1998.

[3] R.A. Valdes, E. Crespo, and J.M. Tamarit, “Design and implementation
of a course scheduling system using Tabu Search,” European Journal of
Operational Research, vol.137, pp. 512-523, 2002.

[4] S. Daskalaki, T. Birbas, and E. Housos, “An integer programming
formulation for a case study in university timetabling,” European
Journal of Operational Research, vol.153, pp. 117–135, 2004.

[5] D. Abramson, M. Krishnamoorthy, and H. Dang, “Simulated annealing
cooling schedules for the school timetabling problem,” Asia-Pacific
Journal of Operational Research, vol.16, pp. 1-22, 1999.

[6] J. Puchinger, and G.R. Raidl, “Combining metaheuristics and exact
algorithms in combinatorial optimization: a survey and classification,” in
IWINAC 2005, Lecture Notes in Computer Science, vol.3562, ed by J.
Mira and J.R. Alvarez, New York: Springer-Verlag, pp. 41-53, 2005.

[7] R. Weare, E. Burke, and D. Elliman, “A hybrid genetic algorithm for
highly constrained timetabling problems,” University of Notthingham,
Computer Science Technical Report No. NOTTCS-TR-1995–8, 1995.

[8] S. Petrovic, and Y. Yang, “Case-based initialisation of metaheuristics for
examination timetabling,” in Multidisciplinary Scheduling, Theory and
Applications, ed by G. Kendall, E. Burke, S. Petrovic, and M. Gendreau,
New York: Springer-Verlag, pp. 289-308, 2005.

[9] M. Chiarandini, and T. Stützle, “A landscape analysis for a hybrid
approximate algorithm on a timetabling problem,” TU Darmstadt,
Technical Report AIDA–03–05, 2003.

[10] T.A. Duong, and K.H. Lam, “Combining constraint programming and
simulated annealing on university exam timetabling,” in Proceedings of
International Conference RIVF’04, Hanoi, February 2004, pp. 205–210.

[11] L.T.G Merlot, N. Boland, B.D. Hughes, and P.J. Stuckey, “A hybrid
algorithm for the examination timetabling problem,” in Practice and
Theory of Automated Timetabling IV, Lecture Notes in Computer
Science, vol.2740, ed by E. Burke, and M. Carter, New York: Springer-
Verlag pp. 207-231, 2002.

[12] M. Chiarandini, M. Birattari, K. Socha, and O. Rossi-Doria, “An
effective hybrid algorithm for university course timetabling,” Journal of
Scheduling, vol.9, no.5,pp. 403–432, 2006.

[13] A. Gunawan, K.M. Ng, and K.L. Poh, “A mathematical programming
model for a timetabling problem,” in Proceedings of the International
Conference on Scientific Computing, Nevada, 2006.

[14] A. Gunawan, K.M. Ng, and K.L. Poh, “An improvement heuristic for
the timetabling problem (Accepted for publication),” International
Journal of Computational Science, vol 1,no 2, pp. 162-178, 2007.

[15] S. Kirkpatrick, C.D. Gellatt, and M.P. Vecchi, “Optimization by
simulated annealing,” Science, vol 220, pp. 671-680, 1983.

Aldy Gunawan is currently a Ph.D student of the Department of Industrial
and Systems Engineering, National University of Singapore. He obtained his
M. Sc and M.Eng in Industrial and Systems Engineering from National
University of Singapore. His research interests are in the areas of heuristic and
metaheuristic algorithms, timetabling problem and other combinatorial
optimization problems.

Kien Ming Ng is an assistant professor in the Department of Industrial and
Systems Engineering, National University of Singapore. He obtained his PhD
in Management Science and Engineering from Stanford University. His
research interests are in optimization and numerical algorithms, as well as
operations research applications in logistics.

Kim Leng Poh is currently an associate professor with the Department of
Industrial & Systems Engineering, and the Deputy Director of Temasek
Defense Systems Institute at the National University of Singapore. He
received his PhD in Engineering-Economic Systems from Stanford University.
His current teaching, research and consulting interests include decision
analysis, investments & risk analysis, automated decision making under
uncertainty & resource constraints, and large-scale optimization.

