
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:3, 2016

113

Solving the Set Covering Problem Using the Binary
Cat Swarm Optimization Metaheuristic

Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguı́n

Abstract—In this paper, we present a binary cat swarm
optimization for solving the Set covering problem. The set covering
problem is a well-known NP-hard problem with many practical
applications, including those involving scheduling, production
planning and location problems. Binary cat swarm optimization
is a recent swarm metaheuristic technique based on the behavior
of discrete cats. Domestic cats show the ability to hunt and are
curious about moving objects. The cats have two modes of behavior:
seeking mode and tracing mode. We illustrate this approach with
65 instances of the problem from the OR-Library. Moreover, we
solve this problem with 40 new binarization techniques and we select
the technical with the best results obtained. Finally, we make a
comparison between results obtained in previous studies and the new
binarization technique, that is, with roulette wheel as transfer function
and V3 as discretization technique.

Keywords—Binary cat swarm optimization, set covering problem,
metaheuristic, binarization methods.

I. INTRODUCTION

THE Set Covering Problem (SCP) [15], [14], [26] is a

classic problem that consists in finding a set of solutions

which allow to cover a set of needs at the lowest cost possible.

There are many applications of these kind of problems,

the main ones are: location of services, files selection in a

data bank, simplification of boolean expressions, balancing

production lines, among others.

In the field of optimization, many algorithms have been

developed to solve the SCP. Examples of these optimization

algorithms include: Genetic Algorithm (GA) [25], [1],

Ant Colony Optimization (ACO) [3], [30], Particle Swarm

Optimization (PSO) [14], [16], Firefly Algorithm [17], [18],

Shuffled Frog Leaping [19], and Cultural Algorithms [15] have

been also successfully applied to solve the SCP. Our proposal

of algorithm uses cat behavior to solve optimization problems,

it is called Binary Cat Swarm Optimization (BCSO) [32].

BCSO refers to a serie of heuristic optimization methods

and algorithms based on cat behavior in nature. Cats behave in

two ways: seeking mode and tracing mode. BCSO is based in

CSO [29] algorithm, proposed by Chu and Tsai in 2006 [12].

The difference is that in BCSO the vector position consists of

ones and zeros, instead the real numbers of CSO.

Broderick Crawford is with the Pontificia Universidad Católica de
Valparaı́so, Universidad San Sebastián, and Universidad Central de Chile,
Chile (e-mail: broderick.crawford@ucv.cl).

Ricardo Soto is with the Pontificia Universidad Católica de Valparaı́so,
Universidad Autónoma de Chile, Chile, and Universidad Cientifica del Sur,
Lima, Perú (e-mail: ricardo.soto@ucv.cl).

Natalia Berrios is with the Pontificia Universidad Católica de Valparaı́so,
Chile (e-mail: natalia.berriosp.p@mail.pucv.cl).

Eduardo Olguı́n is with the Universidad San Sebastián, Chile.

This paper is an improvement of previous work [13], this

seeks to get better results for each instace of OR-Library. We

use a new method of setting parameters, which we choose

different parameters for each instances set. Moreover, we

tested 40 new techniques binarization [20], then we analyze

the results to choose the method with which the best results.

To use the binarization technique, we change the technique

usually proposed for tracing mode, and we discover if this

could help to improve results.

This paper is structured as follows: In Section II, a brief

description of what SCP is given. Section III gives: what

BCSO is, the explanation and algorithm of behaviors. In

Section IV, an explanation of how was BCSO used for solving

the SCP is presented. Section V gives an analysis and results

table. Finally, conclusions are given in Section VI.

II. SET COVERING PROBLEM

The SCP [9], [6], [28] can be formally defined as follows.

Let A = (aij) be an m-row, n-column, zero-one matrix. We

say that a column j can cover a row if aij =1. Each column j
is associated with a nonnegative real cost cj . Let I={1,...,m}
and J={1,...,n} be the row set and column set, respectively.

The SCP calls for a minimum cost subset S ⊆ J , such that

each row i ∈ I is covered by at least one column j ∈ S. A

mathematical model for the SCP is

v(SCP)= min
∑
j∈J

cjxj (1)

subject to ∑
j∈J

aijxj ≥ 1, ∀ i ∈ I, (2)

xj ∈ {0, 1}, ∀ j ∈ J (3)

The objective is to minimize the sum of the costs of the

selected columns, where xj = 1 if column j is in the solution,

0 otherwise. The constraints ensure that each row i is covered

by at least one column.

The SCP has been applied to many real world problems

such as crew scheduling [2], location of emergency facilities

[35], production planning in industry [34], vehicle routing

[4], ship scheduling [22], network attack or defense [7],

assembly line balancing [23], traffic assignment in satellite

communication systems [31], simplifying boolean expressions

[8], the calculation of bounds in integer programs [10],

information retrieval [21], political districting [24], stock

cutting, crew scheduling problems in airlines [27] and other

important real life situations. Because it has wide applicability,

we deposit our interest in solving the SCP.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:3, 2016

114

III. BINARY CAT SWARM OPTIMIZATION

Among the known felines, there are about thirty different

species, e.g., lion, tiger, leopard, cat, among others. Though

many have different living environments, cats share similar

behavior patterns.

For wild cats, the hunting skill ensures their food supply and

survival of their species. Feral cats are groups with a mission

to hunt their food. They are very wild feline colonies, ranging

from 2-15 individuals.

Binary Cat Swarm Optimization [32] is an optimization

algorithm that imitates the natural behavior of cats [11], [33].

Cats have curiosity by objects in motion and have a great

hunting ability. It might be thought that cats spend most of

the time resting, but in fact they are constantly alert and

moving slowly. This behavior corresponds to the seeking

mode. Furthermore, when cats detect a prey, they spend lots

of energy because of their fast movements. This behavior

corresponds to the tracing mode. In BCSO these two behaviors

are modeled mathematically to solve complex optimization

problems. Based on all these behaviors we formulate BCSO.

In BCSO, the first decision is the number of cats needed for

each iteration. Each cat, represented by catk, where k ∈ [1, C],
has its own position consisting of M dimensions, which are

composed by ones and zeros. Besides, they have speed for each

dimension d, a flag for indicating if the cat is on seeking mode

or tracing mode and finally a fitness value that is calculated

based on the SCP. The BCSO keeps to search the best solution

until the end of iterations.

In BCSO the bits of the cat positions are xj = 1 if column j
is in the solution, 0 otherwise (1). Cat position represents the

solution of the SCP and the constraint matrix ensure that each

row i is covered by at least one column. Next is described

the BCSO general pseudocode where MR is a percentage that

determine the number of cats that undertake the seeking mode.

Algorithm 1 BCSO()

1: Create C cats;
2: Initialize the cat positions randomly with values between 1 and

0;
3: Initialize velocities and flag of every cat;
4: Set the cats into seeking mode according to MR, and the others

set into tracing mode;
5: Evaluate the cats according to the fitness function;
6: Keep the best cat which has the best fitness value into bestcat

variable;
7: Move the cats according to their flags, if catk is in seeking

mode, apply the cat to the seeking mode process, otherwise
apply it to the tracing mode process. The process steps are
presented above;

8: Re-pick number of cats and set them into tracing mode
according to MR, then set the other cats into seeking mode;

9: Check the termination condition, if satisfied, terminate the
program, and otherwise repeat since step 5;

A. Seeking Mode

This sub-model is used to model the situation of the cat,

which is resting, looking around and seeking the next position

to move to. Seeking mode has essential factors: Probability of

Mutation Operation (PMO); Counts of Dimensions to Change

(CDC), it indicates how many of the dimensions varied;

Seeking Memory Pool (SMP), it is used to define the size

of seeking memory for each cat. SMP indicates the points

explored by the cat, this parameter can be different for different

cats.

The following pseudocode describe cat behavior seeking

mode. In which FSi is the fitness of ith cat and FSb =
FSmax for finding the minimum solution and FSb = FSmin

for finding the maximum solution. To solve the SCP we use

FSb = FSmax.

Algorithm 2 BCSO()

1: Create SMP copies of catk
2: Based on CDC update the position of each copy by randomly

according to PMO
3: Evaluate the fitness of all copies
4: Calculate the selecting probability of each copy according to

(4)
5: Apply roulette wheel to the candidate points and select one
6: Replace the current position with the selected candidate

Pi =
FSi − FSb

FSmax − FSmin
(4)

B. Tracing Mode

Tracing mode is the sub-model for modeling the case of

the cat in tracing targets. In the tracing mode, cats are moving

towards the best target. Once a cat goes into tracing mode,

it moves according to its own velocities for each dimension.

Every cat has two velocity vector are defined as V 1
kd and

V 0
kd. V 0

kd is the probability that the bits of the cat change to

zero and V 1
kd is the probability that bits of cat change to one.

The velocity vector changes its meaning to the probability of

mutation in each dimension of a cat. The tracing mode action

is described in the next pseudocode:

Step1: Calculate d1kd and d0kd where Xbest,d is the d-th

dimension of the best cat, r1 has a random values in the

interval of [0,1] and c1 is a constant which is defined by the

user

if Xbest,d = 1 then d1kd = r1c1 and d0kd = −r1c1
if Xbest,d = 0 then d1kd = −r1c1 and d0kd = r1c1

(5)

Step2: Update process of V 1
kd and V 0

kd are as follows, where

w is the inertia weight and M is the column numbers

V 1
kd = wV 1

kd + d1kd
V 0
kd = wV 0

kd + d0kd
d = 1,...,M (6)

Step3: Calculate the velocity of catk, V
′
kd, according to

V
′
kd =

{
V 1
kd if Xkd = 0

V 0
kd if Xkd = 1

(7)

Step4: Calculate the probability of mutation in each

dimension, this is defined by parameter tkd, tkd takes a value

in the inverval of [0,1]

tkd =
1

1 + e−V
′
kd

(8)

Step5: Based on the value of tkd the new value of each

dimension of cat is update as follows where rand is an

aleatory variable ∈ [0,1]



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:3, 2016

115

Xkd =

{
Xbest,d if rand < tkd

Xkd if tkd < rand
d = 1,...,M (9)

The maximun velocity vector of V
′
kd should be bounded to

a value Vmax. If V
′
kd value becomes higher than Vmax, a new

velocity should be assigned to V
′
kd or the Vmax value.

C. New Binarization Technique

In this work, experiments were performed with 40 different

binarization techniques [20] using 65 OR -Library instances.

A selection of smaller costs obtained is performed for each

instance for get the results of all the experiments. Finally, to

determine the binarization technique with better results, the

technique smallest results obtained by all the instances are

selected. Thus we obtained that roulette wheel in the case of

the discretization method and V3 for transfer function.

The transfer functions define a probability to change an

element of solution from 1 to 0, or vice versa. In this case

we select the transfer function v3 (10).

T(V d
i ) =

∣∣∣∣∣
V d
i√

1 + (V d
i )

2

∣∣∣∣∣ (10)

In addition to the Transfer functions, the discretization

method was selected, Roulette wheel (11).

Roulette :

pi =
fi∑k
j=1 fj

(11)

IV. SOLVING THE SET COVERING PROBLEM

Next is described the Solving SCP pseudocode:

Algorithm 3 Solving SCP ()

1: Initialize parameters in cats;
2: Initialization of cat positions, randomly initialize cat positions

with values between 0 and 1;
3: Initialization of all parameter of BCSO;
4: Evaluation of the fitness of the population. In this case the

fintess function is equal to the objective function of the SCP;
5: Change of the position of the cat. A cat produces a modification

in the position based in one of the behaviors. i.e. seeking mode
or tracing mode;

6: If solution is not feasible then repaired. Eeach row i must be
covered by at least one columns, to choose the missing columns
do: the cost of a column/(number of not covered row that can
cover column j);

7: Eliminate the redundant columns. A redundant column is one
that if removed, the solution remains feasible;

8: Memorize the best found solution. Increase the number of
iterations;

9: Stop the process and show the result if the completion criteria
are met. Completion criteria used in this work are the number
specified maximum of iterations. Otherwise, go to step 3;

A. Parameter Setting

All the algorithms were configured before performing the

experiments. To this end and starting from default values, a

parameter of the algorithm is selected to be turned. Then,

10 independent runs are performed for each configuration of

the parameter. Next, the configuration which provides the best

performance on average is selected. Next, another parameter

is selected so long as all of them are fixed. Table I shows the

range of values considered and the configurations selected.

These values were obtained experimentally.

This procedure was performed for each set of instances,

Table I. In all experiments the BCSO was executed with 1000

iterations. Moreover, the results of the eight different transfer

functions and five discretization techniques were considered

to select the final parameter.

TABLE I
PARAMETER VALUES

Name Parameter Instance Set Selected Range

4, 5 and 6 100
Number A and B 50
of Cats C C and D 30 [10,20,...,1000]

NRE and NRF 25
NRG and NRH 20

4 and 5 0.7
Mixture A and B 0.65

Ratio MR C and D 0.5 [0.1,0.2,..,0.9]
NRE and NRF 0.5
NRG and NRH 0.5

4 and 5 5
Seeking A and B 5

Memory Pool SMP C and D 10 [5,10,...,100]
NRE and NRF 15
NRG and NRH 20

4 and 5 0,97
Probabily A and B 0,93

of Mutation PMO C and D 0,9 [0.10,0.97,...,1.00]
Operation NRE and NRF 1

NRG and NRH 1
4 and 5 0,001

Counts of A and B 0,001
Dimension to CDC C and D 0,002 [0.001,0.01,..,0,9]

Change NRE and NRF 0,002
NRG and NRH 0,01

4 and 5 1
Inertia A and B 1
Weight w C and D 1 [0.1,0.25,..,5]

NRE and NRF 1
NRG and NRH 1

4 and 5 1
A and B 1

Factor c1 c1 C and D 1 [0.1,0.25,..,5]
NRE and NRF 1
NRG and NRH 1

V. RESULTS

The BCSO performance was evaluated experimentally using

65 SCP test instances from the OR-Library of Beasley [5]. The

Table II and III shows the results of the 65 instances. The ZOpt

column reports the optimal value or the best known solution

for each instance. The ZBest and ZAvg columns report the

lowest cost and the average of the best solutions obtained in

30 runs respectively. The quality of a solution is evaluated

in terms of the percentage deviation relative (RPD) of the

solution reached Zb and Zopt (which can be either the optimal

or the best known objective value). RPD was evaluated using

Zb = ZBest.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:3, 2016

116

RPD =

(
Zb − Zopt

Zopt

)
∗ 100 (12)

About the solutions obtained we reach 6 optimum, all in

Table II. The others results are very close to optimum values.

If the best binarization technique was chosen for each set of

instances is very pobable that better results are obtained.

Comparing the RPDBest average of each instances set with

the obtained results in previous work [13], where transfer

function and discretization technique are not used, it can be

seen that in the most of cases the results were improved. In

Table IV the best difference is in instance set with 8,91 RPD,

where Average of the New RPD is 0,82. Other instances set

have a difference between about 3,0 and 7,0 RPD. The bad

result is in the instance set NRF, with -0,12 of difference,

worst results were obtained. The most important thing is that

in most cases the results were improved. This shows that using

the transfer function, discretization technique and use the new

setting parameters achieves better results.

TABLE II
KNOWN OPTIMUM INSTANCES RESULTS

Instance ZOpt ZBest ZAvg RPDBest RPDAvg

SCP 41 429 432 441,6 0,7 2,9
SCP 42 512 516 532,2 0,8 3,9
SCP 43 516 520 554,9 0,8 7,5
SCP 44 494 497 514,5 0,6 4,1
SCP 45 512 515 527 0,6 2,9
SCP 46 560 560 568,7 0,0 1,6
SCP 47 430 434 437,5 0,9 1,7
SCP 48 492 494 518 0,4 5,3
SCP 49 641 658 678,4 2,7 5,7

SCP 410 514 518 526,6 0,8 2,4
SCP 51 253 261 263,3 3,2 3,9
SCP 52 302 303 315,2 0,3 4,4
SCP 53 226 229 235,3 1,3 4,1
SCP 54 242 242 245,7 0,0 1,5
SCP 55 211 216 220,5 2,4 4,4
SCP 56 213 213 224,1 0,0 5,2
SCP 57 293 298 307 1,7 4,7
SCP 58 288 299 307 3,8 6,4
SCP 59 279 280 281,7 0,4 1,0

SCP 510 265 271 275,6 2,3 3,9
SCP 61 138 143 146,9 3,6 6,2
SCP 62 146 146 149,1 0,0 2,1
SCP 63 145 149 152,5 2,8 5,0
SCP 64 131 133 135,2 1,5 3,2
SCP 65 161 164 168,9 1,9 4,8
SCP A1 253 271 275,4 7,1 8,3
SCP A2 252 260 265,3 3,2 5,1
SCP A3 232 235 243,5 1,3 4,9
SCP A4 234 244 246,4 4,3 5,1
SCP A5 236 237 239,2 0,4 1,4
SCP B1 69 71 74,9 2,9 8,3
SCP B2 76 79 85,5 3,9 12,0
SCP B3 80 80 83,2 0,0 4,0
SCP B4 79 81 84,4 2,5 6,7
SCP B5 72 73 73 1,4 1,4
SCP C1 227 231 234,8 1,8 3,4
SCP C2 219 224 230,3 2,3 5,0
SCP C3 243 258 265,6 6,2 8,8
SCP C4 219 233 239,5 6,4 8,8
SCP C5 215 224 228,8 4,2 6,2
SCP D1 60 60 64,6 0,0 7,7
SCP D2 66 69 69,9 4,5 5,7
SCP D3 72 76 78,8 5,6 8,9
SCP D4 62 63 65,7 1,6 5,9
SCP D5 61 63 65,2 3,3 6,7

TABLE III
UNKNOWN OPTIMUM INSTANCES RESULTS

Instance ZOpt ZBest ZAvg RPDBest RPDAvg

SCP NRE1 29 30 30 3,4 3,3
SCP NRE2 30 34 34,5 13,3 13,2
SCP NRE3 27 30 32,8 11,1 19,3
SCP NRE4 28 32 33 14,3 15,6
SCP NRE5 28 30 30 7,1 6,7
SCP NRF1 14 16 17 14,3 18,8
SCP NRF2 15 18 18 20,0 16,7
SCP NRF3 14 17 17 21,4 17,6
SCP NRF4 14 17 17,3 21,4 19,4
SCP NRF5 13 16 16 23,1 18,8
SCP NRG1 176 191 194,1 8,5 9,5
SCP NRG2 154 166 167,7 7,8 8,3
SCP NRG3 166 182 182,5 9,6 9,1
SCP NRG4 168 180 183,2 7,1 8,4
SCP NRG5 168 182 184,7 8,3 9,2
SCP NRH1 63 70 72,6 11,1 13,7
SCP NRH2 63 67 67 6,3 6,0
SCP NRH3 59 66 68,8 11,9 14,8
SCP NRH4 58 66 67,1 13,8 13,8
SCP NRH5 55 61 61 10,9 9,8

TABLE IV
COMPARISON OF NEW AND OLD RPD [13]

Instance Set Avg. New RPD Avg. Old RPD Difference

4 0,82 9,73 8,91
5 1,53 9,11 7,58
6 1,95 6,82 4,87
A 3,26 8,30 5,04
B 2,15 9,62 7,47
C 4,16 11,10 6,94
D 3,00 6,78 3,78

NRE 9,86 9,90 0,04
NRF 20,04 19,92 -0,12
NRG 8,29 9,98 1,69
NRH 10,81 11,48 0,67

VI. CONCLUSIONS

In this paper we use a binary version of cat swarm

optimization, to solve SCP using its column based

representation (binary solutions). In binary discrete

optimization problems the position vector is binary. This

causes significant change in BCSO with respect to CSO

with real numbers. In fact in BCSO in the seeking mode the

slight change in the position takes place by introducing the

mutation operation. The interpretation of velocity vector in

tracing mode also changes to probability of change in each

dimension of position of the cats. The proposed BCSO is

implemented and tested using 65 SCP test instances from the

OR-Library of Beasley.

As can be seen from the results, metaheuristic performs well

in most cases observed according to old RPD works [13]. This

paper has shown that the BCSO is a valid alternative to solve

the SCP. The algorithm performs well regardless of the scale

of the problem. Moreover, it could also better solutions using

different parameter setting for each set of instances.

We can see the premature convergence problem, a typical

problem in metaheuristics, which occurs when the cats quickly

attain to dominate the population, constraining it to converge

to a local optimum. For future works the objective will be

make them highly immune to be trapped in local optima and

thus less vulnerable to premature convergence problem. Thus,



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:10, No:3, 2016

117

we could propose an algorithm that shows improved results in

terms of both computational time and quality of solution.

ACKNOWLEDGMENTS

The author Broderick Crawford is supported by

grant CONICYT/FONDECYT/REGULAR/1140897

and Ricardo Soto is supported by grant

CONICYT/FONDECYT/INICIACION/11130459

REFERENCES

[1] U. Aickelin. An indirect genetic algorithm for set covering problems.
Journal of the Operational Research Society, pages 1118–1126, 2002.

[2] A. I. Ali and H. Thiagarajan. A network relaxation based enumeration
algorithm for set partitioning. European Journal of Operational
Research, 38(1):76–85, 1989.

[3] F. Amini and P. Ghaderi. Hybridization of harmony search and ant
colony optimization for optimal locating of structural dampers. Applied
Soft Computing, pages 2272–2280, 2013.

[4] M. L. Balinski and R. E. Quandt. On an integer program for a delivery
problem. Operations Research, 12(2):300–304, 1964.

[5] J. Beasley. A lagrangian heuristic for set covering problems. Naval
Research Logistics, 37:151–164, 1990.

[6] J. Beasley and K. Jornsten. Enhancing an algorithm for set covering
problems. European Journal of Operational Research, 58(2):293–300,
April 1992.

[7] M. Bellmore and H. D. Ratliff. Optimal defense of multi-commodity
networks. Management Science, 18(4-part-i):B174–B185, 1971.

[8] M. A. Breuer. Simplification of the covering problem with application
to boolean expressions. Journal of the Association for Computing
Machinery, 17(1):166–181, Jan. 1970.

[9] A. Caprara, M. Fischetti, and P. Toth. Algorithms for the set covering
problem. Annals of Operations Research, 98:353–371, 2000.

[10] N. Christofides. Zero-one programming using non-binary tree-search.
Computer Journal, 14(4):418–421, 1971.

[11] S. Chu and P. Tsai. Computational intelligence based on the behavior of
cats. International Journal of Innovative Computing, Information and
Control, pages 163 – 173, 2007.

[12] S. Chu, P. Tsai, and J. Pan. Cat swarm optimization. In Trends
in Artificial Intelligence, pages 854–858. Springer-Verlag, Berlin,
Heidelberg, 2006.

[13] B. Crawford, R. Soto, N. Berrios, F. Johnson, F. Paredes, C. Castro,
and E. Norero. A binary cat swarm optimization algorithm for
the non-unicost set covering problem. Mathematical Problems in
Engineering, 2015(Article ID 578541):1–8, 2015.

[14] B. Crawford, R. Soto, R. Cuesta, and F. Paredes. Application of the
artificial bee colony algorithm for solving the set covering problem.
The Scientific World Journal, 2014(Article ID 189164):1–8, 2014.

[15] B. Crawford, R. Soto, and E. Monfroy. Cultural algorithms for the set
covering problem. In Y. Tan, Y. Shi, and H. Mo, editors, Advances
in Swarm Intelligence, 4th International Conference, volume 7929 of
Lecture Notes in Computer Science, pages 27–34. Springer, Harbin,
China, 2013.

[16] B. Crawford, R. Soto, E. Monfroy, W. Palma, C. Castro, and F. Paredes.
Parameter tuning of a choice-a function based hyperheuristic using
particle swarm optimization. Expert Systems with Applications, pages
1690–1695, 2013.

[17] B. Crawford, R. Soto, M. Olivares-Suárez, W. Palma, F. Paredes,
E. Olguin, and E. Norero. A binary coded firefly algorithm that solves
the set covering problem. volume 17, pages 252–264, 2014.

[18] B. Crawford, R. Soto, M. Olivares-Suárez, and F. Paredes. A binary
firefly algorithm for the set covering problem. In 3rd Computer Science
On-line Conference 2014, Modern Trends and Techniques in Computer
Science, volume 285, pages 65–73. Springer, 2014.

[19] B. Crawford, R. Soto, C. Peña, W. Palma, F. Johnson, and F. Paredes.
Solving the set covering problem with a shuffled frog leaping algorithm.
In N. T. Nguyen, B. Trawinski, and R. Kosala, editors, Intelligent
Information and Database Systems - 7th Asian Conference, volume 9012
of LNCS, pages 41–50, Bali, Indonesia, 2015. Springer.

[20] B. Crawford, R. Soto, M. Riquelme-Leiva, C. Pena, C. Torres-Rojas,
F. Johnson, and F. Paredes. Set covering problem solved by new binary
firefly algorithm. In 10th Iberian Conference on Information Systems
and Technologies, pages 1–4. 2015.

[21] R. H. Day. Letter to the editoron optimal extracting from a multiple file
data storage system: An application of integer programming. Operations
Research, 13(3):482–494, 1965.

[22] M. L. Fisher and M. B. Rosenwein. An interactive optimization system
for bulk-cargo ship scheduling. Naval Research Logistics, 36(1):27–42,
1989.

[23] B. A. Freeman and J. V. Jucker. The line balancing problem. Journal
of Industrial Engineering, 18:361–364, 1967.

[24] R. S. Garfinkel and G. L. Nemhauser. Optimal political
districting by implicit enumeration techniques. Management Science,
16(8):B495–B508, 1970.

[25] D. Goldberg. Real-coded genetic algorithms, virtual alphabets, and
blocking. Complex Systems, pages 139–167, 1990.

[26] D. Gouwanda and S. Ponnambalam. Evolutionary search techniques to
solve set covering problems. World Academy of Science, Engineering
and Technology, 39:20–25, 2008.

[27] E. Housos and T. Elmroth. Automatic optimization of subproblems in
scheduling airline crews. Interfaces, 27(5):68–77, 1997.

[28] L. Lessing, I. Dumitrescu, and T. Stutzle. A comparison between aco
algorithms for the set covering problem. In Ant Colony Optimization
and Swarm Intelligence, pages 1–12. 2004.

[29] G. Panda, P. Pradhan, and B. Majhi. Iir system identification
using cat swarm optimization. Expert Systems with Applications,
38:12671–12683, 2011.

[30] Z. Ren, Z. Feng, L. Ke, and Z. Zhang. New ideas for applying ant
colony optimization to the set covering problem. Computers & Industrial
Engineering, pages 774 – 784, 2010.

[31] C. C. Ribeiro, M. Minoux, and M. C. Penna. An optimal
column-generation-with-ranking algorithm for very large scale set
partitioning problems in traffic assignment. European Journal of
Operational Research, 41(2):232–239, 1989.

[32] Y. Sharafi, M. Khanesar, and M. Teshnehlab. Discrete binary cat swarm
optimization algorithm. Computer, Control and Communication, pages
1–6, 2013.

[33] P. Tsai, J. Pan, S. Chen, and B. Liao. Enhanced parallel cat swarm
optimization based on the taguchi method. Expert Systems with
Applications, 39:6309–6319, 2012.

[34] F. J. Vasko, F. E. Wolf, and K. L. Stott. Optimal selection of ingot sizes
via set covering. Operations Research, 35(3):346–353, June 1987.

[35] W. Walker. Using the set-covering problem to assign fire companies to
fire houses. Operations Research, 22:275–277, 1974.


