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Solving Part Type Selection and Loading Problem in
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Abstract—This paper and its companion (Part 2) deal with
modeling and optimization of two NP-hard problems in production
planning of flexible manufacturing system (FMS), part type selection
problem and loading problem. The part type selection problem and
the loading problem are strongly related and heavily influence the
system’s efficiency and productivity. The complexity of the problems
is harder when flexibilities of operations such as the possibility of
operation processed on alternative machines with alternative tools are
considered. These problems have been modeled and solved
simultaneously by using real coded genetic agorithms (RCGA)
which uses an array of rea numbers as chromosome representation.
These real numbers can be converted into part type sequence and
machines that are used to process the part types. This first part of the
papers focuses on the modeling of the problems and discussing how
the novel chromosome representation can be applied to solve the
problems. The second part will discuss the effectiveness of the
RCGA to solve various test bed problems.

Keywor ds—Flexible manufacturing system, production planning,
part type selection problem, loading problem, real-coded genetic
agorithm

|. INTRODUCTION

APID market changes (changing customer needs), peaks
in demand for product quantity (e.g. new gadgets — tablet
PC, mobile phones, etc.), concerns for product quality, and
requirements to dramatically increase product mix have forced
manufacturing industries to enhance their flexibility. Flexible
manufacturing system (FMS) is designed to cope with these
conditions by using high technologies and automation in
transfer lines which enable factories to reconfigure rapidly to
produce a variety of products by using same resources [1-3].
Due to the high investment required, higher resources
utilization (close to 100%) must be achieved and this issue can
be resolved by establishing a good production planning. This
planning will aso increase productivity by maximizing system
throughput (number of produced part types in each batch) and
enable early return on investment.
The areas of research related with the FM'S can be grouped
into design and operational problem, usually addressed by
using hierarchical approaches[4].
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The design problem focuses on decison of system
specification when the need for automation and flexibility is
started to achieve desired goals. Severa decisions must be
established in this stage such as system hardware and software,
hierarchy of control mechanism, FMS configuration or FMS
type, and determine the range of part types to be produced.
Operationa problem is related with planning, scheduling and
control of FMS [5]-[6]. All the research problemsin FMS can
be described in Figure 1. This paper focuses on the planning
problem.

The planning problem in FMS is related with the
arrangement of parts and technological equipments such as
tools, fixtures and pallets, and the determination of the type
and quantity of the products which are made before starting
production [7]-[8].

operational
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Fig. 1 Research areain FMS

design

The planning problems can be divided into two sub
problems, an aggregate production planning and a short term
planning (or a production planning) [6]. The aggregate
production planning produces a master schedule containing
part mix, production rates and lot sizes. The production
planning gives interface between aggregate production
planning and daily operation of the FMS. There are severa
issues in the production planning stage such as part type
selection problem, machine grouping problem, production
ratio problem, resource allocation problem, and loading
problem [5]-[9].

The part type selection problem and the loading problem are
parts of the production planning problems which are strongly
related and heavily influence the system'’s efficiency [10][11].
The part type selection problem deals with selection of set of
part types (products) which must be produced immediately
from a number of part types as there are different due dates,
limited number of machines, limited tool magazines capacity
of each machine and limited number of tools.

The loading problem is concerned with allocation of
operations for selected part types and loading appropriate tools
to the machines [5]-[12]. Solving part type selection and
machine loading problem simultaneously will produce a better
solution as higher throughput of the FMS is achieved while
keeping the balance of machines’ workload [3].
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Here, the efficient allocation of production resmes will be
achieved.

Solving the part type selection problem and the himec
loading problem simultaneously require a good apphnoto
achieve a good result on reasonable amount of tiBeaetic
algorithms (GAs) are regarded as the powerful neethcsolve
a complex problem with a large search space [13f Gave
an ability to escape from local optima as they @amp
randomly from one sequence to another sequence Thg
power of GAs to solve various complex problems dtérscted
a lot of researchers to do research in this areaveder, a
simple GAs is insufficient to solve any complex lplems in
engineering. A proper representation, developingr@griate
search operators and hybridizing it with other rodthare an
important key for its successful implementation &edoming
challenging tasks [15][16]. In addition, a goodastgy to
avoid premature convergence which produces locamom
solution should be developed [17]. This paper gitsnio
develop a new representation using an array of meaibers
which could produce good solutions efficiently bging
simple genetic operators. The novel proposed chsome
representation is designed to produce only feasblations
which minimize a computational time needed by Gaptish
its population toward feasible search space orirépfeasible
chromosomes.

Il. LITERATURE REVIEW

The part type selection problem and the loadindplgra in
the FMS environments have received significant ntittes
from
Tabucanon, Batanov & Basu [18] used simulationvalieate
the solution of part type selection and loading bpem
produced by batching approach. They
mathematical programming method to maximize thebemof
part types in each batch. Denizell & Sayin [19] eleped a
mathematical programming model to solve the papety
selection problem that considering due dates. Chanyd
Tiwari & Harding [20] addressed the problems byngsa GAs
with chromosome differentiation. A sexual differi@atibn of
the chromosomes was applied to maintain a diversitthe
population and explore the search space extensiVelari et
al. [12] proposed a constraints-based fast simtilaterealing
algorithm to solve a combination of part-type setet and
operation allocation on machines. Their proposegbrghm
which was performed by a combination of a GA and
simulated annealing (SA) had a capability to esdeapa local
optimum and provide good solutions. Biswas & Maltepa
[10] proposed modified particle swarm optimizati®50) to
solve machine loading problems. This algorithmragited to
maintain the balance of the system while regardihg
occurrence of technological constraints such asvadability
of machining time and tool slots.

Ponnambalam & Kiat [21] also used PSO to solve mm&ch
loading problems. This algorithm is equipped witiotlocal
search method to improve the solution quality.

researchers who proposed a various approaches.

formulate

They applied two objectives, minimizing system uahee
and maximizing system throughput, while satisfyitige
technological constraints. Tiwari, Kumar Jha & Bead
Anand [11] developed a combinatorial auction-basedristic
for multi-agent system to solve the problems. Tdpproach
was used to deal with a huge search space of thetype
selection and machine loading problems. Even thalighese
researchers reported promising results, severaplisities
were made to reduce the complexity of the problems.

Part type selection and machine loading are NP-hard
problems [10]. The complexity of the problems isdea when
flexibilities of operations are considered. For repde, each
part has alternative routes (routing flexibilityhish refer to a
possibility of operation is processed on alterratmachines
with alternative tools. For simplicity, Tabucan@®gatanov &
Basu [18] did not consider the routing flexibilitenizell &
Sayin [19] and Pacciarelli [22] considered FMS tbansists
of all general-purpose machines where the funatipnof a
machine is only determined by the set of tools éshih their
tool magazine. Here, each part is only processedonsy
machine. Furthermore, Swarnkar & Tiwari [23], Chbagd,
Tiwari & Harding [20], Biswas & Mahapatra [10],
Ponnambalam & Kiat [21], Prakash et al. [24] andvari,
Kumar Jha & Bardhan Anand [11] did not mention $jiec
tool types and its availability; they only mentiaindae number
of slots needed by the tools. In contrast, thisepansiders
machine and tool flexibility and also limited numbef tool

types.

.
This paper considers a FMS which consists several

PROBLEM DESCRIPTION

computer numerically controlled (CNC) machines pped
with a tool magazine which has limited tool slopaeity. The
grachines can perform different operations when they
equipped with different tools. A limited number tiols are
available and each tool requires a number of sidisn it is
assigned to a machine. When several jobs (pars}yaeive,
the system must select a set of part types whickt rbe
produced immediately as there is a limitation othiaes and
its tool slot capacity and tools availability. Thapproach is
considered as batching approach as all part typeldghbe
grouped into several production batches [18].

Each part type has a production requirement in fofm
sequence of operations. Each operation can be ggedeon
several alternative machines with several alteveatools.
ghis paper also considers unrelated machines agiprobere
time needed for parts’ operations depend on thégreess
machine.

A. Subscripts
p=1,..P part type
0=1,...0 operation of part typp
t=1,...T tool type
m=1,..M machine type
B. Parameters

MS, = tool slot capacity of machima

2013



International Journal of Mechanical, Industrial and Aerospace Sciences
ISSN: 2517-9950
Vol:6, No:9, 2012

TN; = number of tools type o p O, @
TS = number of slots required by tool type Maximize @ _ l M& Z X pom T pom

PS, = batch size of part type pet o=t

PV, = value (price) qf part typg . . Minimize Z \Spm ‘Wm\ (5)
MOP, = set of possible machines on which operatiaf part

typep can be performed .. _ 6
™ o = {l0}3 1 if toolt is required for processing operation Minimize 'mz;l(sam Wm) ©
o of part typep on machinen

Toom = processing time of operatiom of part typep on Maintaining the balance of the system can be aehidw
machinem minimizing system unbalance as expressed in (3yeWg, is

workload of machinem and W is the average machine
workload. Seok Shin, Park & Keun Kim [27] used this
objective function. Another way to minimize systanbalance

C.Decision variables
= {10}' 1 if part typep is selected in the batch

x _={10}: 1 if machinem is selected to process operatiolS by minimizing a maximum machine’s load as in. ()
f length of scheduling period for each machingP,) is
0 of part typep determined in advance and overloading of the mashis

={10}: 1 if tooltis loaded to the machirme allowed, the system unbalance may be expressed 5).i

D.Objectives Mukhopadhyay, l\_/Iidha & Kris_hna [26], Biswgs & Mghama
: [10] used this objective function. However, if oleeding of

A VariOUS ObjeCtives had been ConSidered in thereﬂbes the machines is not a“owed, Equation (6) is ukﬁj’el |ength

such as maximizing system throughput [3][12][14}AB[23-  of scheduling period becomes a maximum machine lwadk

26], maintaining the balance of the systenChoudhary, Tiwari & Harding [20], Biswas & & Mahapa

[3][10][12][14][20][21][23-27], minimizing part mogment [10] used this objective function.

[27], minimizing tool changeovers [27] and mininmgi .

production cost [28]. However, most of referencessidered E. C.onstr.al.nt? ) o

two common objectives, maximizing system throughand ~ VVhile minimizing system unbalance and maximizingtegn

maintaining the balance of the system (minimizingtam throughput, several technological constraints rbiessatisfied

unbalance). System throughput and system unbalemceoe 28 follows:

calculated in different ways as follows:

Op M
1. Maximizing system throughput D X p=1..P (7
p 0=0 m=1
Maximize : > X, (1) szMop =X, p=1.,P 0=1.,0, 8
p=1
; Y, =X ™M .,
L . 2 pom por (9)
Maximize : >’ X PSPV (2 p=1..P 0=1..0, M=1..M t=1.T

p=1

Maximizing system throughput can be achieved by~
maximizing the number of selected part types inhelbatch 4=
which can be expressed as in (1). This objectiveamee 1
minimizing a time lost for tools changeover. Tabuma, ZYm!TSt SMS,=0,X, m=1.,M 11
Batanov & Basu [18], Kumar & Shanker [3] used this © o
objective function. Another way to maximize system i X T <P
throughput is by maximizing the value (price orfifjoor the 4545 ™" ™" "
sum of batch size (if all part types have equatgr profit)
of selected part types in each batch as shown)irk{@nar & Constraint (7) guarantees that if a part type Iscsed, all
Shanker [3], Choudhary, Tiwari & Harding [20], Peak et al. jts operations must be performed. This constraiates that
[24], Ponnambalam & Kiat [21], and Yogeswarangperation assignments are equal to the total dpesat

Yy TN, =0, X, t=1..T (10)

m=1..,M (12)

Ponnambalam & Tiwari [25] used this objective fuoint required.
Constraint (8) states that each operation of ssfegart
2. Maintaining the balance of the system types must be completed on one machine. As there is
S M — possibility of operation can be processed on adtiive
Minimize 12 Mm ‘W‘ machines, the machine must be determined and theatign
m o must be processed by the chosen machine. Consi{@int
where W, z z O (3)  guarantees that if a machine is selected to praresperation

e of a part type, all the tools needed must be loanedhe

(Z ) machine. Constraint (10) ensures that the numbetools
and W =3 _W,)/M loaded to the machines must not exceed its avhilabi
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A smallest position value (SPV) rule is used to pett
types sequence. By sortingn ascending order, we obtain the
sequence of part types that are selected for threrdubatch.

each machineSPy) is determined in advance and overloadingo determine which machines are used to processtyyss’

of the machines is not permitted.

IV. MODELING USINGGA

GAs are general purpose search algorithms whictaiena
natural evolution process. Candidate solutionsrepeesented
by chromosomes which evolve over time (generatitmsugh
reproduction and stochastic selection. Along gdiwra these
chromosomes become better (with higher fithesseyand at
the final generation the best chromosome can beddecas a
near optimum solution [29]. This section describesv real-
coded genetic algorithm is used to solve part typkection
and loading problem.

A. Chromosome representation

A suitable chromosome representation determines
successful implementation of genetic algorithms].[3bhis
paper uses real number representation so GAs wisie$ this
representation can be called real-coded GAs (RCGHW).
chromosome is a vector of real number whose sizeaiise
with the number of part types. This representatisually was
used to solve optimization problems on continuoamains
[31]. However, a simple implementation of its opera
(crossover and mutation) and possibility to decode real
number into several meanings (part type’s indexitnseveral
operations) become the main reason to use thiegeptation
for solving part type selection and loading prohlem

The construction of a chromosome in our RCGA isnsho
in Table I. Each element of the chromosoXw(x,X,,...,Xp)
corresponds to the continuous position valuepfoumber of

part-types. The value of is maintained between 0 and

2 opMaxxhitMac +bitPart

operations, each elementXfs decoded into a binary number.
Suppose part type 8 has 3 operations, operatiomnl be
processed on machines 2 or 3 or 5, operation 2 bEan
processed on machine 1 or 2 or 6 or 7, and oper8tican be
processed on machine 3 or 4. To choose machines fase
processing of operations of part typex8;1654 is converted
into a binary number (11001110110pupposeditMac is 3.
For the first operation, we use 3 bits at the rigide (110)
which is equal to 6. As there are 3 possible mahi=3),
we apply the following formula:
machineindex=6modn+ 1=6mod3+1=1

mod is modulus operator which gives the remainder of a
division. Therefore, the first operation of partpay 8 is

erformed on the first possible machine that ishimeec 2. By
t Sing the next 3 bits and applying the same ruéepbtain that
part type 8 is sequentially processed on machinésad 4.

After determining the machines for operations, el
tools are assigned to the machines. At this stdéiptha
constraints such as availability of tools and engbtys on the
machines are checked. For example, after choosirngtypes
6, 8, 1 and 3 according to the part type sequeachawn in
Table 1, adding part type 5 to the solution violdhe
constraints. Therefore, the chromosome statesahigt part
types 6, 8, 1 and 3 are selected for the curretthband the
objective functions of the problem are calculatebddl on
these selected part types.

Note that the proposed representation produces only
feasible solutions and guarantees that only reduils
assigned to the machines. This effort will mininsiza
computational time which usually needed by GAs tshpits

- opMax is maximum number of operations yopylation toward a feasible search space or reglyatepair

of each part typebitMac is number of bits required to jnfeasible chromosomes [32].

represent a binary number which has largest valfie
maximum number of alternative machines of each aijmen.
For example, the maximum number of alternative rimeshof
each operation is 5. Therefore, the minimum bitpuired to
represent a binary number between 0 and 5 ikitBart is
number of bits required to represent a binary nunvit@ch
has largest value of number of part typgsis stored and
treated as a real number when genetic operatarss@ver and

mutation) are applied.
TABLE |
CHROMOSOMECONSTRUCTION

part type 1 2 3 4 5 6 7
X 2772 7779 5129 7981 6215 977 _ 9960
parttype ¢ 8 1 3 5 2 4
sequence
sotedx 977 1654 2772 5120 6215 7779 7981 9969

However,x will be converted (rounded) to a nearest integerf, =1-

value when decoding operation is performed.

o]
B. Fitness function

The objective functions of the optimization problemast be
converted to a fithess function which is used tcasoee the
goodness of the solution. For example, Equations(2)sed to
measure system throughput, Equation (2) shouldobgerted
into (13) to produce value between 0 and 1.

flz[ixppsppvp]/[ipsppvp] (13)

p=1
Furthermore, Equation (5) is used to measure system
unbalance. Here, length of scheduling period fahaaachine

1654 (SP,) is determined in advance and overloading of the

machines is permitted. Minimizing (5) can be coteg@ras
maximizing (14) as follow:

(14)

M M
(L)L
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Finally, the fitness function can be formulatedakw: offspring pool has probability to be selected adouy to its
fitness value. Here, a cumulative probability iscakated and
Maximize :F =a,f, +a,f (15) a random number is generated to select the chramaso

a,,a,: weigthed parameters 2. Binary tournament selection

C.Initialization of population One chromosome from current population and one
athomosome from offspring pool are randomly chosed

op_size of chromosomes are created as an initi .
Pop_ compared. The best one will be selected.

population. Herey; is generated randomly within its range.
3. Elitist selection
All chromosomes from current population (parentsd a
offspring pool are placed in one pool and sortedoeding
their fithess valuepop_size best chromosomes are selected.

D.Reproduction

On every generation, new chromosomesfsfring) are
produced by using crossover operator and mutatp@ragor.
The number of new chromosomes produced is detedibige
crossover-rate (cr) and mutation-rate (mr) parameters. For 4. Replacement selection

example, if population size ipop_size then there are  Each chromosome in offspring pool will be selected
pop_sizexcr offspring produced by crossover operator angeplace its parent if it has a better fitness vaham its parent.
pop_sizexmr offspring produced by mutation operator for each¥ the child is produced by crossover operator {ising two
generation. Parents for these reproduction operstiare parents) then the child will replaces the worsepar

randomly and uniformly chosen from the population. Note that the binary tournament, elitist and reptaent

This paper uses two crossover methdldg;crossover [33]  selection guarantee that the best chromosome &yalpassed
and extended-intermediate-crossover [34]. Let P:=(p.%....0.")  to the next generation.

and P,=(p%,....p.2) are two selected chromosomes as parents

for crossoverFlat-crossover produces offspring=(o;,...,0,) F.Overall RCGA cycle
by generating a random number on interval pl,....n7%. The overall RCGA cycle is shown as follow:
Extended-intermediate-crossover uses a formula Step 0: Setting GA parameters
o=p+ai(p?-p"), whereq; is randomly generated on interval Parameters: population sipep_size, crossover rate
[-0.25, 1.25]. These crossover methods are randohugen cr, mutation rate mv, maximum number of
in each generation. generationsmax_gen, weighted parametersi( and
Random exchange mutation which is usually applied i o) for fitness function.
permutation representation is used. This mutatiamkss by Stép 1: Initialization
selecting two genes randomly and exchanging thesitions. Let generatiorgen=0.
We also develop mutation method for real number Generatepop_size of random chromosomes.
representation,smple-random-mutation. If P=(p,,...,p,) is SteP 2: Reproduction
selected parent for mutation then offspri@g(oy,...,0,) is Produce pop_sizexcr offspring by using crossover
produced by applying a formula=p+c¢; , where o; is operator - and pop_sizexmr  offspring by using
randomly generated on intervat(.1, 0.1]. These mutation mutation operator.
methods are randomly chosen in each generation. Step 3: Selection
All offspring produced in this stage are placedffspring Selectpop_size chromosomes from population and
pool. offspring pool for the next generation.

Step 4: Legen — gen + 1.

TABLE Il If gen=max_gen go to Step 2, else Stop.
TOOL TYPES AVAILABILITY
tool type 1 2 3 4 5 6 7 8 9 10 TABLE IIl
—— PART TYPE PRODUCTION REQUIREMENT
availability 2 2 2 2 2 3 3 3 3 3 part batch value time
A op mac tools
number of 3 3 4 4 s 5 4 4 3 3 type  size ($) (seconds)
slot neede 1 30 5 1 1 30 1 2 3
2 1 20 4 5
E. Selection 3 20 2 3
Selecti dure i d ize ch 3 3 30 3 4
election proce ure is use to selem_size ¢ romosomes 30 3 1 1 10 1 2
from current population (parents) and offspring Ipdo 2 2 20 3 4
perform the next generation. Four common seleatiethods 2 X 31 31 3;’% % 67 78
will be examined to determine which method is nmstable 3 40 8 9 10
for the RCGA. These selection methods are: 2 2 40 1 10
) 3 30 1 10
1. Roulette wheel selection 3 1 20 1 2
Each chromosome from current population (parents) a 4 30 1 1 23 2300 99 1100
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V.RESULT

A simple problem set is given to demonstrate how th

proposed RCGA solves the problem. There are 3 rdifte
machines which have tool slot capacity of 20, 1% &0
respectively. Length of scheduling period for eachchine
(SP,) is 4000 and overloading of the machines is althwe
Furthermore, as shown in Table 2, there are 10 tymés
where each tool type requires several tool slotsnachines’
magazine.

Eight part types are ready to be produced as showable
3. Each part type has specific production requirgmeFor
example, part type 1 has 3 operations. Operatiarar? be
processed on machine 1 or 3. Machine 1 needs 2Qiunais
for processing and tools 4, 5 are required. Nott the
problem has machine and tool flexibility.

TABLE VI
MACHINES WORKLOAD
number  used tools
mac  workload  unbalance )
of slots slot assigned
1 4200 200 20 10 123
2 3600 400 15 13 345
3 3700 300 20 13 18910
System unbalance 900
16
14 L~ best
f _’ﬂ—-—"'_'_—__
1.2
//average

/[
[

0.8

06

fitness value

04

0.2

] 50 100 150 200 250 300

generation

350 400 450 500

Fig. 2 The best and average fitness value

Crossover rate of 0.3 means that 100x0.3=30 offgpare
produced by crossover operator for each genereionilarly,
mutation rate of 0.1 means that 100x0.1=10 offgprame
produced by mutation operator for each generation.
Replacement selection is used.

By using these parameters, the RCGA produces amapt
solution for the part type selection and loadinghpem in less

As shown in Table 3, maximum number of operatiohs ahan 1 second. The optimum solution is achievedra?3
each part type is 30pMax=3) and maximum number of generations. This optimum solution is checked byngs
alternative machines is 2 that requires 2 bits dobinary branch-and-bound method. The best chromosome ile Bais
number bitMac=2). Number of part types is eight that requiresonverted to determine selected part types ancchissen
4 bits for a binary numbebitPart=4). Therefore, the value of machines for operations as shown in Table 5.
each element of chromosome is maintained betweamd Machines’ workload and tools assigned are shownhaible
23><2+4. 6

Several GAs parameters must be determined in advasc The increase of the best and average fitness vilue
follows: depicted in Figure 2 which shows a fast convergesfcthe

RCGA to optimality.
» Population size is 100.
Crossover rate is 0.3.
Mutation rate is 0.1.
Maximum number of generations is 500.
Weighted parametersy(anda,) are set equal to 1.

VI.

Part type selection and loading problem with fléiibs of
operations have been modeled in this paper. A sippblem
set is given to demonstrate how the proposed RGfbAs the
problem. A novel chromosome representation supgobie

. CONCLUSION

TABLE IV suitable genetic operators enable the RCGA producin
THE BESTCHROMOSOME . Its i bl i
X 793 603 239 1022 344 713 36 226 pr.om|.5|ng results In reasona. e amount o t|mepart.2, we
will discuss about the effectiveness of each genaierator
TABLE V and the quality of the results by using severak tesd
SEQUENCE OFSELECTEDPART TYPES problems.
part type value chosen machines
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