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Solving one-dimensional hyperbolic telegraph
equation using cubic B-spline quasi-interpolation

Marzieh Dosti and Alireza Nazemi

Abstract—In this paper, the telegraph equation is solved numer-
ically by cubic B-spline quasi-interpolation .We obtain the numer-
ical scheme, by using the derivative of the quasi-interpolation to
approximate the spatial derivative of the dependent variable and a
low order forward difference to approximate the temporal derivative
of the dependent variable. The advantage of the resulting scheme is
that the algorithm is very simple so it is very easy to implement. The
results of numerical experiments are presented, and are compared
with analytical solutions by calculating errors L2 and L∞ norms to
confirm the good accuracy of the presented scheme.

Keywords—Cubic B-spline, quasi-interpolation, collocation
method, second-order hyperbolic telegraph equation.

I. INTRODUCTION

WE consider the second-order linear hyperbolic telegraph
equation in one-space dimension, given by

∂2u

∂t2
+ 2α

∂u

∂t
+ β2u =

∂2u

∂x2
+ f(x, t), a ≤ x ≤ b, t ≥ 0, (1)

subject to initial conditions

u(x, 0) = f0(x), a ≤ x ≤ b, (2)

∂u(x, 0)
∂t

= f1(x), a ≤ x ≤ b, (3)

and Dirichlet boundary conditions

u(a, t) = g0(t), u(b, t) = g1(t), t ≥ 0, (4)

where α and β are known constant coefficients. We assume
that f0(x), f1(x) and their derivatives are continuous functions
of x, and gi(t), i = 0, 1, and their derivatives are continuous
functions of t. Both the electric voltage and the current in a
double conductor, satisfy the telegraph equation, where x is
distance and t is time. For α > 0, β = 0 Eq. (1) represents
a damped wave equation and for α > β > 0, it is called
telegraph equation.

The hyperbolic partial differential equations model the
vibrations of structures (e.g. buildings, beams and machines)
and are the basis for fundamental equations of atomic physics.
Equations of the form Eq. (1) arise in the study of propagation
of electrical signals in a cable of transmission line and wave
phenomena. Interaction between convection and diffusion or
reciprocal action of reaction and diffusion describes a number
of nonlinear phenomena in physical, chemical and biological
process [1]-[4]. In fact the telegraph equation is more suitable
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than ordinary diffusion equation in modeling reaction diffu-
sion for such branches of sciences. For example biologists
encounter these equations in the study of pulsate blood flow
in arteries and in one- dimensional random motion of bugs
along a hedge [5]. Also the propagation of acoustic waves in
Darcy-type porous media [6], and parallel flows of viscous
Maxwell fluids [7] are just some of the phenomena governed
[8]-[9] by Eq. (1).

B-spline functions have some attractive properties. Due
to the being piecewise polynomial, they can be integrated
and differentiated easily. Since they have compact support,
numerical methods in which B-spline functions are used as
a basis function [10]-[14] lead to matrix systems including
band matrices. Such systems have solution algorithms with
low computational cost. Therefore spline solutions of partial
differential equations are suggested in many studies. For
instance see [15]-[25].

In this paper, we provide a numerical scheme to solve
hyperbolic telegraph equation equation using the derivative
of the cubic B-spline quasi-interpolation to approximate the
spatial derivative of the differential equations and employ a
first order accurate forward difference for the approach of the
temporal derivative such as [26], [27] shown. Then we do
not require solving any linear system of equation so that we
do not meet the question of the ill-condition of the matrix.
Therefore, we can save the computational time and decrease
the numerical error.

The remainder of paper is organized as follows. In Section
2, the univariate B-spline quasi-interpolants were introduced.
In Section 3, we present the numerical techniques using
cubic B-spline interpolation to solve telegraph equation. To
demonstrate the efficiency of the proposed method, numerical
experiments are carried out for several test problems and
results are given in section 4. Finally, some conclusions are
drawn in Section 5. Note that we have computed the numerical
results by Matlab programming.

II. UNIVARIATE B-SPLINE QUASI-INTERPOLANTS

For I = [a, b], we denote by Sd(Xn) the space of univariate
splines of degree d and Cd−1 on the uniform partition Xn =
{xi = a + ih, i = 0, . . . , n} with the meshlength h = b−a

n ,
where b = xn. Let the B-spline basis of Sd(Xn) be {Bj ; j ∈
J} with J = {1, 2, ..., n + d}, which can be computed by the
de Boor-Cox formula [28].

Using the de Boor-Cox formula [28], for j ∈ J , Bj can be
computed as
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Bj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x−xj)3

(xj+1−xj)(xj+2−xj)(xj+3−xj)
, x ∈ [xj , xj+1),

(x−xj)2(xj+2−x)

(xj+2−xj)(xj+2−xj+1)(xj+3−xj)
(x−xj)(xj+3−x)(x−xj+1)

(xj+3−xj)(xj+3−xj+1)(xj+2−xj+1)

+
(xj+4−x)(x−xj+1)2

(xj+2−xj+1)(xj+3−xj+1)(xj+4−xj+1)
, x ∈ [xj+1, xj+2),

(x−xj)(xj+3−x)2

(xj+3−xj)(xj+3−xj+1)(xj+3−xj+2)

+
(x−xj+1)(xj+4−x)(xj+3−x)

(xj+3−xj+1)(xj+3−xj+2)(xj+4−xj+1)

+
(xj+4−x)2(x−xj+2)

(xj+4−xj+1)(xj+4−xj+2)(xj+3−xj+2)
, x ∈ [xj+2, xj+3),

(xj+4−x)3

(xj+4−xj+1)(xj+4−xj+2)(xj+4−xj+3)
, x ∈ [xj+3, xj+4),

0, otherwise.

With these notations, the support of Bj is supp(Bj) =
[Xj−d−1, Xj ]. As usual, we add multiple knots at the end-
points: a = X−d = X−d+1 = ... = X0 and b = Xn =
Xn+1 = ... = Xn+d.
In [29]-[30], univariate B-spline quasi-interpolants (abbr. QIs)
can be defined as operators of the form

Qdf =
∑
j∈J

μjBj . (5)

We denote by Πd the space of polynomials of total degree
at most d. In general, we impose that Qd is exact on the
space Πd, i.e. Qdp = p for all p ∈ Πd. As a consequence of
this property, the approximation order of Qd is O(hd+1) on
smooth functions. In this paper, the coefficient μj is a linear
combination of discrete values of f at some points in the
neighborhood of supp(Bj) as introduced in [29]-[30].

The main advantage of QIs is that they have a direct
construction without solving any system of linear equations.
Especially, it’s very simple and effective for numerical integra-
tion and differentiation. Moreover, they are local, in the sense
that the value of Qdf(x) depends only on values of f in a
neighborhood of x. Finally, they have a rather small infinity
norm, so they are nearly optimal approximates [30]. Since the
cubic spline has become the most commonly used spline, we
use cubic B-spline quasi-interpolation in this paper.

Let yi = f(xi), i = 0, 1, ..., n. For the cubic B-spline QI

Q3f =
n+3∑
j=1

μj(f)Bj , (6)

the coefficients are listed as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ1(f) = f0,
μ2(f) = 1

18 (7f0 + 18f1 − 9f2 + 2f3),
μj(f) = 1

6 (−fj−3 + 8fj−2 − fj−1), j = 3, ..., n + 1,
μn+2(f) = 1

18 (2fn−3 − 9fn−2 + 18fn−1 + 7fn),
μn+3(f) = fn.

For f ∈ C4(I), we have the error estimate [30]

‖f − Q3f‖∞,Ik
≤ 8

3
d∞,Ik

(f, Π3) for 1 ≤ k ≤ n,

thus

‖f − Q3f‖∞ = O(h4). (7)

Differentiating interpolation polynomials leads to classical
finite differences for the approximate computation of deriva-
tives. Therefore, it seems natural to approximate derivatives
of f by derivatives of Q3f(x) up to the order h3. We can
evaluate the value of f at xi by (Q3f)

′
=

∑n+3
j=1 μj(f)B

′
j ,

and (Q3f)
′′

=
∑n+3

j=1 μj(f)B
′′
j . For j ∈ J , we can compute

B
′
j and B

′′
j by the formula of B-spine’s derivatives [28] as

follows:

B
′
j(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3(x−xj)2

(xj+1−xj)(xj+2−xj)(xj+3−xj)
, x ∈ [xj , xj+1),

2(x−xj)(xj+2−x)−(x−xj)2

(xj+2−xj)(xj+2−xj+1)(xj+3−xj)

+
(x−xj)(xj+3−x)+(x−xj+1)(xj+3+xj−2x)

(xj+3−xj)(xj+3−xj+1)(xj+2−xj+1)

+
−(x−xj+1)2+2(xj+4−x)(x−xj+1)

(xj+2−xj+1)(xj+3−xj+1)(xj+4−xj+1)
, x ∈ [xj+1, xj+2),

(xj+3−x)2−2(x−xj)(xj+3−x)

(xj+3−xj)(xj+3−xj+1)(xj+3−xj+2)

+
(xj+3−2x+xj+1)(xj+4−x)−(x−xj+1)(xj+3−x)

(xj+3−xj+1)(xj+3−xj+2)(xj+4−xj+1)

+
(xj+4−x)2−2(x−xj+2)(xj+4−x)

(xj+4−xj+1)(xj+4−xj+2)(xj+3−xj+2)
, x ∈ [xj+2, xj+3),

(−3xj+4−x)2

(xj+4−xj+1)(xj+4−xj+2)(xj+4−xj+3)
, x ∈ [xj+3, xj+4),

0, otherwise,

and

B
′′
j (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6(x−xj)

(xj+1−xj)(xj+2−xj)(xj+3−xj)
, x ∈ [xj , xj+1),

2(xj+2+2xj−3x)

(xj+2−xj)(xj+2−xj+1)(xj+3−xj)

+
2(xj+3+xj+1+xj−3x)

(xj+3−xj)(xj+3−xj+1)(xj+2−xj+1)

+
2(xj+4+2xj+1−3x)

(xj+2−xj+1)(xj+3−xj+1)(xj+4−xj+1)
, x ∈ [xj+1, xj+2),

−4xj+3−2xj+6x

(xj+3−xj)(xj+3−xj+1)(xj+3−xj+2)

+
−2xj+4−2xj+3−2xj+1+6x

(xj+3−xj+1)(xj+3−xj+2)(xj+4−xj+1)

+
−4xj+4−2xj+2+6x

(xj+4−xj+1)(xj+4−xj+2)(xj+3−xj+2)
, x ∈ [xj+2, xj+3),

6(xj+4−x)

(xj+4−xj+1)(xj+4−xj+2)(xj+4−xj+3)
, x ∈ [xj+3, xj+4),

0, otherwise.

Then we obtain the differential formulas for cubic B-spline
QI as

(Q3f)
′
=

n+3∑
j=1

μj(f)B
′
j , (Q3f)

′′
=

n+3∑
j=1

μj(f)B
′′
j . (8)

III. NUMERICAL SCHEME USING CUBIC B-SPLINE

QUASI-INTERPOLANT

In this section, we give the numerical scheme for solving
telegraph equation (1) based on the cubic B-spline quasi-
interpolant.

Discretizing telegraph equation

Utt + 2αUt + β2U = Uxx + f(x, t), (9)

in time with meshlength Δt, we get

Uk+1
j − 2Uk

j + Uk−1
j

(Δt)2
+ 2α

Uk+1
j − Uk

j

Δt
+ β2Uk

j =

(Uxx)k
j + f(xj , tk). (10)
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TABLE I
RESULTS WITH Δt = 0.001 AND Δx = 0.005 IN EXAMPLE 4.1.

t t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

L∞ 1.8918 × 10−4 3.9943 × 10−4 7.9715 × 10−4 1.8799 × 10−3 8.0113 × 10−3

L2 1.2645 × 10−8 6.2552 × 10−8 2.3523 × 10−7 1.0732 × 10−6 1.771 × 10−5

Fig. 1. Three-dimensional plot, with Δt = 0.001 and Δx = 0.005
in Example 4.1.

We can obtain

(1 + 2αΔt)Uk+1
j = (2 + 2αΔt − β2(Δt)2)Uk

j − Uk−1
j +

(Δt)2(Uxx)k
j + (Δt)2f(xj , tk), (11)

where Uk
j ≈ U(xj , tk). Then, we use the derivatives of the

cubic B-spline quasi-interpolant Q3U(xj , tk) to approximate
(Uxx)k

j . From the initial conditions and boundary conditions
(2)-(4), we can compute the numerical solution of telegraph
Eq. (1) step by step using the B-spline quasi-interpolation
(BSQI for short) scheme (15) and formulas (12).

IV. NUMERICAL EXAMPLES

In this section, some numerical solutions of the telegraph
equation in form Eq.(1) with the initial conditions (2) and (3)
and boundary conditions (4) with the BSQI scheme (15) are
presented. To show the efficiency of the present method for
our problem in comparison with the exact solution, we report
the root mean square error L2 and maximum error L∞ errors:

L2 = |U − UN |2 = h
N∑

j=0

|Uj − (UN )j |2,

L∞ = |U − UN |∞ = max
j

|Uj − (UN )j |.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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10

15

Space(x)

u

Estimated t=0.2
Analytical t=0.2
Estimated t=0.4
Analytical t=0.4
Estimated t=0.6
Analytical t=0.6
Estimated t=0.8
Analytical t=0.8
Estimated t=1
Analytical t=1

Fig. 2. Comparisons between numerical and analytical solutions
of Eq. (1) in t = 0.2s, t = 0.4s, t = 0.6s, t = 0.8s, t = 1s, with
Δt = 0.001 and Δx = 0.005 for Example 4.1.

Example 4.1: In this example, we consider the hyperbolic
telegraph Eq. (1) with α = 10, β = 5, f(x, t) = α(1 +
tan2(x+t

2 )) + β2 tan(x+t
2 ) and 0 ≤ x ≤ 2. The initial

conditions are given by{
u(x, 0) = tan(x

2 ),
ut(x, 0) = 1

2 (1 + tan2(x
2 )),

and the boundary conditions{
u(0, t) = tan( t

2 ),
u(2, t) = tan( 2+t

2 ),

The exact solution of this example [31] is u(x, t) = tan((x+
t)/2). The root-mean-square error L2 and maximum error L∞
are presented in Table 1. The space-time graph of the estimated
solution up to t = 1 is shown in Figure 1. The graph of
analytical and estimated solutions for some different times and
x ∈ [0, 2] is presented in Figure 2. Absolute error between the
numerical and analytical solution is also depicted at different
time in Figure 3.

Example 4.2: Consider the hyperbolic telegraph Eq. (1)
with α = 4, β = 2, f(x, t) = (2 − 2α + β2) exp(−t) sin(x)
and 0 ≤ x ≤ π. The initial conditions are given by{

u(x, 0) = sin(x),
ut(x, 0) = − sin(x),

and the boundary conditions

u(0, t) = u(π, t) = 0, (12)
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TABLE II
RESULTS WITH Δt = 0.001 AND Δx = 0.02 IN EXAMPLE 4.2.

t t = 0.5 t = 1 t = 1.5 t = 1.75 t = 2

L∞ 1.0676 × 10−3 7.1563 × 10−4 4.8126 × 10−4 3.5192 × 10−4 2.8398 × 10−4

L2 2.8450 × 10−7 2.8983 × 10−7 2.5825 × 10−7 2.0892 × 10−7 1.5744 × 10−7

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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Space(x)

A
bs
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ut

e 
er
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r

Absolute error t=0.2
Absolute error t=0.4
Absolute error t=0.6
Absolute error t=0.8
Absolute error t=1

Fig. 3. Absolute error in t = 0.2s, t = 0.4s, t = 0.6s, t = 0.8s, t =
1s, with Δt = 0.001 and Δx = 0.005 for Example 4.1.

The exact solution of this example [31] is u(x, t) =
exp(−t) sin(x). The space-time graph of the numerical so-
lution up to t = 2 is presented in Figure 4. The graph of
analytical and estimated solutions for some different times and
x ∈ [0, π] is presented in Figure 5. The accuracy of the B-
spline method is measured by using the L2 and L∞ errors.
The errors are reported in Table 2. Absolute error between the
numerical and analytical solution is also depicted at different
time in Figure 6.

Example 4.3: Consider Eq. (1) with α = 6, β = 2, 0 ≤
x ≤ 1 and the following conditions:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f0(x) = sin(x),
f1(x) = 0
g0(t) = 0,
g1(t) = cos(t) sin(1),
f(x, t) = −2α sin(t) sin(x) + β2 cos(t) sin(x).

The exact solution of this example [31] is u(x, t) =
cos(t) sin(x). The root-mean-square error and and maximum
error are presented in Table 3, also the space-time graph of the
estimated solution up to t = 1 is presented in Figure 7. The
graph of analytical and estimated solutions for some different
times and x ∈ [0, 1] is presented in Figure 8. Absolute error
between the numerical and analytical solution is also depicted
at different time in Figure 9.

Fig. 4. Three-dimensional plot, with Δt = 0.001 and Δx = 0.02 in
Example 4.2.
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Approximated t=2
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Fig. 5. Comparisons between numerical and analytical solutions
of Eq. (1) in t = 0.4s, t = 0.8s, t = 1.2s, t = 1.6s, t = 2s, with
Δt = 0.001 and Δx = 0.02 for Example 4.2.
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TABLE III
RESULTS WITH Δt = 0.0005 AND Δx = 0.002 IN EXAMPLE 4.3.

t t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

L∞ 3.5005 × 10−5 5.576 × 10−5 6.9334 × 10−4 7.686 × 10−5 7.8908 × 10−5

L2 4.8691 × 10−10 1.4168 × 10−9 2.3128 × 10−9 2.9199 × 10−9 3.1223 × 10−9

0 0.5 1 1.5 2 2.5 3 3.5
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Fig. 6. Absolute error in t = 0.4s, t = 0.8s, t = 1.2s, t = 1.6s, t =
2s, with Δt = 0.001 and Δx = 0.02 for Example 4.2.

Fig. 7. Three-dimensional plot, with Δt = 0.0005 and Δx = 0.002
in Example 4.3.
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Fig. 8. Comparisons between numerical and analytical solutions
of Eq. (1) in t = 0.2s, t = 0.4s, t = 0.6s, t = 0.8s, t = 1s, with
Δt = 0.0005 and Δx = 0.002 for Example 4.3.
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Fig. 9. Absolute error in t = 0.2s, t = 0.4s, t = 0.6s, t = 0.8s, t =
1s, with Δt = 0.0005 and Δx = 0.002 in Example 4.3.
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V. CONCLUSION

In this paper, a numerical treatment for the second-order
hyperbolic telegraph equation is proposed using cubic B-spline
quasi-interpolation.From the numerical results, we can say that
the BSQI scheme is feasible and the error is acceptable. The
numerical solutions are compared with the exact solution by
finding L2 and L∞ errors.The implementation of the present
method is a very easy, acceptable, and valid.
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