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Abstract—A model was constructed to predict the amount of 
solar radiation that will make contact with the surface of the earth in 
a given location an hour into the future. This project was supported 
by the Southern Company to determine at what specific times during 
a given day of the year solar panels could be relied upon to produce 
energy in sufficient quantities. Due to their ability as universal 
function approximators, an artificial neural network was used to 
estimate the nonlinear pattern of solar radiation, which utilized 
measurements of weather conditions collected at the Griffin, Georgia 
weather station as inputs. A number of network configurations and 
training strategies were utilized, though a multilayer perceptron with 
a variety of hidden nodes trained with the resilient propagation 
algorithm consistently yielded the most accurate predictions. In 
addition, a modeled direct normal irradiance field and adjacent 
weather station data were used to bolster prediction accuracy. In later 
trials, the solar radiation field was preprocessed with a discrete 
wavelet transform with the aim of removing noise from the 
measurements. The current model provides predictions of solar 
radiation with a mean square error of 0.0042, though ongoing efforts 
are being made to further improve the model’s accuracy. 
 
Keywords—Artificial Neural Networks, Resilient Propagation, 

I. INTRODUCTION 

HE ability to predict how a quantity will change in the 
future is a valuable ability to have, as doing so can enable 

the interested parties to plan accordingly. For instance, 
accurately predicting how stock prices will evolve can help 
investors to reduce risk in their investments and maximize 
their payoffs. Likewise, predicting commodity prices can help 
businesses know when to purchase certain items in bulk and 
when to avoid purchases. With respect to safety, the prediction 
of natural disasters, such as earthquakes [1] can alert people to 
impending danger such that they can evacuate potentially 
critical areas before the disaster occurs. These examples 
demonstrate how predictive models can be used to improve 
quality of life, but they are only a small sample of the ways in 
which predictive models can be utilized.  

Solar radiation forecasting is a problem within time series 
prediction that has received considerable attention, as such 
predictions can inform the expected yield from crops in a 
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given year or the amount of energy that can be produced from 
a solar panel [2]-[3]. One common model for solar radiation 
prediction is an artificial neural network (for examples, see 
[4]-[6]), as these networks serve as universal function 
approximators [7].Although other models and techniques exist 
for time series prediction such as support vector machines 
(SVM), hidden Markov models (HMM), dynamic Bayesian 
networks (DBN), and autoregressive integrated moving 
average (ARIMA) models, artificial neural networks (ANNs) 
have the advantage of accepting multiple data fields as input, 
rather than being limited to univariate input. Furthermore, 
ANNs are highly customizable in how the network can be 
configured (e.g. how many hidden layers/nodes, feedforward 
vs. recurrent, etc.) and can thus be tailored to a specific 
problem more readily. As solar radiation is influenced by a 
number of environmental and atmospheric conditions, an 
ANN was selected as the most appropriate model for the 
current study. 

Direct normal irradiance (DNI) is the amount of solar 
radiation that will make contact with a given area under 
cloudless sky conditions [8]. As the actual amount of solar 
radiation that is measured locally has been subjected to 
environmental factors (e.g. cloud coverage, atmospheric 
gases) before it is measured, DNI can serve as a point of 
comparison when analyzing solar radiation data. Thus, DNI 
appears to be a useful field to train an artificial neural network 
with for the sake of predicting the actual amount of solar 
radiation, as the two fields should be strongly correlated. The 
present model utilizes a modeled DNI field in conjunction 
with measured solar radiation, in order to predict solar 
radiation one hour into the future. 

Discrete Wavelet Transform (DWT) is a technique 
commonly used for noise reduction in signal processing and 
data compression [9]. The current study treats the solar 
radiation field as a signal and decomposes the signal into an 
orthogonal set of wavelets, then reconstructs the signal with 
the noise removed [10]. Thus, preprocessing the solar 
radiation field with DWT was hypothesized to be an effective 
technique for improving the model’s prediction accuracy. 

In the present study, a model was constructed to predict the 
amount of solar radiation that will make contact with the 
surface of the earth in a given location an hour into the future. 
This study was supported by the Southern Company with the 
idea that the model could be used to determine at what specific 
times during a given day of the year solar panels could be 
relied upon to produce energy in sufficient quantities. An 
artificial neural network was used to approximate the 
nonlinear pattern of solar radiation, which utilized 
measurements of weather conditions collected at the Griffin, 
Georgia weather station as inputs. As shown in Figs. 1 and 2, 
the overall trend of increasing solar radiation through the 

Solar Radiation Time Series Prediction 
Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs 

T

Solar Radiation, Time Series Forecasting. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:5, 2015

1093

 

spring and summer and the decrease starting in the fall is 
present in the solar radiation data from year to year. 
the amount of solar radiation occurring on a given day at a 
given time can vary drastically between years, which prevent
linear approximation techniques from yielding accurate 
predictions. A number of network configurations and training
strategies were utilized, though a multilayer perceptron with a 
variety of hidden nodes trained with the resilient propagation 
algorithm consistently yielded the most accurate predictions. 
In addition, a modeled DNI field and adjacent weather station 
data were used to bolster prediction accuracy
the solar radiation field was preprocessed with a discrete 
wavelet transform with the aim of removing noise from the 
measurements. In sum, the current model provides predictions 
of solar radiation with a mean square error of 0.0042, thou
ongoing efforts are being made to further improve the model’s 
accuracy.  

 

 

Fig. 1 Solar radiation data collected in 15 minute intervals from the 
Griffin, Georgia weather station in 2003

 

Fig. 2 Solar radiation data collected in 15 minute intervals f
Griffin, Georgia weather station in 2013

II. MATERIALS 

Data from the Griffin, Georgia weather station from 2003
2013 were used to build the observations for the input layer to 
the neural network. Observations were collected at 15 minute 
intervals over the duration of each year for a total of 35040 
observations per year. Forty-three data fields were observed, 
though only a subset of these fields was used for solar 
radiation prediction: year, day of year, time of day, air 
temperature (°C), humidity (%), dew point (°C), vapor 
pressure (kPa), barometric pressure (kPa), wind speed (m/s), 
solar radiation (W/m2), total solar radiation (KJ/m2), 
photosynthetically active radiation (umole/m2s), and rainfall 
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(mm). In later models, measurements of solar radiation 
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the neural network, as data field measurements from nearby 
adjacent weather stations have been shown to improve 
performance of solar radiation predictions 

In order to further improve prediction accuracy, values for 
direct normal irradiance (DNI) were modelled for each time 
step. In addition to the observed fields at the Griffin station, 
observations of aerosol optical depth, 
Angstrom's coefficient were taken from AERONET 
(http://aeronet.gsfc.nasa.gov) at the Georgia Tech site, and 
used to calculate DNI across the different DNI models 
implemented. Five separate models were used to calculate the 
DNI field: WGEN [12], Hoogenboom’s
[14], Iqbal’s model [15], and ESRA2 
were selected as they have been 
accurate models for modeling DNI 

III. M

The fields used for prediction of future so
values were first extracted from the raw measurement files 
from the Griffin station. For each value of the extracted fields 
at time step t (with the exception of year, day, and time), 
values from the four previous time steps (
added to the observation file that would serve as input into the 
input layer of the neural network. This is known as the sliding 
window technique and has been shown to significantly 
increase the accuracy of time series predictions with neural 
networks [19]. In addition, delta values were calculated for 
each data field instance by subtracting the previous value from 
the current value, and were added to the observation file as 
well.  

Modeled values of direct normal irradiance (DNI) were then 
calculated and added to the observation file for each time step, 
in addition to their corresponding previous time step and delta 
values. Although each model varied in the measured and 
modeled fields used for calculation of DNI, there were some 
common fields utilized in most or all of the models. The most 
utilized fields in calculating DNI were solar declination angle 
(1), hour angle (2), solar elevation angle (3), zenith angle (4), 
and relative air mass (5), as shown in 
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After the extracted data fields, the modeled DNI values, and 
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In addition to the observed fields at the Griffin station, 

observations of aerosol optical depth, water vapor, and 
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(http://aeronet.gsfc.nasa.gov) at the Georgia Tech site, and 
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Five separate models were used to calculate the 
Hoogenboom’s [13], Yang's model 
and ESRA2 [16], [17]. These models 

were selected as they have been shown to be some of the most 
accurate models for modeling DNI [8], [18]. 

METHODS 

The fields used for prediction of future solar radiation 
values were first extracted from the raw measurement files 

For each value of the extracted fields 
(with the exception of year, day, and time), 

values from the four previous time steps (t-1, t-2, t-3, t-4) were 
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After the extracted data fields, the modeled DNI values, and 
(in later models) the solar radiation values from the 
Williamson station were added to the observation file, each 
value within the file was scaled within a range of 0 to 1 or -1 
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to 1 depending on experiment, in proportion to the minimum 
and maximum values within their respective fields. In the 
most recent prediction models, the scaled values for the solar 
radiation field were extracted from the observation file, 
processed through a discrete wavelet transform (DWT), and 
inserted back into the observation file. The JWave Java library 
was used to perform the DWTs. Haars, Coiflet, Daubechie, 
and Legendre wavelet transforms were performed on the solar 
radiation field in separate trials in 1-D, 2-D, and 3-D. Once the 
solar radiation field was transformed and replaced within the 
observation file, the scaled fields were input into the neural 
network that was implemented using the Encog Java library. 

The Encog Machine Learning Framework available from 
Heaton Research (Encog) was the primary implementation 
platform for this research project. It is an extremely robust 
package for machine learning, providing an extensive library 
of neural network techniques as well as a multitude of variants 
and features for each, from adaptive resonance theory 
networks to Hopfield networks, and backpropagation to 
evolution-based training. Custom development was done using 
the Java programming language. Integrating the solar radiation 
prediction problem into the Encog framework turned out to be 
somewhat more challenging than the Encog documentation 
indicates. However, once the Encog environment was setup, 
changing any of the neural network features was reasonably 
straight forward. For example, changing from resilient 
propagation to backpropagation or vice versa was only a 
matter to changing a few lines of Java code in our custom 
experiment program. Likewise, making changes to the 
network architecture such as number of hidden layers and/or 
number of hidden nodes was a straight forward change, as was 
invoking cross-validation; all features tweaked to improve 
prediction performance. In addition to the Encog package, we 
also investigated using several other packages, namely 
Neuroshell, Neuroph, and Weka. In a nutshell, we found that 
Encog was indeed suited our purposes better than these other 
packages in terms of ease of use, depth of features, and 
compatibility with the solar radiation project (e.g., handling 
very large observations files). 

The primary bottleneck regarding the use of Encog was 
providing the proper observations in the proper manner for 
Encog to use. The process of preparing observations started 
with the raw data records which were manipulated using a 
custom routine that created an initial observations file with the 
specific raw data fields and any supplementary fields needed 
for the current experiment. The observations file was then 
converted to a binary observations file where (1) all field 
values were scaled according to the field minimum and 
maximum values using a custom module (a common and 
recommended practice) and then (2) optimized for fast 
processing using an Encog module. This binary observations 
file was used by Encog to execute the experimental neural 
network configuration. With respect to managing an 
observations file, Encog has special features for allowing the 
user to either fully read in and store the file in main memory, 
or process the observations in a batch fashion (one record at a 
time, and making multiple passes through the file according to 

what the neural network needs). A weakness of several other 
popular machine learning packages is the way they handle 
observations files, and, in particular, the limitations they place 
on the number of observations they were capable of managing. 

One feature of Encog that meshed well with our project 
approach was the ability to develop custom experiment code 
that invoked the main features of Encog. This is due to the fact 
that Encog is itself a large Java program platform. Our 
approach involved four main components. The first was a Java 
program that built the observations file using the raw weather 
data file as input. The next module was a program that 
converted the observations file into the Encog binary file 
format using various Encog binary file creation modules. The 
main model development program came next. It actually 
performed the model development, that is, created and trained 
the neural network using the binary observations file as input 
and our user defined network parameters identified with 
Encog module features that we set for each specific 
experiment. Finally, we developed a program (again 
incorporating Encog module features) that represented the 
operational version of the solar radiation prediction neural 
network. It used the trained neural network from the model 
development process and was intended to make actual, real-
time solar radiation predictions. However, model development 
is the focus of this paper. 

During model development, a number of network 
configurations and training regimes were tested, in addition to 
varying combinations of input fields, in an effort to determine 
the setup that would yield the most accurate solar radiation 
predictions. Trials began with a standard multi-layer 
perceptron (MLP) network configuration with 29 input nodes, 
57 hidden nodes and 1 output node that provided the 
prediction of solar radiation one hour into the future. In 
subsequent trials, the number of hidden nodes was adjusted 
within a range of 17-257 nodes. The initial trials used air 
temperature, humidity, dew point, barometric pressure, wind 
speed, solar radiation, total solar radiation, photosynthetically 
active radiation, and rainfall as the input fields into the neural 
network. In later trials, various combinations of these fields 
were used. Furthermore, the backpropagation algorithm was 
used to train the neural network in the initial trials, but was 
then replaced with the resilient propagation algorithm 
(iRPROP+) [20], [21] which consistently yielded more 
accurate predictions across network configurations.  

As a recurrent neural network is not only dependent on the 
current input as a MLP is, but is also dependent on previous 
inputs stored in the context layer [22], [23], it was 
hypothesized that an Elman network would yield more 
accurate results than a MLP network. An Elman network with 
57 hidden nodes was configured and trained with a hybrid 
strategy of resilient propagation and simulated annealing (SA). 
The following trials replaced simulated annealing with particle 
swarm optimization (PSO) for the training strategy. An 
incremental pruning regime was then implemented which 
tested the mean squared error (MSE) for networks with 
successively larger hidden layers until the addition of hidden 
nodes no longer improved the MSE returned. PSO and SA 
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were then used independently to train the Elman network after 
a hidden layer configuration was determined through 
incremental pruning. 

A series of radial basis function networks (RBFNs) were 
then implemented for solar radiation prediction. The initial 
RBFN was configured with 49 hidden nodes and a Gaussian 
radial basis function. In the trials that followed, the centers 
and widths of the radial basis functions were randomized. 
Subsequent networks used a Mexican Hat radial basis function 
and a hidden layer with hidden nodes within the range of 81-
196. Singular value decomposition (SVD) was then used to 
train a RBFN with 196 hidden nodes. 

The network type was then switched to a support vector 
machine with the same 29 input nodes. After the SVM trials 
were carried out, the model was switched back to a MLP 
neural network with 157-207 hidden nodes and trained with 
the resilient propagation algorithm. Within these trials, 
modeled DNI values and adjacent weather station data were 
included, in addition to solar radiation preprocessing with 
DWT. 

IV. RESULTS 

A MLP network with 157 hidden nodes was consistently 
shown to be the network configuration that yielded the most 
accurate solar radiation predictions. The most accurate model 
achieved an MSE of 0.0042 after 4000 epochs using air 
temperature, humidity, solar radiation (SR), total solar 
radiation (TSR), photosynthetically active radiation (PAR) and 
rainfall as the input fields. See Table III for samples of 
configurations used in the experiments. The network was able 
to attain the same accuracy after the TSR and PAR fields were 
removed. Furthermore, the same network setup with air 
temperature, humidity, SR and DNI (WGEN model) also 
achieved an MSE of 0.0042. These results were obtained 
without preprocessing the SR data through DWT or the 
adjacent weather station data. The greatest accuracy of the 
remaining network configurations, input field combinations, 
and training regimes implemented are summarized in Tables I 
and II. 

 
TABLE I 

FINAL MSE WITHOUT DNI, DWT OR ADJACENT STATIONS 

 
 

# of Hidden 
Nodes 

Training 
Regime 

Epochs MSE Notes 

MLP 57 RPROP/SA 14 0.008 Greedy 

Elman 57 RPROP/SA 250 0.007 Ended 

Elman 57 RPROP/PSO 25 0.012 Ended 

Elman 57 PSO 17 0.06 Ended 

Elman 57 SA 127 0.045 Ended 

Elman 5-75  RPROP, IP 10 epochs 
per node 

0.0125 57 hidden 
nodes  

selected as best 
Elman 57 RPROP 200 0.01 Ended 

RBF 49 RPROP 418 0.0115 Gaussian 

RBF 81 RPROP 243 0.0078 Mex. Hat 

RBF 196 RPROP 716 0.00616 Mex. Hat 

RBF 196 SVD 1 0.0727 Stagnant 

SVM - - 1 0.0065 Stagnant 

 

TABLE II 
FINAL MSE USING DNI, ADJACENT STATIONS & DWT 

Net 
Type 

# of Hidden 
Nodes 

Training 
Regime 

Epoch MSE Notes 

MLP 157 RPROP 2600 0.0043 AT, H, SR,DNI 
(WGEN) 

MLP 157 RPROP 2540 0.0047 AT, H, SR, DNI 
(Hoogenboom) 

MLP 157 RPROP 3104 0.0043 AT,H,SR,DNI (Yang) 

MLP 207 RPROP 1932 0.0044 A,H,SR, AWS 

MLP 207 RPROP 2500 0.0043 All, AWS,DNI (Iqbal) 

MLP 207 RPROP 3600 0.0048 All, AWS, DNI 
(ESRA2) 

MLP 207 RPROP 3510 0.0043 Same w/DWT (D2) 

MLP 207 RPROP 255 0.0051 Same w/DWT (H2) 

 
All trials shown in Tables I and II use air temperature, 

humidity, solar radiation and rainfall as their input fields 
unless otherwise specified. It is important to note that the trials 
represented in Tables I and II were the best results for their 
respective configurations; trials with less accurate results have 
not been shown. Trials involving a greedy strategy halted 
before the network could achieve a lower MSE, so this 
strategy was abandoned in subsequent trials. Simulated 
annealing and particle swarm optimization strategies were 
relatively slow to train the networks they were used upon and 
would often halt before the network had completed training. 
The incremental pruning regime selected 57 hidden nodes as 
the configuration that produced the lowest MSE within a range 
of 5-75 hidden nodes. A larger range of hidden nodes was not 
tested, nor was incremental pruning implemented on a MLP. 
Moreover, the application of a support vector machine (SVM) 
showed promise by obtaining an MSE of 0.0065 after 1 epoch, 
but remained stagnant in subsequent epochs. 

 
TABLE III 

FINAL MSE FOR 1-HR PREDICTIONS USING VARYING INPUT FIELDS 
Trial A B C D E F G H I J K 

Input Fields 

Day x x x x x x x x x x x 

Time x x x x x x x x x x x 

Air Temp.  x          

Humid.      x    x  

Dew Point     x       

Baro.Press.       x     

Wind Speed        x    

SR x x x x x x x x x x x 

TSR    x       x 

PAR         x  x 

Rainfall   x       x  

Prev. & Delta (4 hrs) 

Air Temp.  x          

Humid.      x    x  

Dew Point     x       

Baro. Press.       x     

Wind Speed        x    

SR x x x x x x x x x x x 

TSR    x       x 

PAR         x  x 

Rainfall   x       x  

Best MSE (1x10-3) 4.3 4.3 4.4 4.5 4.5 4.5 4.6 4.8 5.7 4.4 5 
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Although the five models of DNI performed relatively the 
same, the WGEN consistently helped the prediction model 
attain a slightly lower MSE than the other models. Contrary to 
findings by [11], the addition of adjacent weather station SR 
data did not improve prediction accuracy. Likewise, 
preprocessing the SR data with a DWT did not improve 
prediction accuracy, and in some cases, hampered it. Trials 
where SR data were preprocessed with Coiflet and Legendre 
wavelet transforms are not shown, as the resulting MSE was 
not within an admissible range. Tables III and IV demonstrate 
the final MSEs obtained with various input parameters (e.g. 
rainfall, humidity, temperature, etc).  

 
TABLE IV 

FINAL MSE FOR 1-HR PREDICTIONS USING VARYING INPUT FIELDS 
Trial L M N O P Q R S T U V 

Input Fields 

Day x x x x x x x x x x x 

Time x x x x x x x x x x x 

Air Temp. x   x   x  x  x 

Humid. x  x  x x x  x  x 

Dew Point           x 

Baro.Press.       x    x 

Wind Speed        x   x 

SR x x x x x x x x x x x 

TSR  x  x x x  x x x x 

PAR  x x x x   x  x x 

Rainfall x x x   x x x x x x 

Prev. & Delta (4 hrs) 

Air Temp. x   x   x  x  x 

Humid. x  x  x x x  x x x 

Dew Point           x 

Baro. Press.       x    x 

Wind Speed        x   x 

SR x x x x x x x x x x x 

TSR  x  x x x  x x x x 

PAR  x x x x   x  x x 

Rainfall x x x   x x x x x x 

Best MSE 
(1x10-3) 

4.2 4.9 5 5.2 5.4 6 4.3 4.5 6.2 4.2 4.6 

V. CONCLUSION 

The results of the trials summarized in Tables I-IV suggest 
that the current air temperature, humidity, and solar radiation 
are the most vital inputs for accurately predicting solar 
radiation an hour into the future. This finding is intuitive, as 
the amount of water molecules suspended in the air influences 
the solar radiation that makes contact with the surface of the 
earth, and air temperature is an indication of the amount of 
solar radiation that has done so. Rainfall and DNI also serve as 
accurate predictors of solar radiation, though using both of 
these fields in combination did not appear to improve accuracy 
any more than using either field in isolation.  

The MLP network with 157+ hidden nodes consistently 
yielded the most accurate predictions, despite other studies 
which have had success with recurrent networks [23], RBFNs 
[24], and SVMs [25], [26]. Likewise, the resilient propagation 
algorithm produced the most accurate predictions across trials, 
in comparison to the other training strategies implemented. 

Despite the success of this network configuration and training 
regime in regularly attaining an MSE below 0.0044, the 
addition of modeled DNI, adjacent weather station data, and 
preprocessing with DWT did not improve prediction accuracy, 
despite success demonstrated with these techniques within the 
time series literature [12], [8], [10], [27]. These findings 
suggest that either an MSE of 0.0042 is the limit for the most 
accuracy that can be attained with this particular data set, or 
that a (radically) different approach must be used for 
predicting hourly solar radiation. 

Despite the breadth and diversity of the network 
configurations, input fields, and training strategies used in this 
study, there are still a number of approaches that may be taken 
in the future in an attempt to improve prediction accuracy. For 
one, other measures of error such as mean absolute error 
(MAE) and mean absolute percentage error (MAPE) may be 
used to determine whether models with similar MSE differ on 
these measures. Second, an autoregressive integrated moving 
average (ARIMA) and artificial neural network hybrid model 
may be implemented, as such models demonstrated accurate 
predictions in a number of other time series prediction 
problems [29], such as the British pound/US dollar exchange 
rate [28], sunspot appearance [31], and water quality [30], 
Third, the equations used to calculate the modeled DNI value 
could be adjusted to better fit solar radiation prediction. 
Fourth, the current model could be tested with data from other 
weather stations, in order to determine how its predictions 
generalize to other geographic regions. In conclusion, 
although the accuracy of the model was not improved beyond 
an MSE of 0.0042, the model remains more accurate than 
most models of solar radiation currently found within the 
literature.  
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