
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1011

Abstract—Software applications have become crucial for the

aerospace industry, providing a wide range of functionalities and
capabilities. However, due to the considerable time difference
between aircraft and software life cycles, obsolescence has turned
into a major challenge for industry in last decades. This paper aims to
provide a view on the different causes of software obsolescence
within aerospace industry, as well as a perception on the importance
of each of them. The key research question addressed is what drives
software obsolescence in the aerospace industry, managing large
software application portfolios. This question has been addressed by
conducting firstly an in depth review of current literature and
secondly by arranging an industry workshop with professionals from
aerospace and consulting companies. The result is a set of drivers of
software obsolescence, distributed among three different
environments and several domains. By incorporating monitoring
methodologies to assess those software obsolescence drivers, benefits
in maintenance efforts and operations disruption avoidance are
expected.

Keywords—Aerospace industry, obsolescence drivers, software
lifecycle, software obsolescence.

I. BACKGROUND

EROSPACE product development has traditionally been
on the frontline of technological advancement. During

the last decade, aerospace companies started to adopt and
benefit from the IT revolution in order to boost innovation in
design, manufacturing, and support. As a result, software is
increasing its weight in aerospace, providing unique
capabilities which are now critical to the industry. This has
resulted, however, in complex data structures, with diverse
data formats and coming from a wide range of software
applications.

In aerospace, the lifecycle of the products can comprise
many decades, even being extended further on time if given
the necessary conditions [1]. Due to the high costs and long
life times associated with technology insertion and design
refresh, aircrafts tend to fall behind the technology wave [2],
[3]. As such, one critical issue aircrafts will face during its
lifecycle is obsolescence [4]. This is especially noticeable in

Raúl González Muñoz and Paul Baguley are with the Department of

Manufacturing, School of Aerospace, Transport and Manufacturing, Cranfield
University, Cranfield, Bedfordshire, MK43 0AL, United Kingdom.

Essam Shehab is with the Department of Manufacturing, School of
Aerospace, Transport and Manufacturing, Cranfield University, Cranfield,
Bedfordshire, MK43 0AL, United Kingdom (corresponding author, phone:
+44 79 50554 084, e-mail: e.shehab@cranfield.ac.uk).

Martin Weinitzke is with the Airbus Operations, Hamburg, 21129,
Germany.

Chris Fowler is with the Airbus Operations, Filton-Bristol, BS34 7PA,
United Kingdom.

the case of software, as can be seen in Fig. 1.
Regarding software obsolescence, some people would argue

that software applications cannot become obsolete as they are
not affected by degradation (and hence do not require
replacement) and can be easily replicated. Their
misunderstanding is to try to employ the same reasoning to
software obsolescence as to mechanical or electrical
component obsolescence. It is required to comprehend the
different nature of the software obsolescence issue. The
significance of obsolescence is that it prevents from
maintaining and supporting the system, hence creating a risk
of disruption on the operations [5]. This issue is especially
critical due to the number of processes, data, and people which
depend entirely on software with a shorter lifecycle to
continue business operations, as seen in Fig. 2. Furthermore,
due to the long certification processes in aerospace, there is
the need to maintain data usable for long periods of time,
adding an additional challenge [6].

Fig. 1 Component technology, airplane, and computer lifetimes [4]

During the last years, several researchers have recognized
the criticality of software obsolescence, especially regarding
COTS software [7], [8], defense and aerospace [5], as well as
other long-life assets [9]. British Standards Institute (BSI) and
The Institute of Obsolescence Management (IIOM) have also
played a key role, remarking the importance of this topic and
publishing about it [10], [11]. Finally, it is especially
remarkable to mention the last publications on the topic,
considering new aspects such as employee skills and its
impact on software obsolescence [12].

II. RESEARCH METHODOLOGY

The research methodology involved three main phases, as
illustrated in Fig. 3.

Software Obsolescence Drivers in Aerospace: An
Industry Analysis

Raúl González Muñoz, Essam Shehab, Martin Weinitzke, Chris Fowler, Paul Baguley

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1012

Fig. 2 Blocks certification stack [6]

Fig. 3 Schematic depiction of the research methodology

The initial phase focused in literature review within the
fields of obsolescence, software obsolescence, and data
management. Thanks to this analysis of the state of-the-art, a
starting point in the research was established. At the same
time, a review of the previous research was conducted [13],
with the aim of providing a baseline together with the
literature.

The second phase involved an industry workshop with
professionals from the aerospace industry, as seen in Table I.
The workshop was arranged in two main sessions, a
background presentation and the group work, with a total
duration of seven hours.

The structure of the event was the following one:
 Topic background: A general introduction to the field of

software obsolescence was presented to the participants
 The participants asked questions regarding the

presentation
 The participants were divided into four groups and a

framework was provided to them in order to brainstorm
and place software obsolescence drivers within it. The
groups were created in advance in order to ensure
diversity of opinion and wide range of experience

 The discussions within each of the groups were captured
for future reference

 The drivers were then presented by each of the groups and
the results were shared with the rest of participants

TABLE I

WORKSHOP PARTICIPANTS

Participants Experience Role

Participant 1 29 years Design Process Architect

Participant 2 6 years DES Fellow/Senior IOH Estimator

Participant 3 7 years Obsolescence Management Team

Participant 4 37 years Senior Advisor Asset Management

Participant 5 25 years Academic Reader

Participant 6 30 years CTO

Participant 7 4 years Project Leader

Participant 8 26 years Engineering Computing Specialist

Participant 9 14 years Chief of Design Technology

Participant 10 16 years Obsolescence Manager

Participant 11 13 years Senior Software Engineer

Participant 12 5 years
Application Services Portfolio

Manager

Participant 13 30 years
Application Services Portfolio

Manager
Participant 14 30 years Consultant

Participant 15 37 years Head of Application Management

Participant 16 37 years Global IT Director

Participant 17 10 years Director

Participant 18 10 years Team Leader

Participant 19 22 years Software Specialist

The third and final phase concerned the analysis of the

workshop results, comparing the outcome of each of the
groups with previous research and existing literature. The final
deliverables were an improved software obsolescence map,
with a set of drivers distributed in several environments and
domains, and a ranking of each of the drivers based on the
participant’s perceptions.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1013

A. Industry Participants

For this paper, an industry workshop with 19 participants
from the aerospace industry and services related has been
conducted. The profile of the different participants that were
involved can be seen in Table I.

The sample of participants, even taking into account its
variability in terms of experience, can be divided mainly into
two main types:
 IT experts
 Obsolescence experts

The main reason for selecting these two profiles is that, due
to its novelty, there are not many experts in software
obsolescence specifically, hence the combination of these two
profiles guarantees a good mix of expertise to fit the case.
Furthermore, it was ensured that all participants had links with

the aerospace field, to guarantee a good understanding of the
topic by the participants when applied to this industry.

III. SOFTWARE OBSOLESCENCE DRIVERS

Making use of the information gathered, from existing
literature, previous research, and the workshop outcomes, a
software obsolescence map was developed, with a total of 25
drivers. The aim was to validate and improve previously
identified obsolescence drivers with the perspective of
industry professionals from a range of companies, providing a
clear view of the software obsolescence environment and its
causes. This map is illustrated in Fig. 4 and comprises three
main areas: global constraints, development environment and
operative environment.

Fig. 4 Software obsolescence map

The operative environment is where the software
applications are being used, providing service. The
applications are grouped in a portfolio by the target company;
hence the company is managing and making use of the
applications. Within that portfolio, three main types of
software can be found, namely COTS software, in-house
developed software, and customised COTS software. In this
environment, the main domain is the target company. Target
company is the organisation using the applications to develop,
support, and/or provide a range of services to the business.
These services may vary substantially in nature and criticality,

but the trend for the last decades has been to increasingly relay
in software applications to perform activities previously
manual. Within this domain, there can be found seven drivers
of obsolescence, common to all the application portfolio.
 User skills: It refers to the skills and knowledge to

properly use and support the applications. Without the
proper set of skills, especially when no user
documentation is available, it may be impossible for a
company to make use of the software.

 Interacting software: It concerns the other software. The
application interacts with during its usage, encompassing

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1014

applications, middleware and operative systems.
Obsolescence in those interacting pieces of software can
cause the application to become obsolete as well, creating
the risk of cascade effects within the software application
portfolio.

 Interacting hardware: It represents the hardware that
supports certain software. The incapacity of maintaining it
may make the supported software obsolete as well. The
detailed analysis of this driver can grow in complexity
quickly, as hardware obsolescence it is a field of study by
its own, with specific drivers and metrics

 Format, media, and storage: It regards the data formats,
way of storage and documentation associated. Aircrafts
have a long lifecycle, and during all this time span, all the
original data need to be accessible, in order to be able to
support the aircraft during its operational life and to be
responsive to external requirements.

 Ecosystem compatibility: It concerns the compatibility of
each of the applications with the whole environment of
the target company domain. This encompasses a wide
range of business assets and processes.

 Business requirements: It refers to both, functional and
non-functional:

○ Functions of a system or its components. A function is
described as a set of inputs, the behaviour, and outputs. It
may be calculations, technical details, data manipulation
and processing and other specific functionality that define
what a software application is supposed to accomplish.
These required functions are dictated by the target
company and an eventual mismatch between business
required functions and functions provided by the
application can render the software obsolete.

○ Requirements that specify criteria that can be used to
judge the operation of a system, rather than specific
behaviours. While functional requirements define what a
system is supposed to do, non-functional requirements
define how a system is supposed to be, defining an overall
property of the system as a whole or of a particular aspect
and not a specific function. These requirements are
dictated by the target company, and an eventual mismatch
between them and the ones provided by the application
can render the software obsolete.

 User documentation: It involves the documentation that
describes each feature of the software application, and
assists the user in realising these features. It is very
important for user documents to not be confusing, and for
them to be up to date, as well as to have a thorough index.
Consistency and simplicity are also very valuable. The
lack of proper user documentation can turn a piece of
software obsolete, as it may be not possible for the
business to support or make use of the application without
it in the long run.

The other domain within the operative environment is the
in-house developer domain. The in-house developer is the
domain within the target company in charge of developing
new software from scratch or to customise existing cots in
order to satisfy the functional requirements of the business. It

lays between the operative environment and the development
environment, as it is actively involved in both development
and usage of the software within the target company. There
are four drivers in this domain.
 In-house developer skills: It refers to the skills of the

target company developer to develop and maintain in-
house developed applications, as well as customised
COTS.

 COTS used for development: This driver is completely
dependent on the software supplier domain. Its existence
serves the purpose of reminding the dependency of a
target company from COTS software regarding also its
own developed software.

 Development documentation: It relates to both technical
and architecture/design documentation.

○ Architecture/Design documentation: General view of the
software. It shows the structure of software, comprising
its components and the relationships among them

○ Technical documentation: Documentation regarding
interfaces, application programming interfaces (APIs),
algorithms and the code

 Customised COTS: It concerns those COTS that have a
customisation implemented, either by the original
developer, a third party or the target company itself.
These customisations often become a trigger for
obsolescence, as the support of them is not guaranteed by
the original COTS developer, being up to the target
company to implement updates and/or modifications into
the software (incurring in much higher maintenance/
upgrade costs)

The development environment is where the software
applications are developed, maintained, and improved. it
encompasses mainly two different domains, the software
supplier domain and the third party support domain.

The software supplier refers to the original developer and
seller of the COTS software, as well as its customisations in
some cases. Within its domain, four different obsolescence
drivers can be found.
 Official updates and support: The lack of updates and

support from the original developer may be as well a
cause of obsolescence, as even with a third party support,
the access to a certain tools or the code may not be
possible without the original supplier

 Supplier strategy/release policy: It concerns the planning
of the software supplier in terms of expected time of
support for each software product and release time of new
versions of that software. The release of new versions of
software can produce obsolescence, depending on the
support policy, the new formats and the existing
infrastructure.

 Development platform: it refers to the technologies used
to create a software application and to implement
modifications, fixes and support. It encompasses mainly
languages, but all aspects of integrated development
environment are included. The disruption of these tools
and technology by the community/industry may render
obsolete the applications developed with them.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1015

 Software scalability: It regards the capabilities of a
software application to be deployed in diverse locations,
supporting several languages, an increasing number of
users and bearing additional features if required. The
inability to meet the scalability requirements may render
an application obsolete from the point of view of the
business.

The third party support refers to the contractor the target
company hires to provide support in activities related to the
management of the application portfolio. It may be the
original developer of the software, or it may not. Under its
domain, three different drivers can be found.
 Contracting mechanisms: Depending on the

characteristics of the agreement between the target
company and the third party support, issues may rise in
the future and be a cause of obsolescence. This refers
mainly to the lack of support during a period of time
which is not considered initially, or unexpected situations
which are not considered in the original agreement terms.

 Support documentation: It relates mainly to the
documentation focused in the system administrator tasks
and responsibilities, as well as support staff information in
a lesser extent. If the third party also performs
modifications and fixes, technical and architecture/design
documentation would be encompassed as well. The
omission of these documents may translate into great
difficulties to manage and support properly the software
application.

 Qualifications/Skills: It refers to the work skills and
industry qualifications required to support and maintain
the software applications. If the third party support has
problems locating and keeping professionals with the
required set of competencies, this situation may evolve
into obsolescence, due to the inability of providing proper
support to the applications.

Global constraints refer to the different drivers that act over
the industry environment and that are completely external to
the organizations. They have a wide scope and involve all the
companies within an industry field.
 Industry standards: Changing standards within a specific

industry field may cause obsolescence in software, as
some of the applications may not be aligned with the new
requirements.

 Industry legislation: Changes in regulatory laws and
policies can turn software applications obsolete, usually
because of a mismatch with the new requirements.

 Market skills pool and educational programs:
Obsolescence can come from the degree of availability of
professionals with certain skills. This availability comes
from different factors, mainly the current content of
educational programs. For example, certain code
languages are not being taught anymore, but there are still
a lot of applications, built in those languages, operating
nowadays

 Availability of hardware required for specific software:
Certain software requires specific hardware to work.
Hence, the availability of this hardware in the market is

important, due to the dependency relation. The stop of
official production can be mitigated with alternative and
second-hand markets, but it is still just a mitigation, not a
long-term solution.

 Availability of software alternatives: The degree of
availability of software alternatives for certain functions
can be a key driver for obsolescence. The lack of
availability of software alternatives may cause
obsolescence and/or make it worse, if the original
software becomes obsolete for any reason.

 Technology wave: Progress in technology, also called
Technology Life Cycle (TLC) or S-curve Innovation, can
be a reason for a specific software or group of
applications sharing common features or tools to become
obsolete

 Asset life cycle (manufactured product): The difference in
time span between the asset produced and the software
used to create and support production/operation of that
asset can render applications obsolete, as usually software
life cycle is rather short in comparison to some complex
assets (aircrafts, ships, trains, nuclear facilities, etc.)

Fig. 5 Driver frequency during the workshop

The capability of the target company to act over

obsolescence events will depend on the environment and
domain. Hence, the target company will have control of its
own domain, monitoring and acting over the obsolescence
drivers. This includes the in-house developer domain, as it is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:9, 2017

1016

within the target company. However, this capability will be
reduced in the domains of the software supplier and the third
party support, as it will depend on the agreements in place
between all the parts. Finally, in the case of global constraints,
the target company is able just to adapt to the changes, being
unable to act proactively.

IV. DRIVER RANKING

During the industry workshop, the discussions within each
of the groups were captured. As a result, it is worth providing
an analysis. Such analysis is shown in Fig. 5. As it can be
easily observed, the most mentioned driver was technology
wave. This is likely due to the general understanding that
technology evolves through time, affecting all industries.

Industry standards, availability of hardware and business
requirements were also mentioned with high frequency, based
on the professional experience of the participants.

Lastly, it seems to be an interesting fact that skills-related
drivers were not mentioned much, possibly due to the novelty
of this research area within software obsolescence [12].

V. CONCLUSIONS AND FURTHER WORK

Software obsolescence is one of the key challenges
currently in the aerospace industry, fueled by longer aircraft
life cycles and shorter software time support. With the
increasing trend towards digitalisation in the aerospace
industry, it is expected that this matter will steadily increase in
criticality. As such, it has become important to develop new
methodologies and techniques to manage software life cycle
through time.

In the present paper, a software obsolescence map has been
developed, with the aim of identifying the scope and drivers of
the software obsolescence landscape in aerospace. This will
help both industry and academia to understand the nature of
software obsolescence within the aerospace field.

Future research in the area should involve the development
of metrics based in those obsolescence drivers. This will
enable the creation of monitoring strategies to manage
software life cycle, mitigating obsolescence and avoiding
business disruption.

ACKNOWLEDGMENT

This research project is funded by Airbus and Cranfield
University. The author would like to gratefully acknowledge
the support and assistance of Airbus as well as the
contribution of participants from several aerospace
organisations during the research.

REFERENCES
[1] Livingston, H. (2000). GEB1: Diminishing Manufacturing Sources and

Material Shortages (DMSMS) Management Practices. Proceedings of
the 2000 DMSMS Conference, Jacksonville, Florida, 21-25 August.

[2] Sandborn, P., Mauro, F. and Knox, R., 2007, A data mining based
approach to electronic part obsolescence forecasting, IEEE Transactions
on Components and Packaging Technologies, 30; 3; 397-401.

[3] Madisetti, V., Jung, Y., Khan, M., Kim, J. and Finnessy, T., 2000. On
upgrading legacy electronics systems: methodology, enabling
technologies and tools, VHDL International Users Forum Fall

Workshop, 2000. Proceedings, Orlando, FL, USA, 18-20 Oct.: 7-14.
[4] Condra L (1999) Combating electronic component obsolescence by

using common processes for defense and commercial aerospace
electronics. IECQ-CMC Avionics Working Group1, NDIA, September
1997.

[5] Romero Rojo, F. J., Roy, R., Shehab, E., Cheruvu, K., Blackman, I. and
Rumney, G. A., Key Challenges in Managing Software Obsolescence
for Industrial Product-Service Systems (IPS2). The 2nd CIRP Industrial
Product-Service Systems Conference, Sweden, 14th–15th April 2010.

[6] AIRBUS Long Term Application and Data Management Whitepaper,
IBM, 2009.

[7] Sandborn, P., 2007b. Software Obsolescence - Complicating the Part
and Technology Obsolescence Management Problem. IEEE
Transactions on Components and Packaging Technologies, 30; 4; 886-
888.

[8] Merola, L., 2006, The COTS software obsolescence threat, Fifth
International Conference on Commercial-off-the-Shelf (COTS)-Based
Software Systems, 13-16 Feb. 2006. San Diego, CA.

[9] Erkoyuncu, J. A., Ononiwu, S., Roy, R., Mitigating the Risk of Software
Obsolescence in the Oil and Gas Sector, Procedia CIRP, 22: 81-86,
2014.

[10] IEC 62402 - Obsolescence Management – Application Guide, BSI,
2007.

[11] Rumney, G. A., 2007, The Software Obsolescence Minefield: A Guide
for Supporting Software and Electronic Information, 1st ed., IIOM
International Ltd., UK.

[12] Sandborn, P. and Prabhakar, V., 2015, The Forecasting and Impact of
the Loss of Critical Human Skills Necessary for Supporting Legacy
Systems, IEEE Transactions on Engineering Management, Vol. 62, N. 3,
August 2015.

[13] González Muñoz, R.., Shehab, E., Weinitzke, M., Bence, R., Tothill, S.,
Fowler, C. and Baguley, P., Key Challenges in Software Application
Complexity and Obsolescence Management within Aerospace Industry,
CIRPe 2015 - Understanding the life cycle implications of
manufacturing, UK, Procedia CIRP, Volume 37, 2015, Pages 24-29,
201.

