
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

312

Abstract—As the majority of faults are found in a few of its

modules so there is a need to investigate the modules that are
affected severely as compared to other modules and proper
maintenance need to be done on time especially for the critical
applications. In this paper, we have explored the different predictor
models to NASA’s public domain defect dataset coded in Perl
programming language. Different machine learning algorithms
belonging to the different learner categories of the WEKA project
including Mamdani Based Fuzzy Inference System and Neuro-fuzzy
based system have been evaluated for the modeling of maintenance
severity or impact of fault severity. The results are recorded in terms
of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE). The results show that Neuro-fuzzy based model
provides relatively better prediction accuracy as compared to other
models and hence, can be used for the maintenance severity
prediction of the software.

Keywords—Software Metrics, Fuzzy, Neuro-Fuzzy, Software
Faults, Accuracy, MAE, RMSE.

I. INTRODUCTION
HEN a software system is developed, the majority of
faults are found in a few of its modules. In most of the

cases, 55 % of faults exist within 20 % of source code. It is,
therefore, much of interest is to find out fault-prone software
modules at early stage of a project [1]. Using software
complexity measures, the techniques build models, which
classify components as likely to contain faults or not. Quality
will be improved as more faults will be detected. Predicting
the impact of the faults early in the software life cycle can be
used to improve software process control and achieve high
software reliability. Timely predictions of faults in software
modules can be used to direct cost-effective quality
enhancement efforts to modules that are likely to have a high
number of faults. Prediction models based on software
metrics, can estimate number of faults in software modules.

Prediction of severity of faults:
• Supports software quality engineering through improved

scheduling and project control.
• Can be a key step towards steering the software testing

and improving the effectiveness of the whole process.

Ebru Ardil and Erdem Uçar are with Department of Computer Engineering,

Trakya University, Edirne, Turkey.
Parvinder S. Sandhu is with Computer Science &

Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 India (phone: +91-
98555-32004; e-mail: parvinder.sandhu@gmail.com).

• Enables effective discovery and identification of defects.
• Enables the verification and validation activities focused

on critical software components.
• Used to improve software process control and achieve

high software reliability.
• Can be used to direct cost-effective quality enhancement

efforts to modules.
In the literature [1] [2], [3], [4], [5], [6] made prediction of

fault prone modules in software development process and
mostly used the metric based approach with machine learning
techniques to model the fault prediction in the software
modules. Khoshgoftaar [7] used zero-inflated Poisson
regression to predict the fault-proneness of software systems
with a large number of zero response variables. Munson and
Khoshgoftaar [8, 9] also investigated the application of
multivariate analysis to regression and showed that reducing
the number of “independent” factors (attribute set) does not
significantly affect the Accuracy of software quality
prediction. Menzies, Ammar, Nikora, and Stefano [10]
compared decision trees, naïve Bayes, and 1-rule classifier on
the NASA software defect data. Emam, Benlarbi, Goel, and
Rai [11] compared different case-based reasoning classifiers
and concluded that there is no added advantage in varying the
combination of parameters (including varying nearest
neighbor and using different weight functions) of the classifier
to make the prediction Accuracy better. Many modeling
techniques have been developed and applied for software
quality prediction [12], [13], [14], [15]. The software quality
may be analyzed with limited fault proneness data [16].

In [17], the author has used various machine learning
techniques for an intelligent system for the software
maintenance prediction and proposed the logistic model Trees
(LMT) and Complimentary Naïve Bayes (CNB) algorithms on
the basis of Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and Accuracy percentage.

Soft-Computing algorithms have proven to be of great
practical value in a variety of application domains. Not
surprisingly, the field of software engineering turns out to be a
fertile ground where many software development and
maintenance tasks could be formulated as learning problems
and approached in terms of learning algorithms.

In this present work, various machine learning algorithms
including Fuzzy and Neuro-Fuzzy Based techniques are
explored and comparative analysis is performed for the
prediction of level of impact of faults in the software modules.

In this paper, Section two describes the Methodology part

Software Maintenance Severity Prediction with
Soft Computing Approach

Ebru Ardil, Erdem Uçar, and Parvinder S. Sandhu

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

313

of work done, which shows the steps used in order to reach
the objectives and carry out the results. In the section three,
results of the implementation are discussed. In the last section,
on the basis of the discussion various Conclusions are drawn
and the future scope for the present work is discussed.

II. PROPOSED METHODOLOGY

A. Find the Structural Code and Design Attributes
The first step is to find the structural code and design

attributes of software systems i.e software metrics. The real-
time defect data sets are taken from the NASA’s MDP (Metric
Data Program) data repository. The dataset is related to the
safety critical software systems being developed by NASA.

B. Select the Suitable Metric Values as Representation of
Statement

The suitable metrics like product module metrics out of
these data sets are considered. The term product is used
referring to module level data.

C. Analyze and Refine Metrics
In the next step the metrics are analyzed and refined and

then used for modeling of software fault severity in software
systems.

D. Explore the Different Machine Learning Algorithms
including Fuzzy and Neuro-Fuzzy Inference System

In this step aim is to find the best algorithm for
classification of software components into different levels of
impact of fault. Forty Six Machine learning algorithms are
used for modeling of the data.

As per Abraham in [18], A Mamdani Neuro-Fuzzy system
uses a supervised learning technique (backpropagation
learning) to learn the parameters of the membership functions
[19]. Architecture of Mamdani Neuro-Fuzzy system is
illustrated in Fig. 1. The detailed function of each layer is as
follows:

Layer-1 (Input Layer): No computation is done in this layer.
Each node in this layer, which corresponds to one input
variable, only transmits input values to the next layer directly.
The link weight in layer 1 is unity.

Layer-2 (Fuzzification Layer): Each node in this layer
corresponds to one linguistic label (excellent, good, etc.) to
one of the input variables in layer 1. In other words, the output
link represents the membership value, which specifies the
degree to which an input value belongs to a fuzzy set, is
calculated in layer 2. A clustering algorithm will decide the
initial number and type of membership functions to be
allocated to each of the input variable. The final shapes of the
MFs will be fine tuned during network learning.

Layer-3 (Rule Antecedent Layer): A node in this layer
represents the antecedent part of a rule. Usually a T-norm
operator is used in this node. The output of a layer 3 node
represents the ring strength of the corresponding fuzzy rule.

Layer-4 (Rule Consequent Layer): This node basically has
two tasks. To combine the incoming rule antecedents and

determine the degree to which they belong to the output
linguistic label (high, medium, low, etc.). The number of
nodes in this layer will be equal to the number of rules.

Layer-5 (Combination and Defuzzification layer): This
node does the combination of all the rules consequents using a
T-conorm operator and finally computes the crisp.

Fig. 1 Mamdani Neuro-Fuzzy System Structure [18]

According to [20], a fuzzy system can be considered to be a

parameterized nonlinear map, called f, which can be
expressed as (1):

()

()∑ ∏

∑ ∏

= =

= =

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=
m

l
i

n

i

m

l
i

n

i

l

x

xy

A

Axf
l

i

l

i

1 1

1 1)(
μ

μ
 (1)

Where yl is a place of output singleton if Mamdani

reasoning is applied or a constant if Sugeno reasoning is
applied. The membership function µAi

l(xi) corresponds to the
input x=[x1, x2, x3,… xm] of the rule l . The “and” connective
in the premise is carried out by a product and defuzzification
by the center-of-gravity method. Consider a Sugeno type of
fuzzy system having the rule base

Rule1: If x is A1 and y is B1, then f1= p1x + q1y + 1
Rule2: If x is A2 and y is B2, then f2= p2x+ q2y + r2

Let the membership functions of fuzzy sets Ai, Bi, i=1,2, be ,
µAi , µBi .
-Evaluating the rule premises results in wi =µAi(x) * µBi (y)
where i = 1,2 for the rule rules stated above.
-Evaluating the implication and the rule consequences gives
(2).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

314

ww
fwfwf

21

2211

+

+
= (2)

Let

ww
ww i

i
21 +

= (3)

Then f can be written as (4).

fwfwf
2211 += (4)

E. Comparison Criteria
The comparisons of machine learning algorithms are made

on the basis of the least value of MAE and RMSE values.
Accuracy value of the prediction model is also used for the
comparison. The best algorithm is picked up after the 10 fold
cross validation results and tested for the testing dataset. The
Accuracy of the model is compared with the results of
Mamdani based FIS and Neuro-Fuzzy based systems. The
details of the MAE and RMSE are:

• Mean Absolute Error
Mean absolute error, MAE is the average of the difference

between predicted and actual value in all test cases; it is the
average prediction error [21]. The formula for calculating
MAE is given in equation shown below:

n
cacaca nn

−++−+− ...
2211 (5)

Assuming that the actual output is a, expected output is c.

• Root Mean-Squared Error
RMSE is frequently used measure of differences between

values predicted by a model or estimator and the values
actually observed from the thing being modeled or estimated
[21]. It is just the square root of the mean square error as
shown in equation given below:

() () ()

n
nn cacaca −−− +++

222
...2211 (6)

F. Conclusions Drawn
The conclusions are made on the basis of the comparison

made in the previous section.

III. RESULTS & DISCUSSION
The real-time defect data set used is taken from the

NASA’s MDP (Metric Data Program) data repository, the
details of that dataset contains 60 modules of Perl
Programming language with different values of software fault
severity labeled as 1, 2, 3, 4 and 5. Details of the Type of
Modules in the Dataset are shown in Fig. 2.

The first step is to find the structural code and design
attributes of software systems i.e. software metrics. As most
of the values of the other metrics are zero or metrics are
redundant in nature. So, selected five metrics representing
input attributes are:

• Branch_Count
• Cyclometric_Complexity
• Design_Complexity
• Essential_Complexity
• Number_Of_Lines

Fig. 2 Graphical Representation of Details of the Type of Modules in
the Dataset

The algorithms which are explored are already built java

classes in WEKA project [22]. For this a variety of many
machine learning algorithms and neural network techniques
are analyzed.

When analyzing performance of all the algorithms, Logistic
Model Trees (LMT) and Simple Logistic algorithms have
outperformed all the other algorithms used in the comparative
study with Accuracy, MAE and RMSE values as 65, 0.2145
and 0.3285 respectively when the 10 fold cross validation is
performed.

When Logistic Model Trees (LMT) and Simple Logistic
algorithms are tested for the fifteen exemplar inputs 86.66%
accuracy is obtained.

In the Mamdani based fuzzy inference system model five
metrics are considered as input attributes and one attribute
named as “software maintenance severity level” is used as
output attribute as shown in Fig. 3.

Each input and output attribute is represented with fifteen
fuzzy sets and the membership function value of the each
attribute is shown in Fig. 4. Different membership function
values that are used to convert the crisp values into the fuzzy
values and that process is called fuzzification. Once you have
got the fuzzy values then you can use the values in the fuzzy
rule evaluation which is the next step in the Fuzzy Inference
system. In Fig. 5, fifteen rules used for the inference of the
Mamdani based FIS are shown.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

315

Fig. 3 Mamdani Based FIS Inference System

Fig. 4 Membership Functions of the Input and Output Attributes

Fig. 5 Fifteen Rules of the Mamdani Based FIS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

316

During the testing phase of the Mamdani Based Fuzzy
Inference System fifteen inputs are used and it shows 0.2183,
0.3066 and 80 percentage as MAE, RMSE and Accuracy
values.

As performance of Adaptive Neuro Fuzzy Inference System
is found to be the best out of all the hybrid NF systems [23]
and the extra complexity in structure and computation of
Mamdami based Adaptive NF Inference system with max-min
composition does not necessarily imply better learning
capability or approximation power [24]. Hence, in MATLAB
7.4, the Sugeno based Adaptive Neuro-fuzzy Inference
System is used for modeling of software maintenance severity.
The ideal inference system for the evaluation of software
components should be less complex and more precision. The
inference system, which is already trained, will get the metric
values from the earlier stages and estimate the software
maintenance severity value of the software components or
modules.

The following is the information regarding the structure of
the adaptive Neuro-fuzzy Based Inference system and
pictorially represented in Fig. 6:

• Number of nodes: 32
• Number of linear parameters: 12
• Number of nonlinear parameters: 20
• Total number of parameters: 32
• Number of training data pairs: 60
• Number of checking data pairs: 0
• Number of fuzzy rules: 2

Fig. 6 Structure of Adaptive Neuro-Fuzzy Inference System

Fig. 7 Training Data for the Neuro-fuzzy system

The graphical representation of the input exemplars for the
NF system is shown in Fig. 7.

The NF system is trained using a hybrid learning algorithm
using both least squares method and backpropagation. In the
forward pass the consequent parameters are identified using
least squares and in the backward pass the premise parameters
are identified using backpropagation. The trained NF system
is then tested for the fifteen inputs and it shows 0.1571,
0.2140 and 93.3333 as MAE, RMSE and Accuracy values
respectively.

The plot of the expected and the output of the NF system
for the different inputs are shown in Fig. 8. Fig. 8 shows the
plot of the result of accuracy of the system that is developed.
The red star is the expected vale and the blue dot is the value
calculated by our model. Means the overall accuracy picture is
shown with help of that chart.

Fig. 8 Plot of the Testing Data V/S FIS Output

IV. CONCLUSION
On comparing all the classes of WEKA’s machine learning

algorithms, it is observed that Logistic Model Trees and
Simple Logistic algorithms are better techniques as compared
with other classes of machine learning algorithms with the
65% Accuracy in prediction of fault tolerance. In both the
algorithms of the WEKA project the classification algorithm
is the same i.e. logistic classifier. Both the algorithms have
least Mean Absolute Error and Root Mean Square Error
values: 0.2145 and 0.3285. During the testing phase LMT and
Simple Logistic algorithm has shown 86.66% Accuracy.

The results of the Mamdani based fuzzy inference system
are comparatively equivalent for the testing data as that of the
Logistic Model Trees and Simple Logistic algorithm with
0.2183, 0.3066 and 80 as Mean Absolute Error, Root Mean
Square Error and Accuracy values.

The Neuro-fuzzy based Modeling technique has
outperformed the other technique on the basis of the testing
data with 0.1571, 0.2140 and 93.3333 as Mean Absolute
Error, Root Mean Square Error and Accuracy values.

It is therefore, concluded the model is implemented and the
best algorithm for classification of the software components
into different level of severity of impact of the fault is found
to be Neuro-Fuzzy based technique. The algorithm can be
used to develop model that can be used for identifying
modules that are heavily affected by the faults and those can
be debugged.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

317

REFERENCES
[1] Saida Benlarbi,Khaled El Emam, Nishith Geol (1999), “Issues in

Validating Object-Oriented Metrics for Early Risk Prediction”, by Cistel
Technology 210 Colonnade Road Suite 204 Nepean, Ontario Canada
K2E 7L5.

[2] Lanubile F., Lonigro A., and Visaggio G. (1995) “Comparing Models
for Identifying Fault-Prone Software Components”, Proceedings of
Seventh International Conference on Software Engineering and
Knowledge Engineering, June 1995, pp. 12-19.

[3] Fenton, N. E. and Neil, M. (1999), “A Critique of Software Defect
Prediction Models”, Bellini, I. Bruno, P. Nesi, D. Rogai, University of
Florence, IEEE Trans. Softw. Engineering, vol. 25, Issue no. 5, pp. 675-
689.

[4] Giovanni Denaro (2000), ”Estimating Software Fault-Proneness for
Tuning Testing Activities” Proceedings of the 22nd International
Conference on Software Engineering (ICSE2000), Limerick, Ireland,
June 2000.

[5] Manasi Deodhar (2002), “Prediction Model and the Size Factor for
Fault-proneness of Object Oriented Systems”, MS Thesis, Michigan
Tech. University, Dec. 2002.

[6] Bellini, P. (2005), “Comparing Fault-Proneness Estimation Models”,
10th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS'05), vol. 0, 2005, pp. 205-214.

[7] Khoshgoftaar, T.M., K. Gao and R. M. Szabo (2001), “An Application
of Zero-Inflated Poisson Regression for Software Fault Prediction.
Software Reliability Engineering”, ISSRE 2001. Proceedings of 12th
International Symposium on, 27-30 Nov. (2001), pp: 66 -73.

[8] Munson, J. and T. Khoshgoftaar, (1990) “Regression Modeling of
Software Quality: An Empirical Investigation”, Information and
Software Technology, 32(2): 106 - 114.

[9] Khoshgoftaar, T. M. and J. C. Munson, (1990). “Predicting Software
Development Errors using Complexity Metrics”, IEEE Journal on
Selected Areas in Communications, 8(2): 253 -261.

[10] Menzies, T., K. Ammar, A. Nikora, and S. Stefano, (2003), “How
Simple is Software Defect Prediction?”, Journal of Empirical Software
Engineering, October (2003).

[11] Eman, K., S. Benlarbi, N. Goel and S. Rai, (2001), “Comparing case-
based reasoning classifiers for predicting high risk software
components”, Journal of Systems Software, 55(3): 301 – 310.

[12] Hudepohl, J. P., S. J. Aud, T. M. Khoshgoftaar, E. B. Allen, and J. E.
Mayrand, (1996), “Software Metrics and Models on the Desktop”, IEEE
Software, 13(5): 56-60.

[13] Khoshgoftaar, T. M., E. B. Allen, K. S. Kalaichelvan, and N. Goel,
(1996), “Early quality prediction: a case study in telecommunications”,
IEEE Software (1996), 13(1): 65-71.

[14] Khoshgoftaar, T. M. and N. Seliya, (2002), “Tree-based software quality
estimation models for fault prediction”, METRICS 2002, the Eighth IIIE
Symposium on Software Metrics, pp: 203-214.

[15] Seliya N., T. M. Khoshgoftaar, S. Zhong, (2005), “Analyzing software
quality with limited fault-proneness defect data”, Ninth IEEE
international Symposium, Oct 12-14, (2005).

[16] Munson, J. C. and T. M. Khoshgoftaar, (1992), “The detection of fault-
prone programs”, IEEE Transactions on Software Engineering, 18(5):
423-433.

[17] Sandhu, Parvinder Singh, Sunil Kumar and Hardeep Singh, (2007),
“Intelligence System for Software Maintenance Severity Prediction”,
Journal of Computer Science, Vol. 3 (5), pp. 281-288, 2007

[18] Abraham A., (2005), “Hybrid Intelligent Systems: Evolving Intelligence
in Hierarchical Layers”, Studies in Fuzziness and Soft Computing, vol.
173, 2005, pp. 159–179.

[19] Yen J. and Langari R. (2003), “Fuzzy Logic: Intelligence, Control, and
Information” Pearson Education.

[20] J-S. R. Jang and C.T. Sun, (1995), “Neuro-fuzzy Modeling and
Control”, Proceeding of the IEEE, March 1995.

[21] Challagulla, V.U.B., Bastani, F.B., I-Ling Yen, Paul, (2005), “Empirical
assessment of machine learning based software defect prediction
techniques”, 10th IEEE International Workshop on Object-Oriented
Real-Time Dependable Systems, WORDS 2005, 2-4 Feb 2005, pp. 263-
270.

[22] www.cs.waikato.ac.nz/~ml/weka/.
[23] Abraham, Ajith, (2001), “Neuro-Fuzzy Systems: State-of-the-Art

Modeling Techniques, Connectionist Models of Neurons, Learning

Processes, and Artificial Intelligence”, Mira Jose, Prieto Alberto ed.,
Lecture Notes in Computer Science, vol. 2084. Germany: Springer-
Verlag; 2001, pp. 269-276.

[24] Jang, J.-S. R., Sun, C.-T. and Mizutani, E., (2004), “Neuro-Fuzzy and
Soft Computing- A Computational Approach to Learning and Machine
Intelligence”, Pearson Education (Singapore) Pvt. Ltd., 1st Edition,
2004.

