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Fig. 6 Force Diagram 

ܨ ൌ ஼೅௠
ඥସగమఎమା ఒమ ሾെ4݂ሺߨଶߟଶߣሻ ൅ ሺ8ߨଶߟଶ ൅  ሿ             (1)ݑଶሻߣ

 

ܥ ൌ ଶగఎమ஼೅௠
ඥସగమఎమା ఒమ ሾ݂ሺ4ሺߨଶߟଶ ൅ ଶሻߣ2 ൅  ሿ             (2)ݑߣ

 

ܯ ൌ ଶߟଶߨଶඥ4்݉ܥߟߨ2 ൅ ݑଶሺߣ െ  ሻ           (3)ߣ݂

 

The forces for the left handed form are 

 

ܨ ൌ ஼೅௠
ඥସగమఎమାఒమ ሾ4݂ߨଶߟଶߣ ൅ ሺ8ߨଶߟଶ ൅  ሿ               (4)ݑଶሻߣ

 
ܥ ൌ ଶగఎమ஼೅௠

ඥସగమఎమାఒమ ሾ݂ሺ4ߨଶߟଶ ൅ ଶሻߣ2 ൅  ሿ                 (5)ݑߣ
 

ܯ ൌ 2πηCTmଶඥ4ߨଶߟଶ ൅ ଶሺuߣ ൅ fλሻ          (6) 
 
Where, CN and CT are the frictional constants in the 
appropriate directions; θ is the pitch angle of the helix; F is 
force; C is torque, M is bending moment; u is velocity in axial 
direction, m is pitch number along the filament; λ is 
wavelength; η is radius of filament; δs is length of element of 
the filament. The medium offers a resistance to reactions  

δN = VNCNδs         (7) 
δT = VTCTδs         (8) 

There is a little difference between the two forms in 
different charity in the force component expressions on the 
signs of velocity and frequency. 

VI.  MODELING FLAGELLA  
In the rigid-body model for the flagellin, we follow work by 

Namba and Vonderviszt [6] who set up a characteristic 
binding scheme.  

Fig. 7(a) shows a short piece of the filament. Fig. 7(b) 
shows side (top) view and front (bottom) view of one of its 
flagellin molecules. Rigid black arms emanate from a central 
black spot to the binding sites. Whereas the black backbone 
symbolizes the rigidity of the molecule, the transparent blue 
form should only give an impression of its silhouette but has 

no physical meaning for the model. The gray binding sites 
with labels 1 and 2 are present in both states of flagellin, while 
the red binding sites (labels 5, 6) are only activated in the R-
state and the green sites (labels 3, 4) in the L-state. This is the 
binding scheme suggested by Namba and Vonderviszt. Fig. 8 
illustrates it for pure L-type (blue) and R-type (red) flagellin 
molecules. The elastic network following from this binding 
scheme is unstable and collapses to a non-tubular form, like a 
balloon which loses its form after deflation [8]. 

 
Fig. 7 (a) A microscopic view of a short piece of filament. It shows 
the arrangement of the model flagellin in the protein network. (b) 
One model flagellin viewed from the side (top) and from the front 
(bottom). Rigid black arms emanate from a central black spot to 

neutral binding sites 1, 2, 7, and 8, which exist in both states of the 
flagellin. The green sites 3, 4 and the red sites 5, 6 are only activated 
in the L- and R-state, respectively. The blue transparent surface only 
symbolizes the borders of the rigid body. The central black spot is 

also the origin of a Cartesian coordinate system attached to the rigid 
body. The origin lies in the plane of binding sites 1–6 and its 

horizontal position is in the middle between sites 1, 2 and 3–6. The y 
coordinates A and B define the respective axial positions of the 

binding sites 3, 5 and thereby the internal twist of the pure L- or R-
form of the filament. The distance between the two binding sites 3, 4 
and 5, 6 are given by QL and QR, respectively. The distance between 

sites 1, 2 is E and their y coordinates are E/2 and −E/2. The inner 
binding sites 7, 8 are characterized by the axial displacement or y 

coordinate D of their center and their distance F. For further use, the 
difference C = QL – QR is defined, which is the difference in length 

of the flagellin in the L- and R-state. Finally, b and t are the width 
and depth of the model molecule [8]. 
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VIII.  CONCLUSION 
1) Previous studies [7] have revealed that a string of phase 

transforming material cannot propel itself in the 
environment. But, in bacteria, there is more than one 
flagellum. The interlude of phase transformations in these 
flagella results in an effective force on the bacteria in one 
direction. 

2) The motion of bacteria is propelled by the propulsive force 
which is generated by the bacterial flagella filament rotation 
and the viscosity of the fluid. The flagella filament 
parameters such as wavelength, radius and rotation 
frequency of the filament can influence the motion velocity. 

3) Phase transition of the bacterial flagellar filament in both 
vivo and vito environments can be induced by mechanical 
forces [3]. It is motivated by the bacterial flagellar motor in 
the former case and it is motivated by the flow of viscous 
fluid in the latter case. 

4) Studying the Phase transformation in living organisms and 
the factors which affect this transformation can help us 
devise a mechanism that can be applied at macro level. 
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