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Skew Cyclic Codes over F,+uF,+...+u"'F,

Jing Li, Xiuli Li

Abstract—This paper studies a special class of linear codes, called
skew cyclic codes, over the ring R= Fq+qu+...+uk'qu, where ¢ is a
prime power. A Gray map ¢ from R to F, and a Gray map ¢’ from R" to
F", are defined, as well as an automorphism @ over R. It is proved that
the images of skew cyclic codes over R under map ¢’ and O are cyclic
codes over F,, and they still keep the dual relation.
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[. INTRODUCTION

N recent years, the study of coding theory on finite chain has
attracted the attention of many scholars. Reference [1] shows
cyclic codes of odd length and self-dual codes over ring
F, +uF, . The structure and weight of the cyclic code of

arbitrary length over Z,+uZ, and Z, +uZ,+u’Z, has

been given in [2]. Reference [3] shows skew codes over
F, +vF, (v’ =v), and shows the relationship between the cyclic

codes and the cyclic codes over the ring F, +vF, and F,, by
defining the Gray map.

As a finite ring in more general sense, the research of the
structure of cyclic codes, cyclic codes and quasi cyclic codes
over the ring R=F,+uF, +---+u""'F, has aroused the

interest of many people. Reference [4] provides the structure
and ideal over the ring F, +uf, +---+uHFq length p'n
where p,n are coprime, and obtains the direct sum and
spectral representation (MS polynomial) of the cyclic codes
over the ring by using the discrete Fourier transform and
inverse isomorphism. According to [5], the structure and the
number of codewords of all (u2-1)- cyclic codes with length

p° over finite chain ring £ +uF, +.--+u*"'F, are generated by

finite ring theory. Reference [6] studies the Gray image of
constacyclic codes over finite chain rings; it is proved that the
Gray image of arbitrary cyclic codes over finite chain rings is
equivalent to quasi cyclic codes over finite fields. Reference [7]
shows quasi cyclic codes over the ring F, +uF, +---+u""'F,,

and establishes the relation between cyclic codes over
F,+uF, +---+u*'F, and quasi cyclic codes over F,. By using
the torsion codes of arbitrary (1+ 1x)-length constacyclic codes

over R = Fpm [u]/ <u* >, the bound of homogeneous distance
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of these constacyclic codes is obtained in [8], and a new Gray
map is defined to establish the relation between the
constacyclic codes over R and the linear codes over Fp,,, , then
some optimal linear codes are constructed.

This paper will study the properties of skew cyclic codes
over R=F, +uF, +---+u'"'F, where g is prime power.

II. LARGE BASIC KNOWLEDGE

R=F, +uF,+--+u""'F, is a finite ring where ¢=p", p is
arbitrary prime, and m is positive integer. Any element ¢ in
the ring R can be represented uniquely by
c=ry(c)+ur(c)+-+u""'r,_/(c) where r(c)eF,, 0<i<k-1.

A subset C of'the ring R is called a code over R, in which
the element is called a codeword. And a linear cyclic code
length n over R can be considered as a R-submodule of R".

There are two forms to express these elements in C the first

one is ¢=(cy,¢,":*,¢,;) € Cin vector form, another one is

n

f(x)=¢,+¢x+--+c, ,x"" €C in functional form.

Define the new Grey map ¢ as follows:
¢:R—>F,
¢(r0 +ur -+--~+1,t/"’1;14):(ro,r0 R S R A +-~-+rH)
Thus, there is another Grey map ¢’ which is derived as:
¢':R'—>F

(b,(co’cl""’cn—l ) = (¢(C0)’¢(CI )""a¢(cn—1 ))

= (Vn,ovro.o FhooToo FT0 T 5 Ho Tho T F s
TosTon THhlon Thy Tl Ty, Th FFho,,
Ton-15To ot THprs oo T Tl 5 T T +"'+rk7|\n7|)
The Hamming weight of codeword ¢ =(c,,¢;,++,¢, ;) in

n—1

R is defined as wy, (c) = Y wy (c,), where
i—0

Le, #0 . _
WH(C,-):{O e 0<i<n-1.

The Hamming distance of code C is defined as
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d, (C) =mind,, (c,c') s

where Ve,c'eC, c#c', d, (c,c')sz (c—c').
’cn—l)

¢,)), where wy, (¢(c,)) is Hamming

We define the Lee weight of codeword ¢ = (co,c],m
n-1

in R as w, ()= w, (4(
i=0

weight of ¢(ci). We also define the Lee distance between ¢
and ¢’ as d,(C)=mind, (c, c#c',
d, (c,c')=w, (c=c").

Obviously, the Gray map ¢’ is an isometric mapping from

¢') , where Ve,c'eC,

R" (Lee distance) to F, q"” (Hamming distance).

Theorem 1.1f C is [1,M] linear code over R and d,(C)=d
, then ¢'(C) is [nk,M] linear code over F, and
d,(#(C))=d.

Proof. d, (C)=d, (#'(C)) is known. It can be seen easily
that the length of ¢'(C) is nk . Next, it needs to prove that ¢’
keeps linear operation.

Let 62(603017"'acn_|) 5

0<i<n-1, there are

e=(e,e, e, )ER"  when

¢ =ny(c) tur(c)++u " (c)

k-1
e =r(e)+un(e)++u""r_(e)

Thus,
¢'(c+e)
:(¢’(co +eo),¢'(c1 +el),~--,¢'(cn_] +en_|))
:(ro (co+e0),r0(co+eo)+r](co+eo),---,

y(co+e)+r(cy+e)++rn_ (e +e)

neaten)n(ctes) e te, ).
(e te) e+ n])"' (e e, ))
=(r(eo)sra (o) +ri(co)srem (co) +1i (o) +oe b (€)oo

nl(cnl)}?](l1l)+r( )”’5'?1(”1)4'"1(

+(”o ).r (&) +7i (), ~-,r0(eo)+rl(e0)+---+rk(eo), """
(enl) (/11)+r1(nl) "'rﬂ(frl)+r(
OIS R (RN

T

’

(Co’
(c)+ ( )

IfxleFL],ceR,then

¢
— g
¢'(/10)=¢’(/100,Ac1,~-, "1) /Iqﬁ( ~~,cn71):/1¢'(c)

So, ¢' keeps linear operation and ¢' is a bijection. Thus,

the number of codewords in C and ¢'(C ) is the same. This

gives the proof.
Now, define a ring automorphism 6 as follows

0(c)= 9(1’0 +ur, +~~~+uk’lrl‘,71)

_ k-1 k-2 2
=rtu o n U T U, urn

for all ¢=r,(c)+ur(c)+--+u""'r_/(c) in R. One can verify

that @ is an automorphism and & (a)=a forany a €R. This

implies that € is an automorphism with order 2.
A ring like

R[x,H]:{a0 +ax+-+a,_x":aeR0<i<n-Ln eN}

is called skew polynomial ring. For a given automorphism &
of R, theset R[x,6] of formal polynomials forms a ring under

usual addition of polynomial and where multiplication is
defined using the rule (ax’ ) s (bx’) =af' (b)x"’.

fo . g(x

units of R, then there exist unique polynomials u(x) and
v(x) of R[x,0#] which make g(x) =u(x)*f(x)+v(x)
establish where v(x)=0 or deg(v(x)) < deg(f(x)) . When
v(x)=0, f(x) is called the right divisor of g(x); that is,
f (x) right divides g(x) exactly.

Let f(x z g,x', where f, and g, are

Let R, = R[x,% . 1) , define multiplication from left as
X" —

r(x)*(f(x)+(x" —1)):r(x)*f(x)+(x" —1),

where f(x)+(x” —1) is element of R, , and r(x)e R[x,0].

For any x=(x,x,,".x,) , y=(,),y,) in R" the

inner product is defined as x y Zx y, . Let C be linear

code over R , the dual <code of C is
Cct= {x eR" <x,c> =0,Vce C} . A code C is called self-dual
codeif C=C".

Definition 1. A subset C of R" is called a quasi-cyclic code
of length N (N =ns)ifC satisfies the following conditions:
(1) C isa R-submodule of R";

2) If

€= (Co,o’co,l" ) "CO,n—l’|Cl,0’cl.l" RERC ST
2
Cs1,00C5-115"" 5 Comtnm ) eC

then
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9,(c)= (Cx—l,()’cs—l,l > Gl ’|CO¢O’C(I,I 57" Co ’|

e |cs—2,0 5Coa1o G ) eC

Particularly, C is cyclic code when n=1.

Definition 2. A subset C of R" is called a skew cyclic code
of length n if C satisfies the following conditions:

(1) C isa R"-submodule of R";
2) If c=(cy,¢,+75c,,) € C, then

2, (c)=(0(c,,),0(cy).0(c,,))eC.

III. CONSTRUCTION
Theorem 1. The center of R[x,6] is F, [sz .
Proof. The subring of the elements of R that are fixed by @ is
F, . Since @ is an automorphism with order 2, for any a € R,
there is (x”)*a =6 (a)x" = (Hz)i (a)x* =ax™. Thus x* is
of R[x,0] . This

f(x) =g, +€1x2 +52x4 +---+€sx25 is a center element with

in the center implies that any

Siqu,OSiSS.
Conversely, let Z (R[x,@]) be the center of R , so
f(x)*a=ax*f(x) for any f(x)eZ(R[x,H]) and any

acR . Since f(x)=¢g+x+6x" +-+ex" for 5 €F,,

0<i<n,there are

f(x)*a:a*f(x),

2 n _ 2 n
(50+g|x+£2x +eot X )*a—a*(£0+£|x+gzx +o g X ),

agy+£0(a)x+6,6 (a)x* +--+¢,0"(a)x"

=ag,+agx+ag,x" +--+ag,x"

It is known that |<9>| =2, so there are &X' *a =agx' when
i is even, and &x' *a#agx' when i is odd. Hence, any
f(x)=¢&+&x+6x" +-+5,x" of Z(R[x,0]) only exists
even power term of X R that is

s

f(x)=¢, +e,x" +ex* ++£,x” . Thus, any element of

center is in F, [sz . This gives the proof.
Theorem 2.Let R = R[x,%

x"—l)’ acode C in R is a
skew cyclic code if and only if C is a left R[x,8]-submodule
of the left R[x,6] module R, .

Proof. Suppose C is 6@ -cyclic code, so
(6(c,1).0(cy)+.0(c,,))eC for c=(cync;sonc, ) eC,
that is for any f(x)=c,+cx+-+c, x"" eC , there is

x*f(x)eC. Next, g(x)*f(x)eC for any g(x)eR[x,H]

from linear property, then C is a left R[x,#]-submodule of
the left R[x,0] module R, .

Now suppose that C is a left R[x,#]-submodule of the left
R[x,0] module R, so

x*f(x) = (H(Cn_l),H(CO),'-',H(C”_Z )) eC
forany f(x)=c,+cx+---+c,x"" €C,this implies that

(6(c,).0(c,)s+.0(c,,))C

for any c=(¢y,c,5c,)eC

This gives the proof.
Theorem 3.Let C be a 6-cyclic code in R, = R[x,% n 1)
X —

. Thus, C is @ -cyclic code.

and let f (x) be a polynomial in C of minimal degree. If
£ (x) is monic polynomial, then C = <f(x)> where f(x) is
a right divisior of x" —1.
Proof. Suppose g(x) = u(x)*f(x)+v(x) for any g(x) eC
where v(x)=0 or deg(v(x))<deg(f(x)). Since f(x)eC
, then v(x) :g(x)—u(x)*f(x) eC . Also since f(x) is
polynomial in C of minimal degree, we have v(x) =0, this
implies that C = <f(x)> .

Since the @ -cyclic codes over R, and its left R[x,0]
-submodule are corresponding one by one, thus f (x) is a right

divisior of x" —1. This gives the proof.

Theorem 4.Let n be even. If codes C over R are € -cyclic
codes, so is its dual codes C™.

Proof. Let ¢ =(c,,¢,,"*+,¢, ) €C", a=(ay,a,,-,a, )eC, s0
{c,a)=0 for any c and a. Since C is -cyclic codes, then

(6(a,.).0(a,).,+,0(a,_,)) € C . Thus,

(9”'1 (a,),0""(a,),---,0"" (ao)) eC.

Therefore,
006"’1 (a1 ) + cﬂ"’l (a2 ) +oeet cHH'H (ao ) =0

0(00)9"(a1)+6(cl)9" (a2)+---+9(cn71)9”((10) =0

Itis known #n is even, then have 8" (a,,) =a, for a; € R.

Hence,
n-1

a09(0,771)+a10(co)+~-+a Q(CM) =0

by transforming formulas. Thus
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(g(cnfl)’g(%)"
This gives the proof.

Theorem S.Let n be even, then the & -cyclic codes C
generated by a monic right divisior g(x) over R are cyclic

,0(c,,))eC* and C* is @ -cyclic codes.

codes if and only if the coefficients of & ) are elements of F, -

):x”’+mzlgixi where g, € F,.So, 0(g,)=g

i=0

,x*g(x) =g(x)*x from definition of &, thus the & -cyclic

Proof. Let g(x

i

codes C generated by a monic right divisior g(x) over R
are cyclic codes.
Let the € -cyclic codes C generated by g(x) over R be

cyclic codes, then x*g(x)eC, g(x)*xeC . Hence,

u(x):x*g(x)—g(x)*x
=(0(g,)—g0)x+(0(g)—g)x" +-+(0(g,.,)—g,.)x" €C

Since g(x) is the right divisor of u(x) , there exists
u(x)=txg(x)=n"+ig, x""

constant. Comparing two formulas of u(x) , then

+---+1g,x+g, where ¢ is a

g(gm—l)_gm—l =t,
0(8,2)=&na =18,

g(g])_g] =18,
H(go)_go :tgl ’
8o =0.

If =0, then u(x)=0, this theorem is proved. If 10,
g, =0, it shows thatg, =0,1<i<m-—1, hence g(x) =x",
H(gi) =g,,0<i<m. Thus, the coefficients of g(x) are
elements of F, . This gives the proof.

Theorem 6.Let n be odd and C be a skew cyclic code of
length n over R . Then, C is equivalent to cyclic code of
length n over R .

Proof. Since n is odd, ged(2,n)=1 . Hence, there exist

integers b,c such that 2b+cn=1. Thus, 2b=1-cn=1+zn
where z>0.

Let a(x)=a,+ax+-+a, x"" €C, wehave

be *a(x)
=92 (a )xl+zn
0

+agx+axt+e

+ 92b (al )x2+zn 4o 4 92b (a,,,] )xn+zn

— n-1
=a,_, +a, ,x"" eC

Thus, C is cyclic code of length » over R. This gives the
proof.

Corollary 1. If C is a skew cyclic code of length n over R,
then the Gray image ¢’(C ) of C is equivalent to quasi-cyclic
code of length nk over F, .

Proof. Let (co,cl,---,c )e C, each element ¢ in C can be

-1
expressed as ¢ =7,(c)+ur(c)+--+u*"r,_ (c). It is known that
o, (c) = (H(CH ),H(CO),"',H(CWZ )) eC, that is ¢, (C) =C.
For ¢', #'(p,(C))=¢'(C). From Theorem 1 in Section II,
¢’(C) is linear code over F, and ¢' keeps linear operation,

SO

¢’((p5 CO’CI’ "0 1))
#(0(c,1)-0(c,)..0(c,))

1 _
:(¢( 10+” n||+” Thop o +”n|k1)
¢(r +u' ' et ) ------
0,0 0,1 0,2 0,k-1)> >
¢( +ut” +u e et ))
2,0 2,1 n-1,2 n—2,k-1

o Tl oo T oot

:(’"n 1007,

Tio Tl Thoa Tt 1|r0,0’r0,0 T %00 g oo

's’”o,o+r0,1+ro,z+"'+ro,k71|’ """ o200 Tn20 Tha2ns

oo T s hioo T thay Tt Zkl)

Now, each section of right side of equation is a cyclic code of
length nk . Thus, ¢'(C ) is quasi-cyclic code of length nk over

F, . This gives the proof.
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