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Singularity Loci of Actuation Schemes for 3RRR
Planar Parallel Manipulator

S. Ramana Babu, V. Ramachandra Raju, K. Ramji

Abstract—This paper presents the effect of actuation schemes on
the performance of parallel manipulators and also how the singularity
loci have been changed in the reachable workspace of the
manipulator with the choice of actuation scheme to drive the
manipulator. The performance of the eight possible actuation
schemes of 3RRR planar parallel manipulator is compared with each
other. The optimal design problem is formulated to find the
manipulator geometry that maximizes the singularity free conditioned
workspace for all the eight actuation cases, the optimization problem
is solved by using genetic algorithms.
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[. INTRODUCTION

ECENTLY, parallel manipulators have become more

popular due to their inherent advantages in terms of high
stiffness, high force-to-weight ratio, high load carrying
capacity, and high precision control over the prescribed path
of end-effecter. However, parallel manipulator suffers from
the presence of singularities within the workspace which has
been explained by [1]. At singular configurations, the end-
effecter will lose or gain at least one degree of freedom and
the actuation forces become infinite. When the end-effecter is
located close to the singularity loci the pose errors will be
increased because of the influence of active joint errors; while
the end-effecter approaching the singularity, the stiffness and
accuracy of the manipulator deteriorates and joints may be
locked up. In order to minimize the singularity loci of parallel
manipulators and also to increase the performance of the
manipulator, the actuation redundancy have been studied by
[2]-[4]. However, in actuation redundancy, control of end-
effecter is a difficult task that involves force control
algorithms [5], and also requires additional expensive
actuators that increase the manufacturing cost of the
manipulator. Reference [6] proposed the legs of variable
structure for the increase of reachable workspace of a spatial
manipulator. Reference [7] studied trajectory planning and
actuation schemes both are crucial for manipulator control.
References [8] and [9] presented a model of an actuation
scheme and its effects on the singularities of parallel
manipulators for a given path in the workspace. References
[10], [11] presented an efficient approach for determining the
force-unconstrained poses (singularity loci) of planar parallel
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manipulators. The actuation scheme is the set of active input
joint rates of the manipulator, one joint from each leg is to be
selected. Each actuation scheme has its own singularity free
zones of the end-effecter within the reachable workspace.
Since each scheme implies a different set of actuator motions,
this leads to different movements of the end-effecter. A proper
actuation scheme not only avoids singularities of the
workspace, but also enhances the stiffness and accuracy of the
manipulator.

Actuation scheme of the manipulator depends on the
Jacobian matrix that transforms the active input joint rates into
end-effecter task space velocities. Generally, the research
work on 3 dof planar parallel manipulators [12], [13] have
confined to the kinematic analysis and performance of the
manipulators with only one set of active joint rates (consists of
only one joint from one leg) preferably the base joints. The
kinematics and workspace analysis of 3dof planar parallel
manipulators with other set of active joints is to be
investigated. The effect of actuation schemes on the
performance of 3RRR planar parallel manipulator for the
positive working modes is broadly studied in this paper.
Reference [14] has introduced the general aspects and working
modes to allow the separation of inverse kinematic solutions;
the aspects are the maximal singularity-free domains of the
workspace. Based on the concept of general aspects, the
performance of the actuation schemes is evaluated in
limitation to positive working modes of the end-effecter.

It is well known that the singularity loci as well as the
performance of the manipulator are greatly affected by the
geometrical parameters of the mechanism, [15]. Many
scholars have performed the optimum design of robotic
manipulators; [16] proposed numerical integration and
sequential quadratic programming method for optimization of
parallel manipulators. However, the traditional optimization
methods suffer from local optima and lack of convergence of
the optimization algorithms. Reference [17] described how
genetic algorithms may be applied as powerful and broadly
applicable stochastic search methods and optimization
techniques, since they can escape from local optima. Design of
parallel manipulators while optimizing the manipulability or
dexterity of the manipulator was done by [18]. Reference [19]
presented an optimization approach for designing both serial
and parallel manipulators.

In this work, we have also tried to enumerate the optimal
geometric parameters like link lengths of a 3RRR planar
parallel manipulator for each actuation scheme, which greatly
influences the singularity zones of workspace and
performance of the manipulator. A single objective
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Figs. 1 and 2 describe the 3-RRR planar robot and its end-

optimization problem with GCI as the fitness function is
formulated and solved using the genetic algorithm for each  effecter respectively. The manipulator is actuated by three
revolute actuators having only one actuator in each leg; the

possible actuation scheme of 3RRR planar manipulator.
two links O;B;, B;C; for each leg are connected to the end-
effecter by revolute joints at point C; and to the fixed base at

0; as shown in Fig. 1. The parameters are described here
without the numerical subscripts; however, when they appear
with a subscript i that denotes the leg number. The geometric
centre of the moving platform C;C,C;, denoted by P is
operation point (position of manipulator) in the global x-y
coordinates. The end-effecter orientation ' ¢’ is measured from
the x-axis; where asb;,c; are length of links O;B;, B;C;
respectively and a; is the distance of point P from the revolute
joint C;.The joint angles 6; and 1;are the orientations of links
0;B;, B;C; measured from the x-axis, y;is the angle of the line
PC; with respect to the line connecting C; and C, on the

II. GENERAL DESCRIPTION OF 3RRR MANIPULATOR

The revolute joints of a planar 3-RRR parallel robot are
actuated by electric DC motors because the electric actuators
require minimal auxiliary support devices, which are typically
a power supply and motor drive. These support devices are
small and fairly portable. Secondly, the motor mass is fixed to
the base frame and not part of the moving linkage mass,
keeping the manipulator inertia lower. Additionally, the rotary
type of actuator does not require a large base assembly and

therefore the overall dimensions of the manipulator can be

kept small. For these reasons the electric motor was

considered the best actuator for this parallel manipulator.
moving platform.

A. Inverse kinematics
The vector loop closure equation for 3RRR manipulator can

be expressed as:

OP=00, +0,B, +B,C, +C,P (1)

Equation (1) can be expressed in the component form as

X, =bcos0; +ccosy; +acos(d+y;)+ X 2)
Yo, =bsin0; +csiny; +asin(¢+7y;) + Yy 3)
Rewriting (2) and (3) as:
T~ o, ceosy; =X, —bcosB; —acos(¢+7,)— X, 4
csiny, =y, —bsin0, —asin(¢p+7y,)— Y, 5
Fig. 1 3RRR parallel manipulator SV =Y, —bsmD; sin(@ +7i) = Yoi ©)
- Now squaring (4) and (5) then summing the two can be
) Z expressed as:
.73 . A/ ¢ =xt+ys+b’+a’+x; + Yy —2Xbcos 6, —2x,acos(d+7,)
I:' -\\ —2X,X,; +2abcos 0; cos( + v;) + 2bx,; cos 0; + 2ax,; cos(¢ +v;) 6)
== \\\\ —2Y,bsin®; =2y asin(¢ +7v;) =2y, Y,; +2absin 0; sin(¢ + v;)
\ \\\ +2by,,; sin 6, + 2ay,; sin(¢ +v;)
| S
| ! e
[ \ 5 \-\\ ¥ The above equation can be expressed as:
| o— o \\ 2 .
f - '/\' ) e;sin6; +e, cos0; +e; =0 7)
.'II v ,_..-—”/ where
| / A e, =-2y,b+2absin(¢ +y,) + 2by,,
" ¢ ey =-2x,b+2abcos(¢ +7y;) + 2bx,
ey =X, + Y, +b*+a® —c? + x5 +yg —2x,ac08(@ + 1) — 2X, X,

Fig. 2 End-effecter description +2aX, cos(¢ +7,) — 2y, asin(@ + ;) = 2y, Yy + 28y, sin(p + 7;)
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On  substitution of the  trigonometric  identities
sin@; =2t; /1+t7, cos®, =1—t7/1+t?, into (7) yields:

(85 — @)t +2€;t; + (&5 +€5) =0 (8

0.
where t; = tan;'

Solving (8) for t; yields:

[2 2 2
|8 EA8 Fey — 8

0, =2tan" Lofor i=1,23 9)

Once again rewriting (2) and (3) as

bcos®; =x, —Ccosy; —acos(hp+7y;)— X, (10)
bsin0; =y, —csiny; —asin(¢p+7v;)— Yy (11)

Now squaring (10) and (11) then summing the two can be
expressed as

b? =x; +y, +c”+a’ +Xg +Yya —20X, cosy; —2aX, cos(¢+7;)
—2X, X +2aCcos y; cos(§+7y;)+2CKy cos Wy +2acos(d+7y;)X,
—2¢y, siny; —2ay, sin(¢+7v;) -2y, Y, +2acsiny; sin(¢p+7;)
+2ay,; sin y; +2ay,; sin(¢+7y;)

12)

The above equation can be expressed as:
e, siny; +€, cosy; +e; =0 (13)

where
e, =—2Cy, +2acsin(¢ +y;) + 2y,

€, =—2CX,, +2accos( +v;) + 2CXy

2 2 2 2 2 2 2
8y =X, Y, —b7+C7 +a” + X5 + Yo —2aX,, cos(d + ;) — 2X X

+ 28Xy cos(¢ +v;) — 28y, sin(d +v;) = 2Y, Vi + 28y sin(¢ +v;)

Substituting the trigonometric identities siny; = 2t,/1+1t;

and cosy; =1t /1+t7,in to (13) yields:
(85 — &)t + 28t + (85 +€5) =0 (14)

where t; = tan% solving (14) for t; yields:

[2 2 2
|~ Eqe ey —gy

€3 — €y

y; =2tan" fori=123 (15)

III. ACTUATION SCHEMES AND JACOBIAN ANALYSIS

The actuation scheme is a unique set of active joints that
comprises only one joint from each leg. Since each scheme
implies a different set of actuator motions, this leads to

different positional movements of the end-effecter. A proper
actuation scheme may ensure singularity free regions but also
enhances the stiffness and accuracy of the manipulator. The
actuation scheme for the mechanism depends on its actuated
joints, for instance the first actuation scheme for this 3RRR
mechanism is expressed as 3RRR (RRR1-RRR2 —RRR3), in
this the first revolute joints of its parallel legs are actuated.
Likewise, the eighth actuation scheme is expressed as 3RRR
(RRR1-RRR2-RRR3) mechanism, in which the second
revolute joints of its parallel legs are actuated. The underlined
joints are actuated joints and the remaining joints are passive
joints in the joint configuration space. The eight distinct
possible actuation schemes are given in Table I.

TABLEI
ACTUATION SCHEMES
Actno Actuation scheme Active joint
1 RRRI-RRR2-RRR3 601,0,,05
2 RRR1-RRR2-RRR3 Y1, P, Y5
3 RRRI-RRR2-RRR3 61,02, 93
4 RRR1-RRR2-RRR3 61,15, 04
5 RRR1-RRR2-RRR3 Y1,0,,05
6 RRR1-RRR2-RRR3 0192,
7 RRR1-RRR2-RRR3 Y192, 05
8 RRR1-RRR2-RRR3 Py, 65,05

A.Jacobian Formulation

The Jacobian matrix for actuation schemel can be obtained
by differentiating (6) with respect to time yields as:

JXIX:Jqqu (16)
where

Cix Cly alyclx - a1><Cly
Jxl =| Cax CZy aZyCZX - aZXCZy
C}x C}y a3yc3x - a}xc3y

blxcly —blyclx 0 0

‘]ql - 0 bZXCZy _beCZX 0

0 0 D3, €5y =3,y
s=li, v, o a, = 6, 6]

The Jacobian matrix for actuation scheme2 can be obtained
by differentiating (12) with respect to time yields as:

sz’.‘quz‘.h (17)
where
blx bly alyblx - alxbly
Jx2 = b2x be a2yb2>< _a2xb2y
3x b3y a3yb3x - a3xb3y
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I:)lyclx - bl><Cly 0 b]yclx - blxcly 0 0
Jgo = 0 D,,Cay —DyyCyy Jg7 = 0 Dy, Csx —byyCyy 0
0 0 by, Csy —bsyCsy 0 0 b, C5y =05y Cyy
qz = [‘Vl \il2 \PS]T blx bly alyblx - alxbly
Jxx =1Cox CZy aZyCZX - aZXCZy
The Jacobian matrix for other actuation schemes can be by, bs, ayby —asby,
expressed as:
by Ci —byyCyy 0 0
inf{ = quqi for i= 3,...,8 (18) Jqs = 0 b2><(:2y - b2yc2>< 0
0 0 by, Cs —byyCsy
where
Cix Gy AyCi =350y q; = [61 éz ‘l’s]T Q= [91 V) 93]T Qs = [‘Vl é2 es]T
Jx3 = C2x C2y a2ycz>< 7a2x02y
by, b by.a,, —b;,a . S . . . . :
3 3y w3y 3yTax qe :[\Vl 0, \U3]T »q7 :[\Vl v, 93]T’
b,.c,, —b,,cC 0 0 . . .
ety i qs Z[‘Vl 0, ‘V}]T
Jq3 = 0 b2xc2y _b2yc2x 0
0 0 by, Csy — b3, Cs, B. Singularities of the Manipulator
Three different types of singularities were identified for
e ¢ ac —ac parallel manipulators based on the physical interpretation of
1x 1y 1y “1x 1x“1y . . . . .
the Jacobian matrices. The singular configurations associated
J><4 = b2x b2y b2xa2y _beaZX : : : : :
with inverse kinematic matrix (J,) are called as Type I
o Cay B3yCsx ~ 3Gy singularity it occurs when determinant of (j,) is zero, for
3RRR manipulator such configurations are reached whenever
b, Ciy —byyCyy 0 0 points 0; , B;, C; are aligned as shown in Fig. 3. Singularity of
Jgi= 0 D,,Cax —byyCoy 0 Type II occurs when the determinant of the direct kinematic
0 0 b3 sy — b3, Csy matrix (J,) is zero. For a 3RRR actuation such configurations
are reached whenever lines (B,C,), (B,C,), (B;C3) intersect
b b b b (possibly at infinity) as shown in Fig. 4; whereas for the 3RRR
o By By m 8Dy actuation such configurations are reached whenever lines
Fus =|Cax Gy B5yCay — 850y (0,€,),(0,C,),(05C3) can intersect at common point as
Cix Cay  85yCa = 854Gy shown in Fig. 5. Singularity of Type III occurs when both ],
and J, are singular.
blyclx _blxc]y 0 0 o
-
JqS - 0 beCZy _b2yc2x 0
0 0 b3xc3y - b3yc3x
5 \Lz
Cix Cly alyclx - al><C1y [
st = b2x b2y a2yb2x - a2><b2y l'iﬁ P
b3x b}y a}beX - a}bey . (;
, . OB,
b]xCly _b]yc]x 0 0 4 =
Joo = 0 b,,Cyy —DyyCyy 0 o
0 0 b3yc3x - b3xc3y - 0:
/B,
blx bly alyblx - alxbly 4
/
Jx7 b2x be aZbeX - a2xb2y w
Cix C}y a}yc3x - a}xCSy O,

Fig. 3 Type I singularity
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Fig. 4 Type 11 singularity for actuation 1

8
Fig. 5 Type Il singularity for actuation 2

C.Global Condition Index of the Manipulator
The condition number of a Jacobian matrix is expressed as

e=[aflla] (19)

Condition number signifies the error amplification factor
between the joint rate errors to task space errors; the condition
number depends on the manipulator configuration. The
condition number varies from one at isotropic configurations
to infinity at singular configurations so this is also defined as
the measure of degree of ill-conditioning of the jacobian
matrix. The reciprocal of the condition number (1/k) is
referred to as the conditioning index which is the local
measure of performance of the manipulator at a particular pose

of the end-effecter within in the workspace. In order to
evaluate the global behavior of a manipulator over the
workspace a global index is proposed by [20] as

[ipor
GCI =X jdw (20)

where W is the workspace, xis the condition number. In
other sense, GCI is average value of reciprocal of kK over the
workspace region; it represents the uniformity of dexterity
over the entire workspace so this index makes sense for the
optimal design of manipulator for which the average value
performance is an important design factor.

IV PERFORMANCE COMPARISON OF ACTUATION SCHEMES

The singularity loci of eight actuation schemes for the
3RRR parallel manipulator based on discretization approach
are shown in Figs. 6-13. In which a continuous curve appears
in green color represents the boundary of the constant
workspace at® = 0°, the curves which are blue in color
represents the type I singularity and the curves which are in
red represents the type Il singularities. For all the eight
actuation schemes the type I singularities are appeared as
same, but the type II singularity has altered with actuation
scheme. The singularity curves for actuation schemel (RRR1-
RRR2-RRR3) shown in Fig. 6 is simple in nature and they are
lied near the boundary of the workspace, whereas for the
actuation scheme2 (RRR1-RRR2-RRR3) the singularities are
complex in nature as shown in Fig. 7. The singularity loci for
other actuations are shown in Figs. 8-13, which are altered
with the actuation scheme and are passing through the
different regions of the workspace.

The constant orientation workspace at @ = 0° for all the
eight actuation schemes are observed, from which it is
observed that the maximum possible workspace is same for all
the actuations which depends on geometric parameters and
joint constraints. However due the presence of complex
singularities the workspace is divided into some sub regions
and the size of the regions under singularities over the
workspace are varied from one actuation scheme to the other.
The global condition index (GCI) is a measure of quality of
workspace is registered different values for different actuation
schemes. The performance of actuation scheme 7(RRRI1-
RRR2-RRR3) is best when compared with other actuation
schemes which has attained the GCI of 0.1078, the actuation
scheme 8 (RRRI-RRR2-RRR3) has obtained the GCI of
0.0820 it is a poor performance among all the actuations for
the constant orientation workspace @=0°. The actuation
scheme 4 (RRRI1-RRR2-RRR3) has attained the good
performance with GCI of 0.1134 among all actuation schemes
for the constant orientation workspace of @=20°. From the
results shown in Table II it is observed that performance is
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greatly influenced by the choice of actuation for driving the
TABLE II
PERFORMANCE OF ACTUATION SCHEMES

mechanism.
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0.0982
0.0957
0.0920
0.0915
0.0840
0.0921
0.0879
0.0864

0.1019
0.0817
0.0918
0.1134
0.0904
0.1022
0.0999
0.0729

0.1019
0.0870
0.0897
0.1071
0.1015
0.0942
0.1078
0.0820

X(m)

Fig. 8 Singularity loci for actuation 3

Fig. 6 Singularity loci for actuation 1

X(m)

Fig. 9 Singularity loci for actuation 4

Fig. 7 Singularity loci for actuation 2

X (m)

Fig. 10 Singularity loci for actuation 5
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singularity loci for actuation schemel (RRR1-RRR2-RRR3) is
shown in Fig. 14, which appears near the boundary of the
workspace there by increasing the singularity free workspace
regions for enhanced applications; whereas for the actuation

complex in nature which divides the workspace in to more

scheme2 (RRR1-RRR2-RRR3) the Type II singularity loci is
segments as shown in Fig. 15.

! L]

|
o
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-l

it e St el el | B

|
|
|
|
| | | | | |
| | | | | |
L L __d___L_-_
|
|
|
|

i ol e i Kl |
| |

| | |
| | | | |
I I I I I
© o] < ] o~ - o

(w) A

Fig. 11 Singularity loci for actuation 6

X (m)

Fig. 14 Singularity loci of actuationl

Fig. 12 Singularity loci for actuation 7

Fig. 15 Singularity loci of actuation2

Fig. 13 Singularity loci for actuation 8

The singularity loci of all the eight actuation schemes for a
constant orientation workspace at @ = 20° are shown in Figs.

14-21. The Type I singularity (red in color) is same for all the

actuation schemes, whereas the Type II singularities (blue in
color) are varied with the actuation scheme. The Type II
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10

X(m)

Fig. 19 Singularity loci of actuation 6

Fig. 16 Singularity loci of actuation 3

Fig. 17 Singularity loci of actuation 4

Fig. 20 Singularity loci of actuation 7

X (m)

Fig. 18 Singularity loci of actuation 5

Fig. 21 Singularity loci of actuation 8
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V DESIGN OPTIMIZATION

A Genetic Algorithms

GA is a meta heuristic search algorithm that uses a
population of designs rather than a single design at a time and
utilizes the concept of natural selection and survival of the
fittest among biological structures. An initial randomized
population that consists of a group of chromosomes which
represent the problem variables; it produces new populations
through successive iterations using various genetic operators.

B Optimal Design Problem

A single objective optimization problem for maximizing the
global conditioning index as the fitness function is solved. The
optimization problem is formulated as

Max {GCI(x)}
Subjected to a+b+c <A (Constraint on manipulator size)

0, <0, <0

mini =

Y mini < Vi < Y max i

i=123
i=123 1)

max i

Ten simulation trials are performed using the MATLAB
GA toolbox; the GA parameter settings are given Table III.
The optimized GCI for each actuation scheme of the 3RRR
parallel manipulator is given in Table IV, in which the
geometric constraint a +b + ¢ < 9.3 is considered for the
example problem. The GCI for all the eight actuations has
greatly increased in the optimization case when compared
with non optimized GCI values of actuation schemes for the
randomly chosen geometric parameters. The actuation
schemel (RRR1-RRR2-RRR3) has attained the maximum
GCI  of 03028 for the design vector of
[a b c]™=[1.300 3.251 4.000]" among all the actuations.
The optimal convergence plots for all the eight actuation
schemes are shown in Figs. 22-29.

TABLE III
SIMPLE GA PARAMETERS
Parameter Setting

Population size 60
Maximum generations 100

Encoding type Real

Selection strategy Stochastic sampling
Cross over type Scattered
Mutation type Adaptive
TABLE IV

OPTIMAL PERFORMANCE OF ACTUATION SCHEMES

Act.no Actuation scheme GCI Design vector
1 RRRI-RRR2-RRR3 0.3028 1.300 3.251 4.000
2 RRR1-RRR2-RRR3 0.2506 1.300 1.308 3.493
3 RRRI-RRR2-RRR3 0.2253 1.300 3.145 3.004
4 RRRI-RRR2-RRR3 0.2993 1.300 3.767 3.962
5 RRR1-RRR2-RRR3 0.2222 1.314 3.146 3.957
6 RRRI-RRR2-RRR3 0.2544 1.300 4.000 3.476
7 RRR1-RRR2-RRR3 0.1929 1.414 2.709 3.265
8 RRR1-RRR2-RRR3 0.1927 1.301 3.810 3.985

GCl

GCI

GCl

Best: -0.30285 Mean: -0.30284
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01F +  Mean fitness
-
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+,
03 [* Fa by
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1 2 3
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Fig. 22 Convergence of GCI for actuation 1
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Fig. 23 Convergence of GCI for actuation 2
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Fig. 24 Convergence of GCI for actuation 3

2197



GCI

GCl

GCI

01

0.15

0.2

-0.25

Current best individual

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:12, 2015

Best: -0.29928 Mean: -0.29855

+  Bestfiness
-
r + n finess

h ¢ L I I L

)
10 20 30 40 50 60 70 80 90 100
Generation
Current Best Individual

1 2 3
Number of variables (3)

Fig. 25 Convergence of GCI for actuation 4

Best: -0.22218 Mean: -0.22178

0051
+  Bestfiiness
01 +  Mean finess
s
0.15¢%,
.,
S
D2, e
075 L L L L L L L L L )
0 10 20 30 40 50 60 70 80 90 100

Generation
Current Best Individual

Current best individual

Current best individual

2
Mumber of variables (3)

Fig. 26 Convergence of GCI for actuation 5

Best: -0.25442 Mean: -0.25442

+  Bestfiiness
L * Wean finess

. . . . . . . . . )
10 20 30 40 50 60 70 80 90 100
Generation
Current Best Individual

1 2 3
Mumber of variables (3)

Fig. 27 Convergence of GCI for actuation 6

Best: -0.19289 Mean: -0.19191

01,
+ Best fitness
A + Mean fitness
+
= .
B 0.15F N
*e,
s e,
(R ",“"’*v -,
QAT ST
02 L L | I I L L L L |
0 10 20 30 40 50 60 70 80 90 100
Generation
Current Best Individual
_ 4 T T T
o
E]
=]
=
=]
£
™
4
o
£
z
5
=]

1 2 3
MNumber of variables (3)

Fig. 28 Convergence of GCI for actuation 7

Best: -0.19272 Mean: -0.19261

0r

+  Besifitlness

005+ +  Mean fitness
a 1
+

0.15 ey b,
it
0.2 t t t 1 t L L L L )
0 10 20 30 40 50 60 70 80 90 100

Generation
Current Best Individual

Current best individual

1 2 3
Number of variables (3)

Fig. 29 Convergence of GCI for actuation 8

VI. CONCLUSION

The kinematic analysis of a planar 3-RRR parallel
manipulator with symmetric properties is analyzed with an
emphasis on actuation schemes. The kinematic singularities
and reachable workspaces of all the non-redundant actuation
schemes for a constant end-effecter orientation are observed.
In this problem the actuation scheme is also identified as one
of the design variables. It can be concluded that actuation
scheme affects the performance of the manipulator (GCI) and
size of the singularity free workspaces significantly. The
proposed method can also be implemented for other parallel
manipulators for singularity avoidance in required workspace
zones.
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