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Abstract—The last two decades witnessed some advances in the 

development of an Arabic character recognition (CR) system. Arabic 
CR faces technical problems not encountered in any other language 
that make Arabic CR systems achieve relatively low accuracy and 
retards establishing them as market products. We propose the basic 
stages towards a system that attacks the problem of recognizing on-
line Arabic cursive handwriting. Rule-based methods are used to 
perform simultaneous segmentation and recognition of word portions 
in an unconstrained cursively handwritten document using dynamic 
programming. The output of these stages is in the form of a ranked 
list of the possible decisions. A new technique for text line separation 
is also used. 
 

Keywords—Arabic handwriting, character recognition, cursive 
handwriting, on-line recognition.  

I. INTRODUCTION 
ACHINE simulation of human reading has been the 
subject of intensive research for the last three decades. 

The interest devoted to this field is not explained only by the 
exciting challenges involved, but also the huge benefits that  
a system, designed in the context of a commercial application, 
could bring.  

Handwriting is a skill that is personal to individuals. It 
consists of artificial graphical marks on a surface; its purpose 
is to communicate something [1]. It has continued to persist as 
a means of communication and recording information in day-
to-day life due to the convenience of paper and pen as 
compared to keyboards for numerous day-to-day situations. 
The Character Recognition (CR) is the task of transforming 
language represented in its spatial form of graphical marks 
into its symbolic representation. 

The recognition of handwritten characters is quite difficult 
due to the wide variability of hand printing and cursive script. 
Most of the efforts done in the field of character recognition 
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were dedicated to recognize Latin, Japanese and Chinese 
characters. The Arabic language differs greatly from other 
Latin languages not only in its characters cursiveness but also 
in the language structure as well. 

Unlike Latin characters, Arabic script is always written 
from right to left and no upper or lower case exists. Generally 
an Arabic word consists of one or more portions, and every 
portion has one or more characters. The discontinuities 
between points are due to some characters that are not 
connectable from the left side with the succeeding characters. 
Those characters appear only at the tail of connected portions, 
and the succeeding character forms the head of the next 
portion [2]. Many characters differ only by the presence and 
the number of dots above or below the main part of the 
character shape. Sometimes, the ambiguity of the positions of 
these dots in handwritten texts brings out many possible 
readings for one word. Moreover, every character has more 
than one shape, depending on its position within a connected 
portion of the word. According to this, Arabic CR systems 
still need more research to be established commercially [3].  

For a CR system, when the input device is a digitizer tablet 
that transmits the signal in real time (as in pen-based 
computers and personal digital assistants) or includes timing 
information together with pen position (as in signature 
capture) we speak of on-line or dynamic recognition. 
Whereas, when the input device is a still camera or a scanner, 
which captures the position of digital ink on the page but not 
the order in which it was laid down, we speak of off-line or 
image-based OCR. The Arabic handwriting recognition 
problem, either off-line or on-line, is very much challenging. 

Classically, on-line recognizers consist of a preprocessor,  
a classifier which provides estimates of probabilities for the 
different categories of characters (or other subword units) and 
a dynamic programming postprocessor, which eventually 
incorporates a language model [4]. The role of the 
postprocessor is to choose the best character category 
matching the context based on linguistics. We propose a rule-
based algorithm for the two early stages of an on-line 
recognizer of cursive Arabic handwriting. Rule-based 
methods were used to perform simultaneous segmentation and 
recognition of word portions using dynamic programming. 
The output of these stages is in the form of a ranked list of the 
possible decisions. In the future, linguistics can be used to 
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select the best decision from this list. 
The organization of this paper goes as follows: in section 2 

we give full description of the proposed system stages. 
Section 3 contains the results and conclusions and section 4 
contains the future work.  

II. SYSTEM DESCRIPTION  
Our on-line recognizer proposed stages are respectively: 

preprocessing, pattern definition, feature extraction, training 
and recognition stages. 

A. Preprocessing 
In this stage the handwritten document is broken up to text 

lines and to words or subwords. On-line English handwriting 
text line extraction techniques, depending on the y-axis 
histogram projection and character geometry (width, height, 
etc.) like those described in [5] and [6], do not function well 
when applied to Arabic handwriting due to the special 
characteristics of Arabic language described before. Thus, we 
thought of a new technique, more suitable to the Arabic 
language nature.  

A stroke is defined as all data-point samples drawn/written 
between a certain pen-down (Start of writing action) action 
and the following pen-up (Lifting the pen up after writing) 
action. Thus, a stroke may represent one or more character, or 
even  
a part of character, or sometimes a dot.  

By examining the states of successively written Arabic 
strokes (either main-type strokes or complementary-type like 
dots for example) we found them related spatially to each 
other by one of the following relations:  

1. Touching: then the two strokes should belong to the 
same word. 

2. Not touching but having an x-axis histogram overlap: 
then the two strokes should belong to the same word. 

3. Neither touching nor overlapping on x-axis: If the 
inter-stroke distance is less than the average stroke width, then 
the two strokes should belong to the same word. Otherwise, 
the two strokes should belong to two different words. 

As shown in the example in Fig. 1: 
• Strokes 1 and 2: neither touching nor overlapping but 

belong to the same word. 
• Strokes 2 and 5: neither touching nor overlapping but 

belong to two different words. 
• Strokes 1 and 3: overlapping and belong to the same 

word. 
• Strokes 7 and 8: touching and belong to the same 

word. 
 
The result of applying this word separation procedure is in 

the form of several independent groups of strokes. Each group 
of strokes contains the main and complementary strokes of the 
same word regardless the sequence/order by which they were 
written.  

As explained before in section 1, there are many Arabic 
characters having the same main body and differ only by the  

 
Fig. 1 The successive Arabic strokes states 

 
number and position of the associated complementary strokes 
(dots). Thus; we tended to simplify the classification process 
and decrease confusion by removing these dots. This step 
caused the number of defined patterns/classes to reduce. The 
test input patterns are recognized after erasing these dots to 
find a list of all possible classification decisions. A later stage 
is added to restore the dots and delete the inconvenient 
decisions from the list according to the Arabic language 
characteristics. 

B. Pattern Definition 
We worked on Naskh font patterns with many different 

writing techniques for each character in all its possible 
positions in the Arabic word (Isolated, Start, Middle and End 
forms). Patterns were defined without their dots. Some 
examples are shown in Fig. 2.  

 

 
Fig. 2 Examples of the writing techniques of 'MEEM' in all positions 

 

C. Feature Extraction 
Almost all the researchers working on the on-line 

handwriting recognition problem take the pen trajectory 
directions as the main feature representing the on-line 
handwriting and some of them make use of unsampled pen 
movements (in air) as in [7], [8] and [9].  

Depending on the directions, lengths, and pen-up/down 
movements of strokes, three freeman chain codes are defined 
as shown in the Fig. 3: eight long strokes (A–H), eight short 
strokes (a–h), eight pen-up (unsampled movement in air) 
movements (1-8) and one pen-up-down movement (0). In 
addition to this, an inter character movement representing the 
pen-up movement between the last pen-down stroke of the 
preceding character and the first pen-down stroke of the 
succeeding character is defined also. It is named pen-up 
movement ’9’. 
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Fig. 3 Chain codes for feature extraction 

 

D. Training 
For each document in the training stage, after 

preprocessing, strokes are manually segmented according to 
the pre-defined pattern shapes and are structurally simplified 
as a sequence of directions of the straight-line segments. 
These line segments directions are encoded by the three 
freeman chain codes. The resulting sequence of direction code 
is called a skeleton pattern. It is regarded as a simplified 
representation of the pen movement.  

For each defined pattern shape encountered in the training 
documents, all the representative skeleton patterns (frequently 
occurring) are grouped into a cluster and stored in a registry. 

E. Recognition 
After preprocessing the test document, words are tested 

sequentially. For each word, each main stroke (consisting of 1, 
2 or more characters) is passed to the feature extraction stage 
to extract the direction codes for the whole stroke. The 
direction code under test is compared element-by-element 
versus the skeleton patterns in the registry built during the 
training stage to detect the pattern shape/shapes comprising 
this stroke and the segmentation locations as well.  

This comparison between each two skeleton patterns is 
performed using a dynamic programming technique called 
"Minimum Edit Distance" [10]. The algorithm of this 
technique goes as follows: 

 
where the ins-cost is the cost of insertion error, del-cost is the 
cost of deletion error and subst-cost is the cost of substitution 
error. These costs are decided for the three direction groups: 
Group 1{A, B, C, D, E, F, G, H}, Group 2{a, b, c, d, e, f, g, 
h} and Group 3{1, 2, 3, 4, 5, 6, 7, 8, 9} as explained in Table 
1. 

The insertion and the deletion costs are the same and are 
equal to half the substitution cost since the substitution error 
can be considered as a deletion followed by an insertion. 

 
 
 

 The factors '4' and '16' come from the assumption that long 
strokes (represented by Group 1 directions) are almost twice 
the length of short strokes (represented by Group 2 directions) 
thus moving from Group 2 axes to Group 1 axes (and vice 
versa) may be multiplied by square this factor (22=4) to 
increase the substitution penalty reasonably while in the case 
of moving from Group 2 or Group 1 axes to Group 3 axes 
(and vice versa) is not logically accepted thus the substitution 
penalty should be increased significantly by multiplying  
a factor ((22)2 = 16).  

A cost function 'Distance' is defined to be equal to the 
minimum-edit-distance between the test skeleton pattern and 
the training skeleton pattern multiplied by a factor 
representing the amount of resemblance between them. This 
amount of resemblance is determined by string matching to 
find out the number of matches between the skeleton patterns 
from the registry and the test vector. 

matches ofNumber 
patternskeleton  ofLength distance-edit-minimumtan ×=ceDis   (1) 

 
Thus, as the number of matches increases, the value of 

resemblance factor tends to 1 and remains the minimum-edit-
distance measure only. While, as the number of matches 
decreases, the value of resemblance factor increases greatly 
and the 'Distance' value will be multiples of the minimum-
edit-distance. 

The basic idea is to use a dynamic programming algorithm 
to find a globally optimal set of cuts through the input test 
string (feature vector) which minimizes the defined cost 
function. The set of cuts and their precise shape are found 
simultaneously. 

The segmentation-recognition procedure goes as follows: 
The whole test skeleton pattern will first be compared to each 
training skeleton patterns in the registry element-by-element 
to choose the best first segmentation point having the 
minimum edit distance and maximum resemblance with this 
training pattern (start-end points of the first character).  

 

TABLE I 
THE SUBSTITUTION COST CALCULATION METHOD 

Source String 
Element 

Target String 
Element Substitution Cost 

Equal 'x' ∈ Group1 Equal 'x' ∈ Group1 Zero 
Equal 'x' ∈ Group2 Equal 'x' ∈ Group2 Zero 
Equal 'x' ∈ Group3 Equal 'x' ∈ Group3 Zero 
Equal 'x' ∈ Group1 Equal 'y' ∈ Group1, 

'y' ≠ 'x' 
Absolute angle 
between 'x' and 'y' 

Equal 'x' ∈ Group2 Equal 'y' ∈ Group2, 
'y' ≠ 'x' 

Absolute angle 
between 'x' and 'y' 

Equal 'x' ∈ Group3 Equal 'y' ∈ Group3, 
'y' ≠ 'x' 

Absolute angle 
between 'x' and 'y' 

Equal 'x' ∈ Group1 Equal 'y' ∈ Group2 4 * Absolute angle 
between 'x' and 'y' 

Equal 'x' ∈ Group2 Equal 'y' ∈ Group1 4 * Absolute angle 
between 'x' and 'y' 

Equal 'x' ∈ Group1 
or Group2 

Equal 'y' ∈ Group3 16 * Absolute angle 
between 'x' and 'y' 

Equal 'x' ∈ Group3 Equal 'y' ∈ Group1 
or Group2 

16 * Absolute angle 
between 'x' and 'y' 

Function Min-Edit-Distance (target, source) returns min-distance 
n  Length(target) 
m  Length(source) 
Create a distance matrix distance [n+1, m+1] 
distance [0,0]  0 
for each column i from 0 to n do 
    for each row j from 0 to m do 
         distance [i,j]  MIN (distance [i-1,j] + ins-cost(targeti), 

                  distance [i-1,j-1] + subst-cost(sourcej, targeti), 
                                    distance [i,j-1] + del-cost(sourcej)) 
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This comparison is performed against all training pattern 
shapes. Thus, more than one possible answer can be found. 
The probable pattern shapes of the first character in the stroke 
are stored as roots of individual trees. Each tree is completed 
by comparing the unidentified part of the feature vector 
against the registry again and again to find the probable 
pattern shapes (and the next segmentation points) of the 
second, third, and fourth characters till the whole stroke is 
totally recognized. 

We can obtain a ranked list. Each list member shows  
a choice of the possible patterns (without dots) representing 
the stroke. The rank is computed by accumulating the value of 
the cost function 'Distance' associated with each recognized 
pattern.  

The last step left in this stage is the dot restoration. By 
checking the validity of the number and location of the dots 
assigned to each character choice in each list member, we can 
remove the inconvenient choices. A new ranked list is created 
after renaming the valid patterns according to the associated 
dots (for example: Nabra + dot up will be renamed as Noon). 

III. RESULTS AND CONCLUSION 
The database we used for training is composed of 317 

words (1814 characters), written by four writers the test 
database is composed of 94 words (435 characters) written by 
other four writers.  

The correct choices of the test strokes occur within the 
Top50 list members 92% of the time (95% of the time for the 
test characters) as explained in Table II. 

 
TABLE II 

THE RESULTS SUMMARY 

 Total Number Correctly 
Recognized 

Characters 435 415 
Strokes 305 279 
Words 94 70 

 
 The 5% loss in the number of recognized characters is the 

consequence of two problems: 
1. Imperfect segmentation: Not having a large number of 

training samples (representative skeleton patterns) of 
each pattern shape defined may cause incorrect 
segmentation decision for test patterns having large 
degree of variety. 

2. Wrong dot assignment: writer drifts and strokes 
overlap makes it hard to assign dots to the strokes at 
the dot restoration step. An example is shown below 
in Fig. 4. 

 
Fig. 4 Writer drifts while placing dots 

IV. FUTURE WORK 
Increasing training samples from multi writers and avoiding 

overlaps is expected to give much better results.  
Single output can be obtained by introducing a Language 
Model stage. Further more, the final character recognition 
accuracy can be enhanced and a large degree of writing 
variability can be encountered by using a multiple classifier 
system. Their outputs can be fused to have a final decision. 
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