
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1484

Abstract—The last two decades witnessed some advances in the

development of an Arabic character recognition (CR) system. Arabic
CR faces technical problems not encountered in any other language
that make Arabic CR systems achieve relatively low accuracy and
retards establishing them as market products. We propose the basic
stages towards a system that attacks the problem of recognizing on-
line Arabic cursive handwriting. Rule-based methods are used to
perform simultaneous segmentation and recognition of word portions
in an unconstrained cursively handwritten document using dynamic
programming. The output of these stages is in the form of a ranked
list of the possible decisions. A new technique for text line separation
is also used.

Keywords—Arabic handwriting, character recognition, cursive
handwriting, on-line recognition.

I. INTRODUCTION
ACHINE simulation of human reading has been the
subject of intensive research for the last three decades.

The interest devoted to this field is not explained only by the
exciting challenges involved, but also the huge benefits that
a system, designed in the context of a commercial application,
could bring.

Handwriting is a skill that is personal to individuals. It
consists of artificial graphical marks on a surface; its purpose
is to communicate something [1]. It has continued to persist as
a means of communication and recording information in day-
to-day life due to the convenience of paper and pen as
compared to keyboards for numerous day-to-day situations.
The Character Recognition (CR) is the task of transforming
language represented in its spatial form of graphical marks
into its symbolic representation.

The recognition of handwritten characters is quite difficult
due to the wide variability of hand printing and cursive script.
Most of the efforts done in the field of character recognition

Manuscript received March 26, 2007.
Randa I. Elanwar is Researcher Assistant in computers and systems

Department, Electronic research institute, Cairo, Egypt (phone: 202-
33310515; e-mail: eng_r_i_elanwar@yahoo.com).

Mohsen A. Rashwan is Professor of Digital Signal Processing, Electronics
and communication Department, Cairo University, Cairo, Egypt (e-mail:
Mohsen_Rashwan@rdi-eg.com).

Samia A. Mashali is Head of computers and systems Department,
Electronic research institute, Cairo, Egypt (e-mail: samia@eri.sci.eg).

were dedicated to recognize Latin, Japanese and Chinese
characters. The Arabic language differs greatly from other
Latin languages not only in its characters cursiveness but also
in the language structure as well.

Unlike Latin characters, Arabic script is always written
from right to left and no upper or lower case exists. Generally
an Arabic word consists of one or more portions, and every
portion has one or more characters. The discontinuities
between points are due to some characters that are not
connectable from the left side with the succeeding characters.
Those characters appear only at the tail of connected portions,
and the succeeding character forms the head of the next
portion [2]. Many characters differ only by the presence and
the number of dots above or below the main part of the
character shape. Sometimes, the ambiguity of the positions of
these dots in handwritten texts brings out many possible
readings for one word. Moreover, every character has more
than one shape, depending on its position within a connected
portion of the word. According to this, Arabic CR systems
still need more research to be established commercially [3].

For a CR system, when the input device is a digitizer tablet
that transmits the signal in real time (as in pen-based
computers and personal digital assistants) or includes timing
information together with pen position (as in signature
capture) we speak of on-line or dynamic recognition.
Whereas, when the input device is a still camera or a scanner,
which captures the position of digital ink on the page but not
the order in which it was laid down, we speak of off-line or
image-based OCR. The Arabic handwriting recognition
problem, either off-line or on-line, is very much challenging.

Classically, on-line recognizers consist of a preprocessor,
a classifier which provides estimates of probabilities for the
different categories of characters (or other subword units) and
a dynamic programming postprocessor, which eventually
incorporates a language model [4]. The role of the
postprocessor is to choose the best character category
matching the context based on linguistics. We propose a rule-
based algorithm for the two early stages of an on-line
recognizer of cursive Arabic handwriting. Rule-based
methods were used to perform simultaneous segmentation and
recognition of word portions using dynamic programming.
The output of these stages is in the form of a ranked list of the
possible decisions. In the future, linguistics can be used to

Simultaneous Segmentation and Recognition of
Arabic Characters in an Unconstrained On-Line

Cursive Handwritten Document
Randa I. Elanwar, Mohsen A. Rashwan, and Samia A. Mashali

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1485

select the best decision from this list.
The organization of this paper goes as follows: in section 2

we give full description of the proposed system stages.
Section 3 contains the results and conclusions and section 4
contains the future work.

II. SYSTEM DESCRIPTION
Our on-line recognizer proposed stages are respectively:

preprocessing, pattern definition, feature extraction, training
and recognition stages.

A. Preprocessing
In this stage the handwritten document is broken up to text

lines and to words or subwords. On-line English handwriting
text line extraction techniques, depending on the y-axis
histogram projection and character geometry (width, height,
etc.) like those described in [5] and [6], do not function well
when applied to Arabic handwriting due to the special
characteristics of Arabic language described before. Thus, we
thought of a new technique, more suitable to the Arabic
language nature.

A stroke is defined as all data-point samples drawn/written
between a certain pen-down (Start of writing action) action
and the following pen-up (Lifting the pen up after writing)
action. Thus, a stroke may represent one or more character, or
even
a part of character, or sometimes a dot.

By examining the states of successively written Arabic
strokes (either main-type strokes or complementary-type like
dots for example) we found them related spatially to each
other by one of the following relations:

1. Touching: then the two strokes should belong to the
same word.

2. Not touching but having an x-axis histogram overlap:
then the two strokes should belong to the same word.

3. Neither touching nor overlapping on x-axis: If the
inter-stroke distance is less than the average stroke width, then
the two strokes should belong to the same word. Otherwise,
the two strokes should belong to two different words.

As shown in the example in Fig. 1:
• Strokes 1 and 2: neither touching nor overlapping but

belong to the same word.
• Strokes 2 and 5: neither touching nor overlapping but

belong to two different words.
• Strokes 1 and 3: overlapping and belong to the same

word.
• Strokes 7 and 8: touching and belong to the same

word.

The result of applying this word separation procedure is in

the form of several independent groups of strokes. Each group
of strokes contains the main and complementary strokes of the
same word regardless the sequence/order by which they were
written.

As explained before in section 1, there are many Arabic
characters having the same main body and differ only by the

Fig. 1 The successive Arabic strokes states

number and position of the associated complementary strokes
(dots). Thus; we tended to simplify the classification process
and decrease confusion by removing these dots. This step
caused the number of defined patterns/classes to reduce. The
test input patterns are recognized after erasing these dots to
find a list of all possible classification decisions. A later stage
is added to restore the dots and delete the inconvenient
decisions from the list according to the Arabic language
characteristics.

B. Pattern Definition
We worked on Naskh font patterns with many different

writing techniques for each character in all its possible
positions in the Arabic word (Isolated, Start, Middle and End
forms). Patterns were defined without their dots. Some
examples are shown in Fig. 2.

Fig. 2 Examples of the writing techniques of 'MEEM' in all positions

C. Feature Extraction
Almost all the researchers working on the on-line

handwriting recognition problem take the pen trajectory
directions as the main feature representing the on-line
handwriting and some of them make use of unsampled pen
movements (in air) as in [7], [8] and [9].

Depending on the directions, lengths, and pen-up/down
movements of strokes, three freeman chain codes are defined
as shown in the Fig. 3: eight long strokes (A–H), eight short
strokes (a–h), eight pen-up (unsampled movement in air)
movements (1-8) and one pen-up-down movement (0). In
addition to this, an inter character movement representing the
pen-up movement between the last pen-down stroke of the
preceding character and the first pen-down stroke of the
succeeding character is defined also. It is named pen-up
movement ’9’.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1486

Fig. 3 Chain codes for feature extraction

D. Training
For each document in the training stage, after

preprocessing, strokes are manually segmented according to
the pre-defined pattern shapes and are structurally simplified
as a sequence of directions of the straight-line segments.
These line segments directions are encoded by the three
freeman chain codes. The resulting sequence of direction code
is called a skeleton pattern. It is regarded as a simplified
representation of the pen movement.

For each defined pattern shape encountered in the training
documents, all the representative skeleton patterns (frequently
occurring) are grouped into a cluster and stored in a registry.

E. Recognition
After preprocessing the test document, words are tested

sequentially. For each word, each main stroke (consisting of 1,
2 or more characters) is passed to the feature extraction stage
to extract the direction codes for the whole stroke. The
direction code under test is compared element-by-element
versus the skeleton patterns in the registry built during the
training stage to detect the pattern shape/shapes comprising
this stroke and the segmentation locations as well.

This comparison between each two skeleton patterns is
performed using a dynamic programming technique called
"Minimum Edit Distance" [10]. The algorithm of this
technique goes as follows:

where the ins-cost is the cost of insertion error, del-cost is the
cost of deletion error and subst-cost is the cost of substitution
error. These costs are decided for the three direction groups:
Group 1{A, B, C, D, E, F, G, H}, Group 2{a, b, c, d, e, f, g,
h} and Group 3{1, 2, 3, 4, 5, 6, 7, 8, 9} as explained in Table
1.

The insertion and the deletion costs are the same and are
equal to half the substitution cost since the substitution error
can be considered as a deletion followed by an insertion.

 The factors '4' and '16' come from the assumption that long
strokes (represented by Group 1 directions) are almost twice
the length of short strokes (represented by Group 2 directions)
thus moving from Group 2 axes to Group 1 axes (and vice
versa) may be multiplied by square this factor (22=4) to
increase the substitution penalty reasonably while in the case
of moving from Group 2 or Group 1 axes to Group 3 axes
(and vice versa) is not logically accepted thus the substitution
penalty should be increased significantly by multiplying
a factor ((22)2 = 16).

A cost function 'Distance' is defined to be equal to the
minimum-edit-distance between the test skeleton pattern and
the training skeleton pattern multiplied by a factor
representing the amount of resemblance between them. This
amount of resemblance is determined by string matching to
find out the number of matches between the skeleton patterns
from the registry and the test vector.

matches ofNumber
patternskeleton ofLength distance-edit-minimumtan ×=ceDis (1)

Thus, as the number of matches increases, the value of

resemblance factor tends to 1 and remains the minimum-edit-
distance measure only. While, as the number of matches
decreases, the value of resemblance factor increases greatly
and the 'Distance' value will be multiples of the minimum-
edit-distance.

The basic idea is to use a dynamic programming algorithm
to find a globally optimal set of cuts through the input test
string (feature vector) which minimizes the defined cost
function. The set of cuts and their precise shape are found
simultaneously.

The segmentation-recognition procedure goes as follows:
The whole test skeleton pattern will first be compared to each
training skeleton patterns in the registry element-by-element
to choose the best first segmentation point having the
minimum edit distance and maximum resemblance with this
training pattern (start-end points of the first character).

TABLE I
THE SUBSTITUTION COST CALCULATION METHOD

Source String
Element

Target String
Element Substitution Cost

Equal 'x' ∈ Group1 Equal 'x' ∈ Group1 Zero
Equal 'x' ∈ Group2 Equal 'x' ∈ Group2 Zero
Equal 'x' ∈ Group3 Equal 'x' ∈ Group3 Zero
Equal 'x' ∈ Group1 Equal 'y' ∈ Group1,

'y' ≠ 'x'
Absolute angle
between 'x' and 'y'

Equal 'x' ∈ Group2 Equal 'y' ∈ Group2,
'y' ≠ 'x'

Absolute angle
between 'x' and 'y'

Equal 'x' ∈ Group3 Equal 'y' ∈ Group3,
'y' ≠ 'x'

Absolute angle
between 'x' and 'y'

Equal 'x' ∈ Group1 Equal 'y' ∈ Group2 4 * Absolute angle
between 'x' and 'y'

Equal 'x' ∈ Group2 Equal 'y' ∈ Group1 4 * Absolute angle
between 'x' and 'y'

Equal 'x' ∈ Group1
or Group2

Equal 'y' ∈ Group3 16 * Absolute angle
between 'x' and 'y'

Equal 'x' ∈ Group3 Equal 'y' ∈ Group1
or Group2

16 * Absolute angle
between 'x' and 'y'

Function Min-Edit-Distance (target, source) returns min-distance
n Length(target)
m Length(source)
Create a distance matrix distance [n+1, m+1]
distance [0,0] 0
for each column i from 0 to n do
 for each row j from 0 to m do
 distance [i,j] MIN (distance [i-1,j] + ins-cost(targeti),

 distance [i-1,j-1] + subst-cost(sourcej, targeti),
 distance [i,j-1] + del-cost(sourcej))

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:5, 2007

1487

This comparison is performed against all training pattern
shapes. Thus, more than one possible answer can be found.
The probable pattern shapes of the first character in the stroke
are stored as roots of individual trees. Each tree is completed
by comparing the unidentified part of the feature vector
against the registry again and again to find the probable
pattern shapes (and the next segmentation points) of the
second, third, and fourth characters till the whole stroke is
totally recognized.

We can obtain a ranked list. Each list member shows
a choice of the possible patterns (without dots) representing
the stroke. The rank is computed by accumulating the value of
the cost function 'Distance' associated with each recognized
pattern.

The last step left in this stage is the dot restoration. By
checking the validity of the number and location of the dots
assigned to each character choice in each list member, we can
remove the inconvenient choices. A new ranked list is created
after renaming the valid patterns according to the associated
dots (for example: Nabra + dot up will be renamed as Noon).

III. RESULTS AND CONCLUSION
The database we used for training is composed of 317

words (1814 characters), written by four writers the test
database is composed of 94 words (435 characters) written by
other four writers.

The correct choices of the test strokes occur within the
Top50 list members 92% of the time (95% of the time for the
test characters) as explained in Table II.

TABLE II

THE RESULTS SUMMARY

 Total Number Correctly
Recognized

Characters 435 415
Strokes 305 279
Words 94 70

 The 5% loss in the number of recognized characters is the

consequence of two problems:
1. Imperfect segmentation: Not having a large number of

training samples (representative skeleton patterns) of
each pattern shape defined may cause incorrect
segmentation decision for test patterns having large
degree of variety.

2. Wrong dot assignment: writer drifts and strokes
overlap makes it hard to assign dots to the strokes at
the dot restoration step. An example is shown below
in Fig. 4.

Fig. 4 Writer drifts while placing dots

IV. FUTURE WORK
Increasing training samples from multi writers and avoiding

overlaps is expected to give much better results.
Single output can be obtained by introducing a Language
Model stage. Further more, the final character recognition
accuracy can be enhanced and a large degree of writing
variability can be encountered by using a multiple classifier
system. Their outputs can be fused to have a final decision.

REFERENCES
[1] Re’jean Plamondon and N. Srihari, “On-line and off-line handwriting

recognition: a comprehensive survey,” IEEE transactions on pattern
analysis and machine intelligence, vol. 22, No. 1, January 2000.

[2] Yasser Hifny, “On-line Arabic handwriting recognition,” M.S. thesis,
Dept. Communication and Electronics Eng., Cairo Univ., Egypt, 2000.

[3] Hazem Y. Abdelazim, “Recent trends in Arabic OCR,” in Proc. 5th
Conference of Engineering Language, Ain Shams University, 2005.

[4] R. A. Cole, J. Mariani, H. Uszkoreit, A. Zaenen, and V. Zue, Survey of
the State of the Art in Human Language Technology. Center for Spoken
Language Understanding CSLU, Carnegie Mellon University,
Pittsburgh, PA, 1995.

[5] E.H. Ratzlaff, “Inter-line Distance Estimation and Text Line Extraction
For Unconstrained Online Handwriting,” in Proc. 7th International
Workshop on Frontiers in Handwriting Recognition, pp. 33–42, 2000.

[6] Gareth Loudon, Olle Pellijeff, and LI Zhong-Wei, “A Method for
Handwriting Input and Correction on Smartphones,” in Proc. 7th
International Workshop on Frontiers in Handwriting Recognition, pp.
481–485, 2000.

[7] H. Shimodaira, T. Sudo, M. Nakai, and S. Sagayama, “On-line Overlaid-
Handwriting Recognition Based on Substroke HMMs,” in Proc. ICDAR,
2003.

[8] J. Lee, J. Kim, and J. H. Kim, “Data driven design of HMM topology for
on-line handwriting recognition,” in Proc. 7th International Workshop
on Frontiers in Handwriting Recognition, pp. 239–248, 2000.

[9] Han Shu, “On-Line Handwriting Recognition Using Hidden Markov
Models,” M.S. thesis, Massachusetts Institute of Technology, 1997.

[10] Daniel Jurafski and James H. Martin, “Speech and Language Processing:
An introduction to Natural Language processing, computational
Linguistic and Speech recognition,” Prentice-Hall, 2000, pp. 156.

