International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

Simulation of Utility Accrual Scheduling and
Recovery Algorithm in Multiprocessor Environment

A. Idawaty, O. Mohamed, A. Z. Zuriati

Abstract—This paper presents the development of an event based
Discrete Event Simulation (DES) for a recovery algorithm known
Backward Recovery Global Preemptive Utility Accrual Scheduling
(BR_GPUAS). This algorithm implements the Backward Recovery
(BR) mechanism as a fault recovery solution under the existing
Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain
for multiprocessor environment. The BR mechanism attempts to take
the faulty tasks back to its initial safe state and then proceeds to re-
execute the affected section of the faulty tasks to enable recovery.
Considering that faults may occur in the components of any system; a
fault tolerance system that can nullify the erroneous effect is
necessary to be developed. Current TUF/UA scheduling algorithm
uses the abortion recovery mechanism and it simply aborts the
erroneous task as their fault recovery solution. None of the existing
algorithm in TUF/UA scheduling domain in multiprocessor
scheduling environment have considered the transient fault and
implement the BR mechanism as a fault recovery mechanism to
nullify the erroneous effect and solve the recovery problem in this
domain. The developed BR_GPUAS simulator has derived the set of
parameter, events and performance metrics according to a detailed
analysis of the base model. Simulation results revealed that
BR_GPUAS algorithm can saved almost 20-30% of the accumulated
utilities making it reliable and efficient for the real-time application
in the multiprocessor scheduling environment.

Keywords—Time Utility Function/ Utility Accrual (TUF/UA)
scheduling, Real-time system (RTS), Backward Recovery,
Multiprocessor, Discrete Event Simulation (DES).

[. INTRODUCTION

NE of the main approaches for fault recovery is the BR

mechanism [1]-[S]. The BR mechanism attempts to take
the system back to its initial safe state and then proceeds to re-
execute the affected section of the faulty task. Fig. 1
elaborates the detail of the BR mechanism which is based on
returning the execution of the task to a predetermined state.
The task can return to the initial reset state or to one of a set of
possible states after the error detection occurred. The BR
mechanism is widely integrated in real time scheduling
algorithms such as EDF and RM [4]-[8]. In order to execute
the faulty section once again, the task restores its initial state
and re-executes the partial affected section from its initial state
before the error occurs to enable recovery.

A. Idawaty, O. Mohamed, and A. Z. Zuriati is with the Department of
Computer Science and Information Technology, University Putra Malaysia,
UPM, Serdang, 43400 Selangor, Malaysia (e-mail: idawaty@ upm.edu.my,
mothman@ upm.edu.my, zuriati@ upm.edu.my).

Checkpoint
Memory

I
| Checkpoint

43—5 Output

Retry Error
Detection

¥

Input —» Execution

Fig. 1 Logical representation of BR mechanism [9]

This paper considers the BR mechanism to be integrated
into the developed TUF/UA scheduling algorithms for
multiprocessor environments. The scheduling objectives are to
maximize the total accrued utility to the system in the
stipulated erroneous environment.

II. LITERATURE REVIEW

Fault recovery phase is an attempt to substitute the
erroneous system state with one which is error free. Two main
approaches for fault recovery are the Backward Recovery
(BR) and the Forward Recovery (FR) mechanism [1]-[15].
The BR mechanism attempts to take the system state to a safe
previous state and then proceeds to re-execute the affected
task. This paper considered the BR mechanism implemented
in TUF/UA scheduling domain to enable recovery when
transient fault occurs in the system.

A. Backward Recovery Mechanism

There are two types of the BR mechanism which are the
static and dynamic [9]. The static BR mechanism has been
used in real time scheduling domain in [1]-[3], [9]. Referring
to Fig. 1, in the static approach of the BR mechanism, the task
is roll back to its initial state before the re-execution procedure
is executed.

A dynamic BR mechanism on the other hand, dynamically
creates checkpoints that are the snapshots of the state at
various points during the execution [1]-[3]. The dynamic
approach of the BR mechanism is also known as
checkpointing. It requires the task state to be monitored at
regular checkpoint interval so that when the erroneous request
is detected, the re-execution procedure is taken from the
nearest checkpoint interval. Thus, a set of particular
checkpoint interval must be identified in the task model. This
research focuses on the static approach of the BR mechanism
to adapt with the task and model being used in the TUF/UA
scheduling domain that excludes the regular checkpoint
interval in its task model.

The second approach of fault recovery in RTS is the

1686

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

Forward Recovery (FR) mechanism [10]-[15]. FR is based on
the use of error correcting techniques and Abortion Recovery
(AR) mechanism that aims to nullify the effects of the faulty
execution and perform some re-initialization of the resources,
rather than performing the whole computation once again. In
the AR mechanism, after an error is detected in a task, the
system continues from an erroneous task state by aborting the
faulty task and operates in degraded mode.

It is observed that the existing TUF/UA scheduling
algorithm uses the Abortion Recovery (AR) mechanism that
simply abort the erroneous task as their fault recovery solution
[10]-[15]. The erroneous task is aborted due to the fail stop
failures of the node and network failures to nullify the error
when the task encounters an error during its execution. None
of the existing algorithm in multiprocessor environment
considered the transient fault and implements the BR
mechanism as recovery solution. The next section elaborates
the fault recovery mechanism used in the TUF/UA scheduling
domain.

B. TUF/UA Scheduling Domain

A TUF of a task specifies the quantified value of utility
gained by the system after the completion of a task [16], [17].
With reference to Fig. 2, in the event of the task being
computed at time A, which denotes the range between the start
of execution and the stipulated deadline, the system gains a
positive utility. However, if the task is completed at time B,
which causes failure of deadline compliance requirement, the
system acquires zero utility [19]. A TUF integrates the
importance and urgency of a task. Mapping this on Fig. 2,
urgency is denoted as the completion time on X-axis whilst
importance is measured by the utility on the Y-axis.

When the task characteristic is expressed using TUFs, the
value of utility for each executed task is accumulated and the
total attained utility are measured. The scheduling
optimization goal is to maximize the sum of the tasks” accrued
utilities which is known as Utility Accrual (UA) [16].

Utility

Anypositive L _ _ -
number

startof @
Execution
Completion

time A

Deadline Time

Completion
time B

Fig. 2 Time/Utility Function

Scheduling algorithms that consider the UA as a criterion
are known as TUF/UA scheduling algorithms [19]. The
TUF/UA scheduling algorithms maximize the total accrued
utilities when capacity surpluses load. However, in overloaded
condition, the TUF/UA scheduling algorithms execute tasks
that are more important from which greater utility can be

accrued than those which are more urgent. Tasks that are less
important with lower utility are aborted and cause some
graceful performance degradation during overloaded
conditions.

C.Fault Recovery Approach in TUF/UA Scheduling
Domain

This paper focuses on the fault recovery mechanism in the
TUF/UA scheduling domain. A detail review on the TUF/UA
algorithms in [10]-[15] shows that the fault recovery
mechanism is integrated into the multiprocessor scheduling
environment. The first column of Table I depicts the existing
algorithms that consider fault in its scheduling decision. These
include the Aborted-assured Utility Accrual (AUA),
Consensus Utility Accrual (CUA), and Real Time Gossip
(RTG) algorithms. These algorithms consider the fault
tolerance in a distributed wireless embedded system
environment. The failure models considered in these
algorithms are the fail-stop node failures and communication
failures. Nodes are subject to crash failures that causes lose in
its state memory and the process halts. A node will be
considered to have failed when it is assumed to be
permanently disconnected from the rest of the network. A
communication failure occurs when any message does not
reach its desired destination due to a physical break in the
communication medium, communication buffer overflow,
parity error, etc.

TABLE1
FAULT TOLERANCE IN TUF/UA SCHEDULING DOMAIN

algorithm task model (distributable) ~ fault model recovery mechanism
collaborative independent node network AR BR
AUA - v v - v -
RTG - v v v v -
CUA v - v - v -

It is observed that the task model utilizes by these
algorithms is distributable type of tasks. A distributable task
has a globally unique number identity that requests for local
resources (within its node) and remote resources at other
nodes in a distributed environment. The distributable tasks can
be scheduled in two paradigms that are the node independence
scheduling and collaborative scheduling [12]. In the
independent scheduling, each node in a distributed system
schedules the tasks that it hosts without any communication
with other nodes [14]. A task makes a request to a remote
resource and propagates its scheduling parameters to the
destination node. The destination node then uses these
propagated parameters to perform its own local scheduling
[12]. The AUA algorithm considers tasks that are scheduled at
nodes using the propagated task scheduling parameters
without any interaction with other nodes [14]. The RTG
solves the discovery of failure nodes by using a gossip
protocol for propagation of task scheduling parameters to the
neighbor nodes via multicasting in a wireless mobile ad-hoc
(MANET) environment [10].

In collaborative scheduling, distributed nodes collaborate to
construct a system-wide task schedules. The CUA algorithm

1687

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

considers collaborative scheduling where distributed nodes
explicitly cooperate to construct a schedule that anticipates
node crash failure [13]. The similarities of these algorithms
are elaborated in Table I. The fail-stop failures models are
used which include the arbitrary task failures, node failures,
and message loss (due to network failure). These TUF/UA
scheduling algorithms have developed with the AR
mechanism as their fault recovery mechanism to accommodate
the fail-stop failures; none have directly addressed the BR
mechanism as their recovery solution for transient fault.

III. DEVELOPED RECOVERY ALGORITHM

For the purpose of implementing the BR mechanism with
the existing multiprocessor framework, two events are
designed as follows:

e Fault Model
e Fault Recovery Model

A. Fault Model

The fault model of a system is a set of assumptions on the
type of faults that are possible to occur in the system. Once the
system fault model is defined, the approach for implementing
the fault recovery mechanisms in the system is addressed. In
this paper, the fault model and the BR recovery mechanism
developed in the Responsive Algorithm (RA) algorithm [3] is
used to be implemented in the TUF/UA scheduling

environment. The fault model considers the following

assumptions:

1. A fault detection mechanism exists to detect transient
faults.

2. A task may encounters an error while holding a resource
such as request execution failure or any external triggers
that occurs to the respective resource.

3. The transient faults that occur in a request can be
effectively recovered by re-execution of the affected
request.

4. The exponential distribution is used to characterize the
arrival of aperiodic faults. The commonly used
distributions in RTS are the exponential distribution,
Weibull distribution and uniform distribution [2], [9].

5. After a fault is detected, a roll back time i.e.,
RollBackTime is taken by the faulty task to its initial state
before a recovery procedure is initiated as shown in Fig.
3. The computation requirement i.e., the RollBackTime of
recovery request is known at the instant of its arrival.

6. The re-execution procedure can be preempted by a larger
PUD task.

B. Fault Recovery Model

The BR mechanism is implemented to provide solution for
fault recovery in the TUF/UA scheduling domain. The BR
mechanism is adopted from the existing RA algorithm [3] for
uniprocessor environment. The RA algorithm provides a
responsiveness level for handling a recovery request and
provides a set of priorities at which the recovery request
should be re-executed. The scheduling objective is to
maximize the total accrued utility to the system in transient

fault environment.

As any system has finite resources, the ability to schedule
recovery requests while meeting TUF requirements is limited.
An overloaded condition may arise if the recovery requests
have to be re-executed together with the error free requests.
Under such conditions, the decision of whether or not a
recovery request can be scheduled will depend on five
consecutive tests as stated below:

1.Feasibility Test

Feasibility test is run to ensure that only the feasible
recovery request is re-executed in the system. This is done by
calculating the slack time of the recovery request's task. The
slack time is defined as the remaining execution time before
the task deadline if the recovery request is to be scheduled in
the system. Referring to Fig. 4, the slack time is denoted in the
SlackTime parameter. The time taken to re-execute the
recovery request is equal to its HoldTime. If the recovery
request is to be scheduled instantly at current time (i.e.,
sclock), the SlackTime is calculated as TerminateTime -
(sclock+HoldTime). The current time is represented as sclock.

HoldTime
N
"""""" P RoliBackTime
nsecs & -
-~
nsecs
Initial Termination TIMe
time time
requests Error Detected Error stop

a resource

(Fault Detection event) (Fault Recovery event)

Fig. 3 Fault Model

SlackTime
HoldTime €.

~

Initial Termination 1Me
time time

re-execute a recovery completed

FecOVery request (sclock + HoldTime)

[sclock }

(Fault Recovery event)

Fig. 4 Responsiveness Test

In the example shown in Fig. 4, the SlackTime is a positive
value that indicates the recovery request is feasible to be
scheduled.

2.Criticality Test

After the recovery request has successfully tested through
the feasibility test, the criticality test is initiated. This test
checks whether the re-execution of the recovery request
possess the highest Potential Utility Density (PUD) among the
other competitor tasks. PUD forms a crucial standard metric

1688

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

for operating advancement proposed by [16]. PUD of a task
measures the amount of utility that can be accrued per unit
time by execution of the respective task. It essentially
measures the Return on Investment (Rol) for executing the
task at current simulation time. There are two possibilities for
the recovery request as follows:

i. The recovery request possesses the highest PUD among
the other competitor tasks. This indicates that the recovery
request is critical and need to be scheduled for re-
execution.

ii. There exists the other request from the other task that
possess the highest PUD. This shows that the recovery
request is less critical and eligible to be scheduled later
and being put in a queue or to be aborted. The decision of
whether to abort or to insert in a queue is depending on
the subsequent responsiveness test. The taxonomy of the
procedures taken for a recovery request in a task is
depicted in Fig. 5.

3.Responsiveness Test

After a recovery request is identified to be less critical, the
responsiveness test is initiated. This test is executed only when
recovery request is less critical. This is shown in Fig. 5. The
purpose of executing this phase is to discover the impact to the
system towards the existence of a recovery request. There are
two levels of responsiveness test results as follows:

i. Non-Intrusive Recovery Level

This level indicates that the system is possible to schedule
the recovery request without violation any other competitor
tasks deadlines. Since the recovery request is less critical and
non-intrusive to the processor, it will be inserted into a queue
and not necessarily scheduled instantly.

ii. Intrusive Recovery Level

This level indicates that the system becoming highly loaded
to schedule the recovery request thus may violate the
competitor tasks deadlines. Referring to Fig. 5, for this level,
the migration characteristics of the recovery request is
checked. In multiprocessor environment, if the recovery
request can migrate, the responsiveness test is run in other
processor in the system. For the uniprocessor scheduling
environment, the recovery request will be aborted due to the
intrusiveness.

The global scheduling allows tasks to migrate from one
processor to other processor in a scheduling event. Taking
advantages on this characteristic, the BR mechanism is further
explored to the other processor if the local processor is highly
overloaded to accommodate the recovery request. Only after
the local processor is discovered as intrusive, the scheduler in
global scheduling subsequently will search for an idle and
identical resource at the other processors. Under such
conditions, the decision to schedule a recovery request at the
other processor will depend on two consecutive tests as stated
below:

4.Availability Test
The availability test is executed to search for the idle and

identical resources at the other processors. If all resources are
busy, the recovery request is put into the sufficiency test to
decide whether the recovery request is necessary to be
migrated to the other processor.

5.Sufficiency Test

This test is executed to ensure that if the recovery request is
to be migrated to another processor, the load in the respective
processor is sufficient to re-execute the recovery request
without violating any competitor tasks deadline. If all the
resources are insufficient, then the recovery request is not
migrated and will be locally queued. If a recovery request
went through these tests, it is confirmed that the recovery
request is not suitable to be scheduled immediately and must
be inserted into the queue to be scheduled later. If the recovery
request is to be migrated to the queue located at another
processor, the workload of the queue in the respective
processor is sufficient to re-execute the recovery request
without violating the task deadline. If all resources are
insufficient, then the recovery request is not migrated and is
inserted into the queue located at the local processor. The
abovementioned procedures taken in this phase are illustrated
in Fig. 5.

IV. SIMULATION MODEL

We developed a Discrete Event Simulator (DES) to verify
the performance of BR_GPUAS algorithm. The rationale of
using DES lies in the fact that most of the research in TUF/UA
scheduling paradigm are based on the discrete event
simulation tools [15]-[17]. Therefore, in order to precisely
model the fault recovery algorithms, DES written in C
language is the best method to achieve this objective. Fig. 6
shows the entities involve in the developed simulation
framework. It consists of a stream of 1000 tasks, a scheduler
and multiple processors. The simulation parameters are given
in Table II.

The M/M/C queuing model is used to indicate a
multiprocessor system with C processor that have unlimited
queue capacity and an infinite population of potential task
arrivals. Generally, the inter arrival times denoted by A and the
service times per server denoted by p are exponentially
distributed [18]. To reflect the M/M/C with the multiprocessor
scheduling model, C is the number of processors in the system
which is also known from the MAX_CPU parameter as shown
in Table III. The inter arrival time, denoted as A is defined in
the unit of tasks/secs measures the number of tasks that
arrived into the system in one second. The service rate per
processor denoted as p measures the number of tasks that is
being processed by each processor within one second.

For multiprocessor, the maximum service rate for all
processors is equal to Cp. Note that inter service time for all
processors Cp is calculated according to the number of
processors C. From the general estimation of the system
behavior for M/M/C queuing model, the system is considered
to be stable when the arrival rate A is less than the maximum
service rate Cp i.e., A < Cp. Since the same value of C_AVG
is used in the multiprocessor environment, each service rate

1689

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

is calculated 1/ C_AVG that is equal to 2 tasks/secs. Hence, the column of Table III.
maximum service rate for two, four, and eight processors is 4,
8, and 16 tasks/secs respectively. This is shown in the second

recoveny request [tests)
7 I"easihre infeasible
r', L \'\
Local i -‘
Processor ; Thelargest PUD Hn‘llhelargﬁlPUD Abort the recovery request ||
i l :
; Re-execute 4
! the recovery request i
I
Ay
‘-;-___-__.______ Hnn—[ntruswe /
,4-. ™ /
e \ ‘; ’;
o7 Mignate s, Insertthe uestinutlist,
Other o l . i Non-Migrate rawva‘rreq t;
Processor o s, & .-"
(GlobalScheduling) 1 Checkthe resource ~_ ; L
in mherpmc&nr oL Abort the recovery request I
/ ey T e e T -
~
.
- allrsnurtsareomlﬁieg
. idlerespurce exist .
A ~
1 . Sufficient utlist queue exists
\ Migrateand re-execute MIqu ‘x
1 therecovery regquest areinsufficient)
[} l Insert the recovery request ;
% inthe suffidient wtlist queue p
ML Insert the recovery request K
v, inthelocal utist .

Fig. 5 Taxonomy of the developed BR mechanism

enque algorithm is
by order of anival to
the assigned utlist queue

L

request | request | request
&A1) | [T2LEM} | (T1,R2)

request | request
[T&RM) | ([T9,R2)

Fig. 6 Simulation Framework [17]

1690

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

TABLE I
SIMULATION PARAMETERS

Parameter Value Description

Maximum number of tasks in the
system
Maximum number of CPU

MAX_TASK 1000

MAX_CPU 1,2,4 and 8

load 1-10 Range of average load in the system
The maximum utility of a task. It
follows normal distribution with
mean value of each task is 10 and the
variance is 10.
Tasks inter arrival time follows
exponential distribution with mean
value of 0.50 secs.

Max_AU Normal(10,10)

Exponential

C_AVG 0.50)

TABLE III
PARAMETER ESTIMATION IN M/M/C QUEUING MODEL

Parameters
Number of CPU

Cu (tasks/secs) p=r/p < C
2 p <1
4 p <2
8 p <4
16 p<8

[S

From the literature, the system is considered to be stable
when the arrival rate A is less than the maximum service rate
Cu i.e., A < Cp [18]. Equivalently, the offered load p = Mp <
C. Thus, the offered load p must be less than the number of
processors C. Hence, the general estimation of the simulation
model, the system is considered to be under load of when the
offered load p < C. In the simulation model, the value of p is
stored in the load parameter and the value of C is depicted in
the MAX_CPU. Therefore, the rough estimation for the stable
behavior of the multiprocessor system is for the value of load
< MAX_CPU. Hence, in all the experiment the range value of
load is selected as 1 < load < 10. For every number of
MAX_CPU, the system is started to be overloaded starting
when load = MAX_CPU. Referring to Table III, for dual core
processors, the system is estimated to be overloaded when
load = 2. In the quad core processor environment, the system
is expected to be overloaded when load = 4. For eight core
platform, the system is considered as overloaded when load =
8. Note that these loads are the approximation value that may
be considered as a rough guide to the behavior of the system.
Practically, the results observed from the simulation are used
to measure the performances of the system.

The Accrued Utility Ratio (AUR) is defined as the ratio of
accrued aggregate utility to the maximum possibly attained
utility. Each task i has its maximum value of utility which is
denoted as MaxAU(i). After a task i have completed its
execution, it will yield a value denoted as Utility (i). These
values are then accumulated for all tasks i.e., MAX_TASKS.

V. RESULTS

This section presents the results for step TUF task set. Fig.
7 depicts the AUR results under an increasing load for 10%
error rate imposed in the system. A lower utility accrued by all
the scheduling algorithms as the load increases. As the load
increases, the number of executed tasks plus the recovery

tasks to be scheduled becomes highly overloaded in the
system causing the lower PUD tasks to be aborted due to the
limited resources consumption. A larger amount of aborted
tasks produces more zero utility tasks and ultimately a low
utility accrued to the system as the load increases.

Step TUF-BR Mech in Multipr Scheduli

(Error Rate :10%)
= —————%

AUR (%)

1 2 3 4 b1 [7 8 9 10
Average Load

—=—BR_GPUASS —&— GPUASE
—&— BR_GPUAS4 —8— GPUASY
--d&- BR_GPUAS) --®- GPUAS2
—#—BRPUAS

Fig. 7 Results for BR_GPUAS

The overall performances of the BR mechanism in the
multiprocessor scheduling environment have achieved better
performances by producing a higher utility accumulated to the
system as compared to the uniprocessor scheduling (i.e.,
BRPUAS) for the entire load range. This is because a higher
number of available resources are equipped in the dual, quad
and eight core processors as compared to BRPUAS that runs
in a single processor. A larger number of processors provide a
larger number of resources to schedule the intact tasks
together with the recovery tasks in the system. Moreover, the
BR_GPUAS algorithm can reduce the number of abortion that
possibly occurs to the recovery task by migrating it to the
other available processors.

In dual core platform, the system is estimated to be
overloaded at load equals to 2. Referring to Fig. 7, at this load,
in error free environment GPUAS can maximally achieved
96.58% of the accumulated utilities. In erroneous environment
with 10% error rate imposed in the system, BR_GPUAS2
significantly achieved 71.25% that preserved 25.33% of the
accumulated utilities. At the highest load, BR_ GPUAS2 can
save 20.86% of the accumulated utilities.

In quad core platform, the system is estimated to be
overloaded when load is equal to 4. From Fig. 7, when the
load is equals to 4, the BR_GPUAS4 acquired 70.71% and
saved 28.92% of the accumulated utilities as GPUAS4 can
maximally achieved 99.63% of utilities in the error free
environment. The BR_GPUAS2 moderately achieved 48.52%
of utilities. The BR_ GPUAS4 can save 22.19% as compared
to the BR_GPUAS?2 algorithm. This is because BR_ GPUAS4
can reduce the number of abortion that possibly occurs to the
recovery task in a processor by migrating it to the other
available processors. As the number of processor increases,

1691

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:10, No:9, 2016

more resources are available to accommodate the migrated
recovery tasks. At the highest load i.e., load = 10,
BR_GPUAS4 significantly achieved 52.84% of the
accumulated utilities while the BR_GPUAS2 achieved
20.86% of the accumulated utilities. Therefore, BR_ GPUAS4
can save 31.98% of the accumulated utilities as the load
increased to the highest load in the system.

In eight core platforms, the highest utility accumulated by
the system can be achieved by the BR_ GPUASS for the entire
load range. The BR_GPUASS algorithm has accumulated
85.09% of AUR when load is equal to 1. At the highest load at
10, the BR_GPUASS algorithm acquired 71.12% of the
accumulated utilities. In the BR_GPUASS algorithm, the BR
mechanism is executed in the global scheduling which
executed the migrate tasks with highly available resources in
eight core processors environment. The recovery tasks are
capable for migration due to the insufficient load to process
the recovery tasks in the local processor. As the number of
processor increases, more resources are available to
accommodate the migrated recovery tasks. This is why the
highest utility accumulated by B GPUASS for the entire load
range.

VI. CONCLUSION

The performances of the BR mechanism implemented in
multiprocessor environment known as BR_GPUAS are
measured using DES. Simulation results revealed that
BR_GPUAS algorithm is proven to save almost 20-30% of the
executed tasks when maximum error rate 10% is imposed in
the system thus accrued a higher utility making it reliable and
efficient for the real-time application.

ACKNOWLEDGMENT

This research was funded by the Ministry of Higher
Education Malaysia and Universiti Putra Malaysia under
Fundamental Research Grant FRGS 08-01-15-1722FR.

REFERENCES

[1] S. Punnekat, A. Burns, and R. Davis, “Analysis of checkpointing for real
time systems,” Real Time System, vol. 20, no. 1, pp. 83102, 2001.

[2] P. Alvarez, “Scheduling fault recovery operations in real time systems,”
Journal of Computer System, vol. 6, no. 1, pp. 51-61, 2002.

[3] P. Alvarez and D. Mosse, “A responsiveness for scheduling fault
recovery in real time systems,” in Proc. 5th IEEE Real Time Technology
and Application Symposium, Vancouver, 1999, pp. 4-13.

[4] R. Pathan, Scheduling Algorithms for Fault Tolerant Real Time Systems.
PhD Thesis, Chalmers University of Technology, 2010.

[51 G.A. Lima, Fault Tolerance in Fixed Priority Hard Real Time Systems.
PhD Thesis, University of York, 2003.

[6] B. Sahoo and A. Ekka, “Backward fault recovery in real time distributed
systems of periodic tasks with timing and precedence constraint,” in
Proc. of International Conference on Emerging Trends in High
Performance Architecture, Algorithms and Computing (HiPAAC’07),
Chennai, 2007, pp. 124-130.

[7] F. Zhang, and A. Burns, “Schedulability analysis for real time
systems with EDF scheduling,” IEEE Trans on Computers, vol. 58, no.
9, pp. 1250-1258, 2009.

[8] H. Aydin, R. Mosse, and P. Alvarez, “Optimal reward-based scheduling
for periodic real time tasks,” IEEE Journal of Computer, vol. 50, no. 2,
pp. 111-130, 2001.

[91 S. Punnekat, Schedulability Analysis for Fault Tolerant Real Time
Systems. PhD Thesis, University of York, 1997.

[10] K. Han, B. Ravindran, and E. Jensen, “RTG-L: Dependably scheduling
real time distributed threads in large scale, unreliable networks,” in
Proc. 13th IEEE Pacific Rim International Symposium on Dependable
Computing (PDRC’07), Melbourne, 2007, pp. 314-321.

[11] H. Cho, B. Ravindran, and E. Jensen, “Garbage collector scheduling in
dynamic, multiprocessor real time system,” IEEE Transactions on
Parallel and Distributed System, vol. 20, no. 6, pp. 845-856, 2009.

[12] S. Fahmy, B. Ravindran, and E. Jensen, “On collaborative scheduling of
distributable real time threads in dynamic, networked embedded
systems,” in Proc. 11th IEEE Symposium on Object Oriented Real Time
Distributed Computing(ISORC’08), Orlando, 2008, pp. 485-491.

[13] B. Ravindran, B. Anderson and E. Jensen, “On distributed real-time
scheduling in networked embedded systems in the presence of crash
failures,” in Lecture Notes in Computer Science, 4761/2007, Springer
Berlin/Heidelberg, 2007, pp. 67-81.

[14] E. Curley, Recovering From Distributable Thread Failures with Assured
Timeliness in Real Time Distributed System. Master Thesis, Virginia
Polytechnic Institute and State University, 2007.

[15] E. Jensen, E. Locke, and H. Tokuda, “A time driven scheduling model
for real time system,” in Proc. 6th IEEE Real Time Symposium, San
Diego, California, 1985, pp. 112-212.

[16] P. Li, Utility Accrual Real Time Scheduling: Models and Algorithms.
PhD Thesis, Virginia Polytechnic Institute and State University, 2004.

[17] A. Idawaty, O. Mohamed, and A.Z. Zuriati, “Enhanced preemptive
global utility accrual real time scheduling algorithms in multicore
environment,” Journal of Computer Sciences, vol. 11, no. 12, pp. 1009—
1107, 2015.

[18] J. Banks, J. Carson, B. Nelson, and D. Nicol, Discrete Event System
Simulation. 3" edition, Prentice Hall, 2000.

[19] A. Idawaty, S. Shamala, O. Mohamed, and A.Z. Zuriati, “A Discrete
Event Simulation Framework for Utility Accrual Scheduling Algorithm
in Uniprocessor Environment,” Journal of Computer Sciences, vol. 7,
no. 8, pp. 1133-1140, 2011.

1692

