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 
Abstract—In many cases, theoretical treatments are available for 

models for which there is no perfect physical realization. In this 
situation, the only possible test for an approximate theoretical 
solution is to compare with data generated from a computer 
simulation. In this paper, Monte Carlo tools are used to study and 
compare the elementary particles models. All the experiments are 
implemented using 10000 events, and the simulated energy is 13 
TeV. The mean and the curves of several variables are calculated for 
each model using MadAnalysis 5. Anomalies in the results can be 
seen in the muons masses of the minimal supersymmetric standard 
model and the two Higgs doublet model. 

 
Keywords—Feynman rules, hadrons, Lagrangian, Monte Carlo, 

simulation. 

I. INTRODUCTION 

ARGE hadrons collider (LHC) enable us to probe the 
fundamental nature of matter by observing exotic particles 

produced by high-energy collisions. Typically, hundreds of 
particles are produced, and in most processes of interest, their 
momentum ranges over many orders of magnitude. All the 
particle species of the standard model (SM), and maybe some 
beyond, are involved [1]. A full analytical treatment is out of 
reach. There are two reasons for this: first, there is a limited 
understanding of the non-perturbative phase of quantum 
chromodynamics (QCD), or, in the other words, of how 
colorless hadrons are built from the colored quarks and 
gluons. Second, due to the large number of the Feynman 
diagrams even at the tree-level, it is very difficult to find all 
amplitudes of the involved processes, the number of the 
Feynman diagrams increases exponentially with the number of 
the particles that are involved in the experiment. Therefore, 
the simulation of signal and background processes plays a 
major role in searching and finding new phenomena at the 
LHC. Monte Carlo event simulation is the most powerful tool 
has been used to simulate the processes and the results of the 
high-energy collisions. Although, the most of the produced 
particles are undetectable due to its life time (decay time) is 
very short, but, by comparing the stable particles that are 
detected in the colliders with the simulated results, the 
properties of unstable particles can be reconstructed. This 
approach is used to confirm the existence of the undetectable 
and unstable particles such as Higgs boson [2]. Monte Carlo is 
very important in almost any particle physics experiment and 
are used to prototype the experiment without spending many 
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millions of dollars. They can be used to show that the 
proposed physics signal will be detectable among the many 
known physics effects and determine what kind of 
computation resources will be needed to manage the data. 
Moreover, there are tens of the elementary particles models, 
Monte Carlo simulation can be used to study and compare the 
distributions of the masses, energy and directions of the 
particles that are generated from each model. Any significant 
anomalies between the real data and the simulated data 
indicate that a new phenomenon and a new physics should be 
considered and a new model could be suggested. Although 
Monte Carlo has slow convergence in few dimensions, but it is 
much more efficient in computer time than the numerical 
integrations necessary over the innumerable functions entering 
the problems, detector, and theory. Once a Monte Carlo events 
sample is generated, it can be used "as if it is data" over and 
over again to get plots not thought up beforehand. Fig. 1 
shows the relation between the real data and the generated 
data by using the Monte Carlo tools [3]. 
 

 

Fig. 1 The relation between real and virtual data 

II. LAGRANGIAN 

Technically, a particle physics model can be written in 
several different formulations, but, despite appearances, the 
Lagrangian is one of the easiest and most compact ways of 
presenting the theory. The Lagrangian can be derived from the 
difference of kinetic and potential energy. It captures all the 
dynamics of the system and allows us to determine many 
useful properties such as averages and dynamic behavior [4]. 
Lagrangian of any elementary particles model has several 
properties: 
(1) Invariant under the Poincaré group and certain symmetry 

groups, 
(2) Naturalness: all the symmetry terms can be a part from 

the Lagrangian, 
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(3) Translational invariance, therefore, it only depends on the 
fields and their derivatives, 

(4) The total probability is conserved [5]. 
Equations (1) - (11) describe the Lagrangian of the standard 

model (SM), it is a mathematical description of four types of 
interactions: The strong interactions, the electromagnetic 
interactions, the weak interactions, and the Yukawa 
interactions. The first three types of interactions are mediated 
by vector-boson (spin-1) force carriers: eight massless gluons 
mediate the strong interactions, one massless photon mediates 
the electromagnetic interactions, and the three massive W+, 
W−, and Z bosons mediate the weak interactions. 
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Lagrangian can be used to obtain the type of  the motion for  

a system by applying variational calculus to the action S which 
is the integral of the Lagrangian. For problems with expected 
symmetries or conserved quantities, we require that the 
Lagrangian remains invariant under the corresponding 
transformations. When a given transformation leaves the form 
of the Lagrangian invariant, we call that transformation a 
symmetry [6]. Noether’s theorem allows us to derive 
conservation laws, including conserved charges and currents 
from symmetries in the Lagrangian. Despite the success of the 
standard model, it is incomplete theory. There are several 
phenomena, theoretical and experimental results are not 
explained by the standard model, such as: gravity, dark matter, 
dark energy, neutrino masses, proton radius puzzle, and 
hierarchy problem [7]. Thus, new models that would modify 
the standard model in ways subtle enough to be consistent 
with existing data are proposed. New models such as: Minimal 
Supersymmetric Standard Model (MSSM), two-Higgs-
Doublet Model (2HDM), Higgs Effective Field Theory 
(HEFT), and Minimal Walking Technicolor (MWT). 

III. FEYNMAN RULES 

Lagrangian is used to deduce Feynman rules and calculate 
scattering amplitudes, and the input of the particle physics 
simulators are the Feynman rules and the related parameters. 
Therefore, FeynRules package has been used to extract the 
Feynman rules from any given Lagrangian, it provides all the 
necessary ingredients to generate the model file for several 
Monte Carlo tools. FeynRules package needs four main steps 
to generate Feynman rules: define the particles, describe the 
parameters, write the Lagrangian of a model and output all the 
information in the format required by the Monte Carlo code 
[8]. All the particles (symbols) that appear inside the 
Lagrangian must be properly declared. For example, physical 
particles W-boson and the upper quarks must be declared in 
the scope "M$ClassesDescription" as following: 

 
M$ClassesDescription = { 
 
V[3] == { 
ClassName -> W, 
SelfConjugate -> False, 
Mass -> {MW, Internal}, 
Width -> {WW, 2.085}, 
ParticleName -> "W+", 
AntiParticleName -> "W-", 
QuantumNumbers -> {Q -> 1}, 
PDG -> 24,  
PropagatorLabel -> "W", 
PropagatorType -> Sine, 
PropagatorArrow -> Forward, 
FullName -> "W" 
}, 
 
F[3] == { 
ClassName ->uq, 
ClassMembers -> {u, c, t}, 
Indices -> {Index[Generation], Index[Colour]}, 
FlavorIndex -> Generation, 
SelfConjugate -> False, 
Mass -> {Mu, {MU, 2.55*^-3}, {MC,1.27},  
Width -> {0, 0, {WT,1.50833649}}, 
QuantumNumbers -> {Q -> 2/3}, 
PropagatorLabel -> {"uq", "u", "c", "t"}, 
PropagatorType -> Straight, 
PropagatorArrow -> Forward, 
PDG -> {2, 4, 6},  
ParticleName -> {"u", "c", "t" }, 
AntiParticleName -> {"u~", "c~", "t~"}, 
FullName -> {"u-quark", "c-quark", "t-quark"} 
 }, 
…. 
}; 
 

Each particle has several options, for example the decay 
rate (width) for w-boson is 2.085 and the quantum number 
(QuantumNumbers) is 1. The full description of the particles 
options is available in FeynRules manual [9]. The Lagrangian 
parameters can be declared in the class M$Parameters. For 
example, the electric coupling constant and the Cabibbo angle 
can be declared as following: 
 
M$Parameters = { 
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ee == {  
ParameterType -> Internal,  
Value -> Sqrt[4 Pi aEW],  
InteractionOrder -> {QED,1},  
TeX -> e,  
Description -> "Electric coupling constant" 
 }, 
 
cabi == { 
ParameterType -> External, 
BlockName -> CKMBLOCK, 
OrderBlock -> 1, 
Value -> 0.227736, 
TeX -> Subscript[, c], 
Description -> "Cabibbo angle" 
 }, 
….. 
}; 
 

The option Parameter Type can be internal or external; if 
the value is internal (as the electric coupling constant), it 
means that the constant depends on other parameters (in this 
case, it depends on the electroweak constant). The third step is 
the Lagrangian of the model, and it can be written using 
Mathematica and FeynRules functions. For example, The 
kinetic terms for the new scalars: 
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which can be written as 

 
1/2 del[p1, mu] del[ p1, mu] – 1/2 MM1^2 p1^2 

 
I uvbar.Ga[mu].DC[uv, mu]- Muvuvbar.uv 

 
where del[ ..., mu] is the space-time derivative, Ga[mu] is the 
FeynRules symbol for the Dirac matrix (yμ), DC is the 
covariant derivative and bar is added to the anti-particles. The 
Feynman rules of the new sector can be obtained by the 
function FeynmanRules[ LNew ]. The last step exports a given 
model directly to various matrix element generators by using 
the FeynRules interfaces such as WriteUFO[LNew ] for UFO 
format [10]. 
 

TABLE I 
THE NUMBER OF PROCESSES FOR EACH COLLISION 

Collision HEFT SM 2HDM MSSM 

pp>all all 75 75 935 304 

pp> j jj 97 97 293 97 

pp> a a 5 4 4 4 

pp>leptlept~ 20 20 44 20 

pp > l+ l- 8 8 16 8 

pp>l+ l+ l- l- 15 12 72 12 

p> all all 41 39 143 152 

 

IV. SIMULATION RESULTS 

In this section, four models are studied and compared: The 
standard model (SM), Higgs effective field theory (HEFT), 
two-Higgs doublet model (2HDM), and minimal 
supersymmetric standard model (MSSM). MadGraph 5 is used 
to mimic what happens in the detectors, while MadAnalysis 5 
is used to draw the curves and interpret the results [11]-[13]. 
Table I and II show the number of processes and diagrams 
generated by the four models. 

 
TABLE II 

THE NUMBER OF DIAGRAMS FOR EACH COLLISION 

Collision HEFT SM 2HDM MSSM 

pp>all all 126 126 4058 501 

pp> j jj 781 781 7565 781 

pp> a a 9 8 8 8 

pp>leptlept~ 28 28 124 28 

pp > l+ l- 16 16 112 16 

pp>l+ l+ l- l- 490 480 34512 480 

p> all all 41 39 155 152 

 
TABLE III 

THE MEAN FOR EACH MEASUREMENT 

Variable HEFT SM 2HDM MSSM 

PT ( l[1] ) 37.0 37.0 36.5 36.4 

ETA ( l[2] ) 0.007 0.007 0.026 0.001 

M( e+ e- ) 47.2 47.2 47.3 46.2 

M ( mu+ mu- ) 15.1 15.1 4.0 7.4 

Cross Section 843.6 843.6 852.4 851.9 

 

 

Fig. 2 The distribution of two electrons invariant mass 
 
To compare the models, 10000 events are generated for 

each experiment with center-of-mass energy 13 TeV. Table III 
shows the mean of the momentum transverse of the leading 
lepton, the pseudo-rapidity of the next to leading lepton, two 
electrons invariant mass, two muons invariant mass and the 
cross section for each model. The distribution of the previous 
variables is described in Figs. 2-5. The results indicate that the 
most significant difference is the distribution of two muons 
invariant mass. 
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Fig. 3 The distribution of two muons invariant mass 
 

 

Fig. 4 The distribution of the momentum transverse of the leading 
lepton 

 

 

Fig. 5 The distribution of the pseudo-rapidity of the next to leading 
lepton 

V. CONCLUSION 

With Monte Carlo tools, it became possible to carry out 
simulations of models which were intractable using theoretical 
techniques. As a result, computer simulations have become 

another way to understand the experimental results, and in 
other instances, simulations provide data with which 
theoretical models may be compared. In this study, three tools 
are used to compare the elementary particles models. The 
FeynRules package is used to generate the Feynman Rules, 
MadGraph 5 is used to mimic what happens in the detectors, 
and MadAnalysis 5 is used to draw the curves and interpret the 
results. 
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