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Abstract—Particle damping is a technique to reduce the 

structural vibrations by means of placing small metallic particles 
inside a cavity that is attached to the structure at location of high 
vibration amplitudes. In this paper, we have presented an analytical 
model to simulate the particle damping of two dimensional transient 
vibrations in structure operating under high centrifugal loads. The 
simulation results show that this technique remains effective as long 
as the ratio of the dynamic acceleration of the structure to the applied 
centrifugal load is more than 0.1. Particle damping increases with the 
increase of particle to structure mass ratio. However, unlike to the 
case of particle damping in the absence of centrifugal loads where 
the damping efficiency strongly depends upon the size of the cavity, 
here this dependence becomes very weak.  Despite the simplicity of 
the model, the simulation results are considerably in good agreement 
with the very scarce experimental data available in the literature for 
particle damping under centrifugal loads.  
 

Keywords—Impact damping, particle damping, vibration control, 
vibration suppression.  

I. INTRODUCTION 
ARTICLE impact damping (PID) is a passive mean of 
vibration control in which small metallic or ceramic 

particles are placed inside a cavity that is attached to the main 
structure at the place of high vibration amplitudes. Vibration 
energy is dissipated as a result of frictional losses and 
momentum exchange, when particles make inelastic collisions 
with the walls of the cavity and other particles. This method is 
particularly suitable in extreme environments [1] as there is a 
very little chance of surface degradation or loss of material 
properties as opposed to the case of more traditional ways of 
vibration damping, for example, constrained layer damping, 
frictional devices etc.  The damping is achieved as long as the 
particles are capable of moving and making impacts. 
However, in environments such as encountered in a gas 
turbine engine, there are not only very high temperatures 
involved but the structures have to go through tremendous 
centrifugal loads also. So, the challenging question arises 
whether the particles will be able to move and make impacts 
under such high centrifugal loads or not? Eric M. Flint [2] has 
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shown by performing a series of experiments on particle 
damping under varying centrifugal loads that this damping 
technique indeed works in such harsh environments. So far, 
no effort has come forward that can prove analytically or 
numerically that the particle damping is a viable solution for 
vibration control under high centrifugal loads. We believe that 
the particles cannot move by sliding as the sliding friction is 
very high because of high centrifugal force involved. 
However, we do believe that particles are still capable of 
moving but through pure rolling motion as the effective 
coefficient of rolling friction is usually smaller than 
coefficient of sliding or Coulomb friction. Based on this basic 
idea, we present a simple analytical model for particle 
damping of two dimensional transient vibrations in structures 
operating under centrifugal loads. The model takes into 
account both the normal as well as oblique impacts, so the 
impact friction has been taken care of. The model is 
implemented by writing a code in Matlab and the simulation 
results are compared with the reported experimental results 
[2]-[3]. Looking at the simplicity of the model, the results are 
very encouraging as the agreement between the theory and the 
experiment is remarkable. We believe that the method 
developed can provide a good initial guess for implementation 
of particle damping under centrifugal loads to minimize the 
expensive trial and error experimental testing.  

II. MATHEMATICAL MODELING 

A. Basic Model and Governing Differential Equations 
The model consists of a two degrees of freedom (2 dof), 

uncoupled spring-mass system with an internal rectangular 
cavity of length 1l  and width 2l  as shown in Fig. 1. The 

cavity holds a single particle of effective mass pm  and radius 
r . A constant centrifugal force N is acting on the system in a 
direction that is perpendicular to the plane of vibration as 
shown in the Fig. 1. The origin of coordinates lies at the 
center of the cavity. When the system is disturbed from its 
static equilibrium position, it starts vibrating in its 
fundamental mode. The effective (modal) stiffness K and 
effective mass M of the 2 dof system depend upon the 
condition whether the effective particle mp is moving or not. 
Due to presence of large centrifugal force N, we assume that 
the particle is never able to overcome the frictional force 
(Coulomb force) developed so and hence cannot slide. 
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Fig. 1 A schematic of 2 degrees of freedom particle damping system 

under centrifugal load 
 

However, the inertial force acting on the particle can be of 
such value that it can overcome the force developed due to 
rolling friction. Therefore, the particle can move by 
undergoing pure rolling motion and hence has the chance to 
make impact with the walls of the cavity. We further assume 
that due to presence of centrifugal force, the particle can never 
leave the floor (plane of the paper) of the cavity and its axis of 
rotation always lies in the plane of the paper. Initially, let us 
suppose that the particle is lying at the center of the cavity. Let 
the structure is released from rest with the initial 
displacements xou  and you from the static equilibrium 

position in the x and y directions respectively. For subsequent 
motion of the particle mp and the structure, we will have two 
cases.  
Case 1: Inertial force acting on pm ≤ Force due to rolling 

friction. 
In this case the particle remains stick to the structure and 
moves in the same way as the structure moves in both x  and 
y  directions. If in this case the effective mass and effective 

stiffness of the system is denoted by 1M and 1K  respectively 

then its circular frequency will be given by
1

1
1 M

K=ω . If the 

displacements in  x  and y  directions are given by xu  and 

yu  respectively then governing differential equations of 
motion both for the particle and the structure are given by:  

 

02 2
11 =++ iii uuu ωζω &&&  where yxi ,=                           (1)( 

1) 
In the above equation, the over dots show the time derivatives 
and ζ is the intrinsic damping ratio of the material. 

Case 2: Inertial force acting on pm > Force due to rolling 

friction. 

The particle will start rolling. In this case, the effective 
mass of the system and its effective stiffness will be denoted 
by 2M and 2K  respectively and its circular frequency will be 

given by
2

2
2 M

K=ω . Note that 21 MMmp −= . If the 

angular displacements of the particle in x and y directions are 

px,α and py ,α respectively and its linear displacements in 

these directions are pxu , and pyu , respectively, then the 

differential equation governing the motion of pm is given by: 
 

)sgn( ,, pii
r

ippi uuN
r

rurmI &&&&&& −−=
μα  where yxi ,=  (2) 

In the above equation, rμ is the coefficient of rolling friction 
and I is the moment of inertia of the particle and is given 
by 2

5
2 rmI p= . Note that rμ has the dimension of length. 

The differential equation governing the motion of 2M is 
given by: 

)sgn(2 ,
2

2
22 pii

r
iii uuN

rM
uuu &&&&& −−=++

μωζω  yxi ,=  

(3) 
The term )sgn( , pii uu && − on right sides of (2) and (3) is 

included to ensure that the sign of rμ is always such that it 
opposes the relative velocity of the particle and the structure. 
Also for pure rolling motion of the particle, we must have to 
satisfy the following two equations also: 
 

piipi ruu ,, α&&&&&& −=−  where yxi ,=  (4) 

piipi ruu ,, α&&& −=− where yxi ,=  (5) 

 
During course of its motion, the particle pm  can make an 

inelastic impact with any of the cavity walls. Table I gives the 
criterion for the particle to make an impact with a particular 
wall of the cavity. If after impact, the ratio of the velocity of 
the particle relative to M2 to the velocity of M2 is less or equal 
to a tolerance ε (we chose ε =10-2 as with this value the error 
in calculation of damping was negligible but number of 
impacts reduced appreciably) then we call it a sticking 
condition i.e. the particle and the structure move together in 
the same way as governed by (1). Table I also gives the 
separation criteria for the particle when it sticks to a particular 
wall after an impact. In Table I, xa and ya stand for 
acceleration of structure in x and y directions respectively. 
After separation the motion of pm  and 2M is governed by 
(2) to (4). 

B.  Modeling of Impacts 
In order to model the impact between the particle mp and 

the effective mass M2, we invoke the conservation

c K 

c 
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and radius r 
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TABLE I 
IMPACT AND SEPARATION CRITERIA FOR THE PARTICLE.  

Wall of the cavity Impact criteria Separation criteria after sticking 

Left wall ruu xpx +−≤ 21, l  rNuuabsam pxxrxp /])sgn([ ,&& −>− μ  

Right wall ruu xpx −+≥ 21, l  rNuuabsam pxxrxp /])sgn([ ,&& −> μ
 

Bottom wall ruu ypy +−≤ 22, l  rNuuabsam pyyryp /])sgn([ ,&& −>− μ
 

Top wall ruu xpy −+≥ 22, l  rNuuabsam pyyryp /])sgn([ ,&& −> μ
 

   

   

of linear momentum in normal and tangential directions (with 
respect to the walls of the cavity) together with the coefficient 
of restitution e  and coefficient of dynamic friction μ . Note 
that our 2 degrees of freedom, uncoupled system is 
momentarily coupled at an impact event. The Conservation of 
linear momentum in normal direction gives: 
 

−−++ +=+ npnpnpnp uMumuMum &&&& 2,2,          (6) 

 
Conservation of linear momentum in tangential direction 
gives: 
 

−−++ +=+ tptptptp uMumuMum &&&& 2,2,                    (7) 

 
In (6) and (7), the subscript n and t stand for normal direction 
and tangential direction respectively. Likewise, superscripts "-
" and "+" indicate the velocities before and after the impact 
respectively. Note that subscripts n and t will be replaced with 
x and y respectively when an impact occurs with left or right 
wall and they will be replaced with subscripts y and x 
respectively when an impact occurs with top or bottom wall 
(in Fig. 1). The coefficient of restitution e (0 ≤ e ≤ 1) is 
defined as the negative of the ratio of the relative velocity 
between the effective mass M2 and the particle after the impact 
to the relative velocity before the impact: 
 

)( ,,
−−++ −−=− pnnpnn uueuu &&&&  (8) 

 
The fourth and the last equation to model the impact is given 
by [4]: 
 

−−++ +=+ nptpnptp uMumuMum &&&& 2,2, μμ                  (9) 

 
Equation (9) is the consequence of the definition of coefficient 
of dynamic friction µ given by µ = Pt / Pn. The quantities Pn 
and Pt are the impulses developed by the normal and 
tangential force components at the contact point respectively 
[4]. Please note that the coefficient μ in (7) and (9) is 
introduced to model the impacts only. Solving (6), (7), (8) and 
(9) simultaneously, we get the velocities after the impact: 
 

2,

,,,

2,

,,,

/))(1(
/))(1(

/))(1(
/))(1(

Muuemuu
muuemuu
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&&&&

&&&&

&&&&

&&&&

μ
μ

                        (10) 

 
In the above equation, )( 22 MmMmm pp += . Although, 

µ is an arbitrary constant, the tangential force and its impulse 
usually are found to be dissipative, such as from friction and 
cannot add energy to the system. The tangential impulse 
opposes the initial relative tangential motion. Therefore, µ can 
be either positive or negative and its sign is given by: 

])()sgn[()sgn( ,,
−−−− −−= pnnptt uuuu &&&&μ . Also, for positive 

energy loss, the value of μ is subject to the following 
condition [4]: 
 

)}]1)(({)([)( ,, euuuuabsabs pnnptt +−−≤ −−−− &&&&μ  (11) 

 
The simulation runs through time in small time steps ∆t. In 
order to track the motion of the particle and the structure 
accurately, we chose ∆t such that there are 40 time steps in a 
complete vibration cycle. At the end of each time step, the sate 
of the system is used as the initial condition for the next time 
step. Note that contribution to velocities due to rotation of the 
particle before and after an impact does not appear explicitly 
in our derivation. This is due to the reason that rotation does 
not occur in the plane of vibration.  

C. Damping 
In the context of particle damping, the damping is defined 

in terms of specific damping capacity (SDC) Ψ [5]: 

TT
s

i

i /)(
1

∑
=

Δ=Ψ                        (12) 

Here s is total number of impacts occurred during one 
vibration cycle and T is maximum energy in that cycle. iTΔ is 
the energy dissipated in the ith impact. A cycle is defined to be 
the duration between two successive maxima V of the 
structure's effective mass velocity, v(t), curve. Note that 

22)( yx uutv && += . The kinetic energy T will be maximum at 
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the start of each cycle and is given by: 2
12

1
iVMT = . The 

energy dissipated in the ith cycle can be written as: 

∑ +−=Δ )(
2
1 2

1
2

1 ii
i VVMT . A typical velocity vs time 

curve for a structure going through transient vibrations under 
centrifugal loads and damped by a particle damper is shown in 
Fig. 2. To make the data analysis more meaningful, we need 
to define few more dimensionless quantities. If g is the 
acceleration due to gravity, then dimensionless clearance of 
the cavity in x  and y directions is defined as   

grx /)2( 1
2
1 −=Δ lω  and gry /)2( 2

2
1 −=Δ lω  [5] 

respectively. Likewise we define dimensionless acceleration 
amplitude as gV /1ω=Γ and mass ratio as 2/ Mmp . 

 

III. SIMULATION RESULTS AND ANALYSIS  
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Fig. 2 Velocity vs time curve of the structure at 10000 RPM. The 
structure is damped by a particle damper

  
Fig. 3 Effect of centrifugal or g-loading on the performance of particle damper. mass ratio= 0.6%, r =1mm, e =0.5, μ=0.3, μr=0.1mm    

 
 

A. Effect of Centrifugal Loading on Particle Damper  
In this section we will discuss the effect of centrifugal or g-

loading on the performance of the particle damper. It is worth 
mentioning here that as the centrifugal loading is increased, the 
fundamental frequency of the structure also increases. For 
convenience, we have chosen a plate like structure. The length, 
width and thickness of the plate is 20 cm, 8 cm and 1cm. To 
find the fundamental mode frequency, we used the ANSYS 
software and it came out to be 198 Hz. To find the 

fundamental frequency in the presence of g-loading, we first 
performed the static analysis with centrifugal loading and 
then used the results to perform the modal analysis. The 
analysis results are given in Table II. Fig. 3 shows the 
damping performance results of the particle damper under 
centrifugal loads as predicted by our model. It can be seen 
from this figure that as the centrifugal loading is increased, 
the value of the dynamic acceleration (shown by cut-off point 
in Fig. 3) of the plate at which the particle damper ceases to 
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perform also increases.  We call this value of dynamic 
acceleration  as  the  cut-off  point.  The  ratio  of the dynamic  
acceleration at cut-off to the applied centrifugal load is around 
0.1. This ratio along with the cut-off dynamic acceleration 
values are also given in Table II. In fact, the cut-off value of 
the acceleration is the value after which the particle does not 
have enough energy to overcome the centrifugal force, so, it 
stops moving and cannot make impacts. These results are in 
accordance with the published experimental data [3]. The 
specific damping capacity curves in Fig. 3 also show that as 
the centrifugal loading is increased, the damping performance 
slightly decreases. As shown in this figure, for g-loading range 
of 2687g to 67168g, the specific damping capacity drops from 
18% to 14%. Intuitively this seems to be correct because, as 
the centrifugal loading is increased, it is difficult for the 
particle to move and hence make impacts. From this point of 
view, the results are also according to the published data [2].  
 

TABLE II 
EFFECT OF CENTRIFUGAL LOADING ON PARTICLE DAMPING 

Centrifugal 
Loading 

(g) 

Fundamental 
frequency 

(Hz) 

Cut-off 
acceleration 

(g) 

Ratio of Dynamic 
acceleration to 

g-loading 
2687 208.9 191 0.07 
5483 218.8 493 0.09 
12337 241.3 1303 0.11 
21932 269.5 2211 0.10 
34269 301.7 3465 0.10 
49348 336.7 5028 0.10 
67168 373.5 6819 0.10 

    

B. Effect of Mass Ratio 

 
Fig. 4 Effect of changing mass ratio on damping performance of 

particle damper under centrifugal load of 22000 g.  ∆H=145, ∆V=116, 
r =1mm, e = 0.5, μ = 0.3, μr= 0.1mm 

 
In this section we present the model predictions regarding 

the effect of mass ratio i.e. the ratio of the mass of the particle 
to the mass of the structure. Results are shown in Fig. 4. These 
results are given for 10000 RPM or equivalently 22000g 
centrifugal loading condition. Results show that as the mass 
ratio increases, the percent peak specific damping capacity also 

increases in almost a linear fashion. The reason for this 
behavior is that as  the  mass  ratio  increases,  the  
momentum between the particle and the structure during an 
inelastic collision also increases and this leads to a greater 
damping value. The results are very much in accordance with 
the publish data [5]-[11]. 

C. Effect of Cavity Size 
Model predictions regarding the effect of cavity size on 

performance   of   particle   damper   are   shown   in   Fig.  5.  

 
Fig. 5 Effect of changing cavity size on damping performance of a 

particle damper. centrifugal-load =22000g, r =1mm, e = 0.5, μ = 0.3, 
μr= 0.1mm, mass ratio= 1.2 % 

 
The results show that for lower values of acceleration 

amplitude, the damping curves are overlapping. However, for 
large values of dimensionless acceleration amplitude, the 
damping slightly decreases i.e. for almost 5 times increase in 
cavity, there is a decrease of just 5% in damping. Therefore, 
as a whole we can say that change of the cavity size does not 
significantly change the damping performance. At present, no 
published data are available that comment on this aspect of 
particle damping under centrifugal loads. However, lot of 
literature is available that shows that in absence of centrifugal 
loading, if cavity size is increased, the damping performance 
increases [5]-[8]. This is especially true for a particle damper 
working in a vertical plane along the direction of the gravity. 
For a particle damper working in a horizontal plane transverse 
to the direction of gravity, damping performance does not 
strongly depend upon the cavity size [12]. In a vertical 
damper, the gravity is one of the controlling parameters for 
particle motion where as in a horizontal particle damper; the 
particles are free to move. In both cases, increase in cavity 
size provides more space to the particle to make rigorous 
collisions. In the present case however, the particle are bound 
to move on the floor of the cavity under tremendous influence 
of centrifugal force. So bigger cavity size does not really 
matter, rather, smaller cavity size perhaps contributes more 
towards damping by added friction. Anyhow, if the model 
prediction is true then this result is very important as in a 
centrifugal environment, there is usually a very little space for 
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construction of large cavities. 

D. Effect of Initial Displacement 
Fig. 6 shows the dependence of specific damping capacity 

on initial displacement of vibration. Vertical dotted line is 
drawn such that all specific damping capacity curves pass 
through it. It can be seen that for a particular value of 
dimensionless acceleration amplitude, the specific damping 
capacity is not same rather it depends (albeit slightly) on the 
initial amplitude. An excellent explanation of this behaviour 
was given by Friend and Kinra [5]. Interested reader is 
suggested to consult this reference.  We have presented these 
results to support the validity of our model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Effect of initial amplitude on damping performance of a 
particle damper working under centrifugal loads. Centrifugal 

load=22000g, r =1mm, e = 0.5, μ =0.3, μr = 0.1mm, mass ratio= 0.6 % 
 

E. Effect of Radius of Particle 
 
 
 
 
 
 
 
 
 
 
 

Numerical  results  showing  the  dependence  of  damping  
performance of the two dimensional particle damper on size 
or radius of the particle are shown in Fig. 7. These results are 
complementing the results of the section in which effect of 
cavity size is discussed. Discussion done over there is also 
valid for this section. Actually, for a fixed size of the cavity, 
an increase in the size of the particle results in the reduction 
of the clearance between the particle and the cavity wall.  

IV. CONCLUSION 
The two dimensional particle damping model developed to 

suppress the transient vibrations in structures operating under 
high centrifugal loads, explains the essential features of 
particle damping under centrifugal loads. Simulation results 
regarding the effect of cavity size on performance of particle 
damper working under centrifugal loads require bench testing 
for its further support. 

REFERENCES 
[1] J. J. Moore and A. B. Pallazzolo, "A forced response analysis and 

application of impact damper to Rotordynamic Vibration Suppression in 
a Cryogenic Environment", Journal of Vibration and Acoustics, vol. 
117, 1995. 

[2] E. M. Flint, "Experimental measurement of the particle damping 
effectiveness under centrifugal loads" Proc. of 4th National Turbine 
Engine High Cycle Fatigue Conference HCF'99, 1999 

[3] E. M. Flint, E Ruhl and S. E. Olson, "Experimental centrifuge testing 
and analytical studies of particle damping behavior", CSA Engineering, 
Inc, Report number A124674, 2000. 

[4] M. Brach, "Mechanical Impact Dynamics, Rigid body collisions", 
Chapters 2-6,  John Wiley, 1991. 

[5] R. D. Friend and V. K Kinra, "Particle Impact Damping", Journal of 
Sound and Vibration, 233(1), pp 93-118,  2000. 

[6] R. A. Bhatti, Y. R. Wang and Z. C. Wang, " Particle impact damping in 
two dimensions", Journal of Key Engineering Materials, Damage 
Assessment of Structure VIII, vol. 413-414, pp. 415-422, 2009. 

[7] R. A. Bhatti and Y. Wang, " Damping performance of a particle damper 
in two dimensions", ASME 2009 Design Engineering and Technical 
Conference & Computer and Information in Engineering Conference, 
paper number DETC2009-86862, 2009, To be published. 

[8] K. Mao, M. Y. Wang, Z. Xu and T. Chen, "Simulation and 
Characterization of Particle Damping in Transient Vibrations", Journal 
of Vibration and Acoustics, vol. 126, pp 202-211, 2004. 

[9] M. R. Duncan, C. R. Wassgren and C. M. Krousgrill, "The damping 
performance of a single particle impact damper", Journal of Sound and 
Vibration, vol. 286, pp. 123-144, 2005. 

[10] V. K Kinra, K. S. Marhadi and B. L. Witt, "Particle impact damping of 
transient vibration", 46th AIAA Structural Dynamics & Material 
conference, Paper no. AIAA 2005-2324, 2005. 

[11] M. Saeki, "Analytical study of multi-particle damping", Journal of 
Sound and Vibration, 281, pp. 1133-1144, 2005. 

[12] B. L. Witt and V. K. Kinra, "Particle impact damping in the horizontal 
plane", 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural 
Dynamics and Materials Conference, paper no. AIAA 2006-2209, 2006.

 
 
 
 
 
Fig. 7 Effect of radius of the particle on performance of the particle 

damper. Centrifugal load = 22000g, e = 0.5, μ = 0.3, μr =0.1mm, 
mass ratio = 1% 
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