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Abstract—In this paper processes including large deformations 

of a rubber with hyperelastic material behavior are simulated by the 
RKPM method. Due to the loss of kronecker delta properties in the 
mesh less shape functions, the imposition of essential boundary 
conditions consumes significant CPU time in mesh free 
computations.  In this work transformation method is used for 
imposition of essential boundary conditions. A RKPM material shape 
function is used in this analysis. The support of the material shape 
functions covers the same set of particles during material 
deformation and hence the transformation matrix is formed only once 
at the initial stages. A computer program in MATLAB is developed 
for simulations. 

  
Keywords—RKPM, large deformations, transformation, essential 

boundary conditions. 

I. INTRODUCTION 
N the modeling of large deformation processes by the FEM, 
considerable loss in accuracy arises when the elements in 

the mesh is extremely deformed. Also the growth of cracks 
can not be simulated by the finite element method easily. The 
traditional technique for solving these problems is to remesh 
the domain at every step during the simulation. However this 
technique requires the projection of field variables between 
meshes in successive stages of the problem which consumes 
significant CPU time. To overcome these difficulties a new 
class of methods has recently developed which do not require 
a mesh to discretize the problem domain. These are methods 
in which the approximate solution is constructed entirely in 
terms of asset of nodes, and no elements are needed to 
construct the discrete equations. This class of methods is 
called mesh less methods. Among the meshless methods EFG 
and RKPM are a most suitable for structural analyses. In EFG 
method proposed by Blytschco et al[1], moving least square 
proposed by Lancaster et al [2] is used for approximation of 
domain variable. Liu et al [3-5] introduced a new method 
called Reproducing Kernel Particle Method. They used a 
correction function in the kernel of integral transformation to 
impose the reproducing conditions. In RKPM computation the 
support of the kernel function must cover enough particles for 
the method to be stable [3,4]. Using the kernel function with a 
fixed support size could lead to instability when large 
deformations are occurred.  

Chen et al[6] introduced a material kernel function that 
deforms with the material. In this work for large deformation  
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analyses of hyperelastic materials these material kernel 
functions are used. The support of the material kernel function 
covers the same set of particles during the deformation and 
therefore instability is avoided in large deformation analyses. 
Due to the loss of kronecker delta properties in the mesh less 
shape functions, the imposition of essential boundary 
conditions consumes significant CPU time in mesh free 
computations. In this work transformation method, proposed 
by Chen et al [7] is used for imposition of essential boundary 
conditions. Using this method, CPU time consumption is 
decreased considerably. 

In this work large deformations of a hyperelastic material 
are simulated in two processes, simple tension and constrained 
tension. 

II. GOVERNING EQUATIONS 

A. Hyperelastic Materials 
Hyperelastic materials have path-independent behavior. For 

this materials strain energy density is a potential function that 
components of stress tensor are derived from it. The strain 
energy density is usually defined as a function of deformation 
gradient tensor and the first piola-Kirchhoff stress P is derived 
from it as following: 
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For calculation of second Piola-Kirchhoff stress the above 
equation is rewritten as: 
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Where S is second Piola-Kirchhoff stress and E is Green-
Lagrange strain tensor  and related to deformation gradient 
tensor F as following: 
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Chen et al [8] have shown that strain energy density W  in  
almost incompressible hyperelastic  materials has two 
components. The first component is due to distortion and 
second one is due to stretch; 

)(~),(),,( 2121 JWIIWJIIW +=              (4) 
 

Where W and  W~
 are defined as: 
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In the above equations  21, II  are reduced invariants 
proposed by Penn [9] to separate the distortion and stretch: 
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Where 321 ,, III  are invariants of Green deformation tensor, 
defined as: 
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k is bulk modulus and J  is defined  as: 
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Therefore according to (2) second piola-Kirchhoff stress is 
calculated from strain energy density by: 
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where ; 
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B. Principle of Minimum Potential Energy  
   According to this principle, the equilibrium condition is 
satisfied if and only if variation of potential energy is 
vanished: 
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Where ib  and it  are body force and surface traction 
respectively. Note that all of integrals are calculated on the 
initial configuration 0Ω of body. Substitution of P from (1) in 
to (12) leads to: 
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C. RKPM Approximation 
In the RKPM method displacement vector is approximated 

by: 
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Where iΦ are material shape functions of particles, iu  are 

nodal generalized displacements, X is material coordinate and 
N is total number of particles. For imposition of essential 
boundary conditions by transformation method the corrected 

shape functions iΦ̂ are defined as following: 
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where T is transformation matrix. Indeed the nodal 
displacements iû  related to generalized nodal displacement 
by the transformation matrix as following: 
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For one dimensional case (16) is rewritten as: 
 

 
                                                                                     (17) 

 
Therefore (14) can be written as: 
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Using approximation (18) in the weak form (13) leads to 
following set of nonlinear equations: 
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In the above equations the stress vector{ }S   and material 

gradient matrix M
IB   are defined as following: 
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Set of nonlinear equations (19) is linearized for solution. The 
incremental form of the mentioned equations at step n+1 and 
iteration  v  is: 
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The above equation is rearranged to set of linear equations as 
following: 
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The stiffness matrix K̂  constitutes from two parts called 
material stiffness matrix and geometric stiffness matrix. These 
two parts are defined as following: 
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The forth order tensor C  is material response tensor and for 
hyperelastic materials obtained from strain energy density by: 
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For two dimensional  problem matrices C , G
IB  and D used in 

(26) and (27) are defined as following: 
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In incremental method for calculation of 1ˆ +nu  , using initial 

guess 0
1ˆ +nu  stiffness matrix K̂  , internal force vector intf̂  

and external force vector extf̂  are computed. Then  0
1ˆ +Δ nu  is 

computed from (25). Consequently  the new value of 1ˆ +nu  is 
computed.  Iterations are continued until convergence 
condition is satisfied. 
 

III. NUMERICAL EXAMPLES 

A. Simple Tension of a Rubber Strip 
   In this example deformation of a long rubber strip subjected 
to simple tension is simulated. The constants of strain energy 
density function of hyper elastic material are assumed to be 
as Mpa373.010 =A , Mpa031.020 −=A , 

Mpa005.030 =A , Mpa105=k . 
 For RKPM approximation a linear base vector and a cubic 
spline material kernel with a rectangular support  

xΔ×= 4.1ρ   are used. A mesh with 94 ×=× xy NN  

arrangement and a 41× mesh for back ground cells with 5 
Gauss points in each direction in each cell are employed in 
simulation. In Fig. 1 arrangement of grids, back ground cells 
and gauss points are shown. Deformation of strip in four steps 
is shown in Fig. 2. As shown in this figure elongation is 
continued up to 1000 percent stretch. In Fig. 3 the reduced 
stress defined as ( )22 −− λλσ x  at central Gauss point is 

plotted verses stretch ratio λ . In Fig. 4 results given in [6] for 
this simulation are shown. A good agreement is seen between 
results obtained in Fig. 3 and results shown in Fig. 4. Notice 
that Fig. 4 contains both of the simple compression and simple 
tension. 
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Fig. 1 Grid arrangement, back ground cells and Gauss points 

 
 

 
 

 

 

 

  
 

Fig. 2 Deformation stages of rubber strip under simple tension 
 
 

 
 

Fig. 3 Reduced stress verses stretch ratio 
 
 

 
 

Fig. 4 Reduced stress versus stretch ratio [6]  

B. Constrained Tension of a Rubber Strip 
In this example a rubber strip with the same material 

property as previous example stretched between two rigid 
plates along the width of strip. Particles on the upper and 
lower edges of strip are prevented from moving on the x 
direction. Due to this boundary condition displacement field is 
nonlinear. In this simulation a 1111×=× xy NN  regular 

mesh of grids and a 1010 ×  back ground cell with 4 Gauss 
points in each direction are used. For RKPM approximation a 
linear base function and a cubic spline kernel function with 
rectangular support  xΔ×= 2.1ρ  are employed. In this 
simulation strip is stretched up to 200 percent in y direction. 
In Fig. 5 the initial configuration of grids and three steps of 
deformed configurations of grids are shown. Due to geometric 
nonlinearity, simulation of this problem by the FEM is 
impossible without remeshing. By using material shape 
functions in RKPM approximations readjustment of stretch 
parameter is not needed in last two examples that include 
large deformations. 
 
 

 

 

 

 

 
 

Fig. 5 Initial and deformed configurations of rubber strip under 
constrained tension 

 

IV. CONCLUSION 
In this paper RKPM method is employed for simulation of 

linear and nonlinear problems. Transformation method is used 
for imposition of essential boundary conditions. By using this 
method, CPU time consumption is decreased considerably in 
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comparison with other methods such as Lagrange multipliers. 
For simulation of deformation of hyperelastic materials which 
contain both of material and geometric nonlinearity, material 
shape functions are used. By using these shape functions 
particles covered by the influence domain of a certain particle 
are not changed during large deformations. Hence 
readjustment of stretch factor is not needed. Nonlinear 
simulations presented in this paper include large deformations 
that make them impossible for the FEM without remeshing. 
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