
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1064

Simulation Data Summarization Based on Spatial
Histograms

Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract—In order to analyze large-scale scientific data, research
on data exploration and visualization has gained popularity. In this
paper, we focus on the exploration and visualization of scientific
simulation data, and define a spatial V-Optimal histogram for
data summarization. We propose histogram construction algorithms
based on a general binary hierarchical partitioning as well as
a more specific one, the l-grid partitioning. For effective data
summarization and efficient data visualization in scientific data
analysis, we propose an optimal algorithm as well as a heuristic
algorithm for histogram construction. To verify the effectiveness and
efficiency of the proposed methods, we conduct experiments on the
massive evacuation simulation data.

Keywords—Simulation data, data summarization, spatial
histograms, exploration and visualization.

I. INTRODUCTION

AS one of the common data types of big data,

spatio-temporal data has been widely applied in

various domains such as mobile applications and scientific

research [5]. For instance, in scientific fields, simulations are

conducted for the purpose of predictions, decision making,

etc. As one of the typical simulations, disaster simulations

like human evacuation simulation are conducted for effective

humanitarian relief and disaster management [12]. Such kind

of disaster simulations generate large scale spatio-temporal

data, which contains spatial and temporal information of

evacuees on the target area during a period of time. Analysis

of disaster simulation data can achieve various objectives,

such as discovery of interesting patterns and shelter location

suggestion [6].

In this paper, we focus on the spatio-temporal simulation
data summarization for data exploration and visualization.

Consider a motivating example as follows: an earthquake

analyst intends to discover appropriate shelter locations and

gives a query like “return the distribution of evacuees during

the first day after the earthquake occurs”. In general, this kind

of query is used to understand the distribution of evacuees on

a target spatial area during a given period of time for effective

humanitarian relief and disaster management. Fig. 1 shows

the distribution of evacuees during a period of time in Kantou

area of Japan. The distribution is shown by heat maps, where

different colors represent different densities of evacuees. In

Fig. 1a, it is difficult to get an insight of the overall distribution

J. Zhao is with Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, Japan (e-mail: zhao@db.ss.is.nagoya-u.ac.jp).

Y. Ishikawa and K. Sugiura are with Graduate School of Informatics,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan (e-mail:
ishikawa@i.nagoya-u.jp, sugiura@db.ss.is.nagoya-u.ac.jp).

C. Xiao is with Institute for Advanced Research, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, Japan (e-mail: chuanx@nagoya-u.jp).

of evacuees due to the large resolution (4096×4096). Typical

exploration operators such as drill-down (zoom-in) and roll-up
(zoom-out) of the data can not always solve the problem as

well. As shown in Fig. 1b, even we zoom-out to a resolution

of 256× 256, it is still difficult for users to determine which

part of the area should be focused on. This is because the

target spatial area is quite large and data is loosely spreading

over the region. In this case, a succinct summary of the overall

region is considered to be useful.
In order to catch an insight of spatio-temporal simulation

data, we use the notion of histograms from the studies on

selectivity estimation and query optimization in the database

area [1], [3], [8], [11]. Histograms consist of buckets that

covering the whole data domain, and each bucket should

has close-to-uniform distribution. Such histograms provide

a concise summary of the target data, and the efficiency

and accuracy varies by the chosen partitioning types. For

a two-dimensional array data, there are many types of

partitioning. Here, we show the three commonly used ones in

Fig. 2 [9]. Arbitrary partitioning is the one with no restrictions

on the sub-regions as shown in Fig. 2a. It is obvious that the

computation cost of arbitrary partitioning is the most expensive

one, which is proved to be NP-hard [9]. The hierarchical one

studied in this paper is shown in Fig. 2b. A general hierarchical

partitioning can be represented by a binary tree in which each

node represents a subarray, and the root represents the whole

region of the computed array. The p× p partitioning conducts

p times of partitions on each dimension, as shown in Fig. 2c.

Note that, it is a special case of the hierarchical one if the

sibling nodes of the hierarchical tree are the same along one

dimension.
In this work, we define a spatial V-optimal histogram

to summarize the spatio-temporal simulation data, as an

extension of one-dimensional V-optimal histogram [8]. We

propose an optimal algorithm for the general binary
hierarchical partitioning, and a heuristic algorithm using

two greedy criteria for l-grid partitioning, which is a

specific hierarchical partitioning to speed up the histogram

construction further. We also perform experimental evaluation

on evacuation simulation data to show the effectiveness and

the efficiency of the proposed methods.
Our contributions can be summarized as follows:

• We study the problem of constructing histograms that

summarize the data distribution of a specific spatial area

during a time interval. (Section II).

• We propose an optimal algorithm based on binary

partitioning as well as a heuristic algorithm to construct

the spatial V-optimal histogram. (Section III).

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1065

(a) Resolution of 4096× 4096

(b) Resolution of 256× 256

Fig. 1 Evacuation distribution during a period of time

(a) Arbitrary (b) Hierarchical (c) p× p

Fig. 2 Types of partitioning

• We conduct extensive experiments on massive simulation

data to verify the effectiveness and the efficiency of the

proposed methods (Section IV).

The rest of the paper is organized as follows: Section II

introduces preliminaries and the problem definitions in this

paper. Section III presents our method for constructing spatial

histograms for simulation data exploration. Experimental

results and analyses are reported in Section IV. Section V

introduces the related work on histograms and data

visualization. Section VI concludes the paper.

II. PRELIMINARIES

We formulate the problem of constructing histograms for

data summarization based on the space-bounded V-optimal
histogram [8], which is defined as follows. For a given number

of buckets, a V-optimal histogram is the one with the number

of buckets bounded by the specified threshold, but having

the least variance, where variance is the sum of squared

differences between the actual and approximate frequencies.

While [8] proposed algorithms with a quality guarantee for

unidimensional V-optimal histograms, the problem becomes

totally different even in the two-dimensional case.

We focus on the two-dimensional space-bounded V-optimal

histogram because of its bound on the number of buckets,

which is able to enhance the usability of visualization. More

precisely, the number of buckets in the result histogram affects

the quality of the visualization, since visualizing the objective

data by a histogram with too many buckets will confuse an

analyst and increase the inefficiency of exploratory analysis.

Related work on visualization such as MuVE [4] defines the

usability using the number of views, as one of the objectives

for view recommendation. Also, [2] studies the techniques of

aggregation, sampling and filtering to reduce the size of the

result for interactive visualization. One of the intentions of

[2] is that, visualization with too many objects to draw on the

screen is too dense to be useful to the user.

A. Problem Statement

Problem Definition 1 (Spatio-temporal Array). A
spatio-temporal array A(Dim,Attr) is a three-dimensional
array with numeric attribute values. Dim consists of
dimensions x, y and t, while Attr contains a list of attributes
(a1, · · · , a|Attr|). Dimensions x and y correspond to a
two-dimensional spatial grid structure, and dimension t is
represented by a series of time stamps with equal time interval
τ . Each element ex,y,t in the spatio-temporal array contains
a tuple of numeric attribute values corresponding to the
position (x, y, t), that belongs to the domains of dimensions,
i.e., x ∈ Dimx, y ∈ Dimy and t ∈ Dimt.

Note that the time interval τ can be one minute, one hour,

etc., and depends on the dataset and the purpose of analysis.

Problem Definition 2 (Spatial V-optimal Histogram). Given
a spatial-temporal array A, the type of partitioning p, an
attribute a, an integer B defining the limit number of buckets,
and an error metric E(), the spatial V-optimal histogram

H of A consists of a set of buckets {b1, b2, · · · , bB} with
the minimum error. The histogram is generated by the
partitioning type p that splits the whole spatial region into
B non-overlapping buckets. Each bucket bl (1 ≤ l ≤ B) has
a corresponding rectangle area bl.area and an aggregated
value bl.val. The value of bl.val is calculated by averaging
the attribute values of elements in A, the area of which is
covered by bl.area.

The symbols used to formulate the spatial V-optimal
histogram are shown in Table I. Next, we define the error

function. It is based on the notion of sum of squared
error (SSE), which is a common error metric for measuring

difference between two data distributions.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1066

TABLE I
SYMBOLS AND THEIR MEANING

Symbol Meaning
A A spatio-temporal array
R The whole region of array A
B The number of buckets
E() Error metric
p Given partitioning type
C The candidate result of possible subregions
r A possible subregion
maxB The maximum possible number of buckets
curB The number of buckets of current result
H The result histogram

Problem Definition 3 (Error Function). The error function E
of a spatial V-optimal histogram H is defined as

EB(H) =
B∑

l=1

∑

e∈A∧e.(x,y)∈bl.area

(e.a− bl.val)
2. (1)

The defined error function has two properties, monotonicity
and superadditiveness. An error function is monotonic if

E(r) ≤ E(R) for two buckets r and R, where r ∈ R. We say

an error metric is superadditive if E(r) +E(R) ≤ E(r ∪R),
where r and R are two disjoint buckets.

III. HISTOGRAM CONSTRUCTION ALGORITHMS

In this section, first we propose an optimal histogram

construction algorithm based on dynamic programming for

binary hierarchical partitioning. Since the computational cost

of dynamic solution is extremely expensive, we also propose

a heuristic algorithm with two greedy criteria, based on l-grid
partitioning for the efficiency.

A. Optimal Algorithm for Binary Hierarchical Partitioning

The Optimal algorithm is based on dynamic programming

using (2) as described below. Recall that the problem is to

find a histogram which has at most B buckets with minimum

error. We define E∗
B(R) as the minimum error of region

R([i · · · j], [k · · · l]) with at most B buckets. The computation

strategy of the optimal algorithm is based on the following

equation.

E
∗
B(R) = min

i≤x<j,k≤y<l,1≤b<B

{
E

∗
b (i · · · x, k · · · l) + E

∗
B−b(x + 1 · · · j,

k · · · l), E∗
b (i · · · j, k · · · y) + E

∗
B−b(i · · · j, y + 1 · · · l)}

(2)

That is, the minimum error of region R is the minimum

error among the possible partitions along x and y dimension

with possible number of buckets, based on the monotonicity

and superadditiveness of the error function. b represents the

possible number of buckets assigned to each subregion by

a partition. For each partition, there are B − 1 possible

values of b, i.e., 1, 2, ..., B − 1. Furthermore, there are j − i
possible partitions along x dimension, and l − k possible

partitions for y dimension. For instance, given a 4 × 4 array

A shown in Fig. 3a, the whole region of A is represented

as R([1 · · · 4], [1 · · · 4]). There are 3 possible partitions along

each dimension, and each partition splits the whole region into

Algorithm 1: OptimalDP(A, B, C,R)

Input: A: input array, B: limit number of buckets, C: the
candidate list of possible subregions,
R = (xmin, xmax, ymin, ymax) : the whole region of
A

Output: Result histogram
1 foreach xl ∈ [1, xmax − xmin + 1] do
2 foreach yl ∈ [1, ymax − ymin + 1] do
3 foreach xstart ∈ [xmin, xmax] do
4 foreach ystart ∈ [ymin, ymax] do
5 xend ← xstart + xl − 1;
6 yend ← ystart + yl − 1;
7 r ← (xstart, xend, ystart, yend);
8 b ← Bucket(A, r); // Generate a

bucket with region r
9 thisOpt ← {b};

10 curB ← 1; // Computed bucket
number

11 maxB ← min{B, r.size()};
12 while curB < maxB do
13 curB ++;
14 curOpt ← ComputeOpt (r, C, curB);

// Compute the optimal
solution of r

15 thisOpt ← thisOpt ∪ curOpt;

16 C(r) ← thisOpt;

17 return CB(R);

two subregions, for each of which, further partitions also split

it into smaller subregions.

The pseudo-code of the algorithm is shown in Algorithm 1.

We incrementally compute the subregions of the input array A
by increasing the side lengths of each dimension (Line 1-7).

E.g., for array A with region R([1, 4], [1, 4]), we incrementally

compute the subregions with side lengths of 1, 2, 3 and 4, for

each dimension. For a given subregion r, first we merge the

whole region of r into one bucket (b) and compute the error

metric value of b (Line 8). Then we compute the optimal

solutions of r by increasing the bucket number until it equals

to maxB (Line 12-15). maxB is computed by the maximal

number of B and the element number contained in r (Line 11).

For instance, given B = 7, region r([1, 2], [1, 2]]) shown in

Fig. 3a contains 4 elements in total, so the maximum possible

number of buckets is 4. The optimal solution of a region

with a given bucket number is computed by ComputeOpt
based on (2). The pseudo-code of ComputeOpt is shown in

Appendix VI-A. Finally, the optimal result with bucket number

B with the minimum error is returned. Fig. 3b shows an

optimal histogram of A when the number of buckets B = 7,

the error of which is 0.

1) Complexity Analysis: The total computation time is

computed by O(n4(nB2 + tE)), where O(n4) represents

the possible number of subregions, and O(nB2 + tE)
represents the cost of computing candidate histograms for each

subregions. tE is an upper bound on the time taken to calculate

the error metric value of any given bucket, which is computed

in O(1) by efficient methods such as holding the statistic

information of subregions for further computation. Therefore,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1067

(a) An example 2-D array A (b) A result histogram (B = 7)

Fig. 3 An example array with its optimal histogram

Fig. 4 An example l-grid partitioning (l = 2)

the total computation time is O(N2.5B2), where N is the size

of the computed array (i.e., N = n2).

B. Greedy Approach based on l-Grid Partitioning

Since the proposed optimal algorithm for binary hierarchical

partitioning is quite computationally expensive, we also

propose a heuristic approach based on a more specific

hierarchical partitioning, the l-grid partitioning, introduced as

follows.

The overall spatial region corresponds to the root of the

l-grid tree structure at depth 0, every partition evenly divides

the interval of target region into l sub-intervals for each

dimension. For instance, the spatial V-optimal histogram is

considered as a 2-dimensional case, each partition of the target

region generates l × l sub-regions with the same dimension

length. Fig. 4 shows an example histogram construction by

l-grid partitioning when l = 2.

As shown in Algorithm 2, the heuristic approach follow a

top-down greedy strategy to conduct the l-grid partitioning,

until the number of buckets is not less than B. We define two

greedy criteria as Max-Error (Line 7-8) and Max-Red (Line

9-11). Max-Error conducts partitioning on the bucket with the

maximum error, and Max-Red chooses the partition with the

maximum error reduction.

For instance, Fig. 4 shows an example partitioning when

l = 2 (i.e., quadtree partitioning). The first partition conducts

with only one choice, which is to partition the whole region

into four subregions. Then, the second partition conducts by

comparing the four possible partitions of current buckets.

Since the error (or the error reduction) of the right-down

bucket is the largest one, we further split this bucket into four

subregions to construct the result histogram when B = 7.

1) Complexity Analysis: The number of additional buckets

Δb generated by each partition, is computed as l2 − 1, if no

empty cell exists, e.g., 3 additional buckets are generated when

l = 2. Then, the total partition time is computed by B−1
l2−1 ,

since the maximum number of buckets is B. As the whole

region is considered as 1 bucket, the first partition divide the

whole region into l2 subregions, further partition generates

Algorithm 2: LGridGreedy(A, B,R,G)

Input: A: input array, B: limit number of buckets, R : the
whole region of A, G: the greedy criterion

Output: Result histogram H
1 H ← Bucket(A, R); // Initialize the result

histogram with the root node
2 curB ← 1;
3 optE ← 0;
4 while curB < B do
5 foreach b ∈ H do
6 thisE ← 0;
7 if G = Max-Error then
8 thisE = b.error;

9 if G = Max-Red then
10 C ← children(b);

// Set of the children cells
11 thisE = b.error −∑

c∈C c.error;

12 if thisE > optE then
13 nextPb ← b;

14 newBkts ← children(nextPb);
15 H ← H \ {nextPb} ∪ newBkts;

16 return H;

l2 − 1 additional buckets as mentioned above. Therefore, the

list of bucket numbers generated by each partition is shown as

(l2−1)+1, 2(l2−1)+1, · · · , B. For each partition, the greedy

strategy is conducted by comparing all the buckets that can be

split. As a result, the total computation cost is O(B2l−2tE),
where tE is an upper bound cost of computing the error metric

value of a given bucket.

IV. EXPERIMENTS

A. Experimental Dataset

The experimental dataset is the evacuation simulation data

in the event of large-scale earthquakes in Kantou area of Japan.

The simulation dataset contains about 194 millions records of

evacuees’ mobility data during 24 hours after an earthquake

occurs.

The records are in the format of (id, time, x, y): id denotes

user ID; time, a time stamp; x, y, the location of a user. We

preprocess the dataset by dividing the spatial regions with a

maximum grain size of 4, 096 × 4, 096, while the number

of objects in each cell is aggregated by every minute and

ten minutes, respectively. The preprocessed data consists of

3 dimensions as x, y, t, as well as an attribute num, which

is the sum of objects of each grid cell.

B. Experimental Settings

We perform experiments to evaluate the efficiency and

quality of the proposed methods, the symbols of which are

shown in Table II. The efficiency is evaluated by the execution

time of the algorithms, and the quality is measured by the

errors of result histograms. We use the sum of squared error

(SSE), which is defined in (1) to measure the quality. We

check the effect of n, the length of each dimension, and B,

the number of buckets, on the performance of each method.

We implement the proposed algorithms in C++ language, and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1068

all experiments are conducted on an experimental server with

Intel Xeon(R) CPU E5620 @ 2.40GHz × 2, RAM 32GB, OS

Ubuntu 14.04 LTS 64bit.

TABLE II
SYMBOLS OF COMPARED METHODS

Proposed methods Symbols
Optimal algorithm for binary partitioning Binary-Opt
Greedy approach based on Max-Red LG-MaxRed
Greedy approach based on Max-Error LG-MaxE

C. Effect of n

We compare the execution time of Binary-Opt with

heuristic approaches when increasing the array size, with

constant B as well as increased B, in Figs. 5a and 5b,

respectively. The result shows that, Binary-Opt is the most

time consuming one comparing to LG-MaxRed and LG-MaxE.

Moreover, the execution time of Binary-Opt increases rapidly

as the increasing of n, especially when B increases. Note

that, Binary-Opt becomes inexecutable when array size is

128 × 128, due to its large time complexity introduced in

Section III-A1. In addition, both LG-MaxRed and LG-MaxE
perform efficiently even when n increases, and LG-MaxE is

slightly faster than LG-MaxRed.

On the other hand, we also compare the corresponding result

errors (i.e., SSE) as shown in Figs. 6a and 6b. The errors

increase as n increases, which is intuitive. Note that, when

n = 16, the errors of the proposed methods are all 0 in

Fig. 6a, since the array is small. The quality of Binary-Opt
is better than LG-MaxRed and LG-MaxE, and the distinction

is not affected by the change of array size. LG-MaxRed
and LG-MaxE perform similar with each other when B is

constant, while LG-MaxRed performs better than LG-MaxE
with increased B. Based on this observation, it can be inferred

that increasing B improves the quality of LG-MaxRed, while

it does not affect LG-MaxE.

D. Effect of B

In what follows, we evaluate the effect of B on the

efficiency and quality of the proposed methods. Figs. 7a and 7b

demonstrate the result of varying B when array size is small

(n = 32). As shown in Fig. 7a, the execution time of the

three methods is not influenced by the increasing of B. Even

though Binary-Opt performs slowly than the two heuristic

approaches, its quality is better than them, and the larger the

B is, the bigger the distinction between them, as shown in

Fig. 7b. Moreover, LG-MaxE performs better than LG-MaxRed
in quality with similar execution time, since the array size is

small.

Considering the unavailability of Binary-Opt, we conduct

experiments with large array size (n = 128) to compare

LG-MaxRed and LG-MaxE. Figs. 8a and 8b show that, as

the increasing of B the quality of LG-MaxRed is better than

LG-MaxE with similar execution time. The reason of the bad

performance of LG-MaxE is that, the larger the array size is,

the greedy criterion performs worse, because the larger error

does not mean the better choice of partition.

E. Discussion

The experimental results evaluate the efficiency and quality

of the proposed methods, which can be concluded as follows.

Binary-Opt is the most time consuming one, while performs

best in quality, and the larger the B is, the distinction is bigger.

Both of the two greedy criteria perform efficiently even when

increasing the array size and the number of bucket. The quality

of LG-MaxE and LG-MaxRed varies by the array size. The

larger the array is, the better the quality of LG-MaxRed than

LG-MaxE, and the distinction becomes larger when bucket

number (B) increases.

V. RELATED WORK

As data analytics has recently attracted increasing attention,

data visualization is found effective in supporting interactive

analyses and many studies on the subject are now underway.

From the database perspective, technologies that can instantly

visualize large-scale data or select data to be visualized are

important. Since histograms can present the overview of data

distribution in a summarized way, visualization is also a

popular usage of histograms [4], [10]. For example, MuVE [4]

visualizes data by bar graphs as a result of their consideration

on the viewpoints that will concentrate data into specified

conditions remarkably different from the whole data. SEEDB

system for the visualization of databases, though intended for

category attributes, is also closely related to this study [10].

A histogram is one of the popular approaches in

summarizing large datasets and often used in database systems

[7]. One of the applications of histograms is query cost

estimation based on cardinality estimation of a query result [1],

[3], [8], [11]. Researches in the literature focus on the

histogram construction methods and the estimation of attribute

values or frequencies, which is not the focus of this paper. For

the construction of multi-dimensional histograms, as the cost

of constructing optimal histogram is prohibitively large [9],

existing techniques use heuristics to partition the data space

into buckets, while they do not provide any guarantees on the

quality of histograms.

In this paper, we consider a general hierarchical histogram

based on binary partitioning, as well as a more specific one, the

l-grid partitioning. Like the one proposed in [9], the optimal

algorithm is also based on dynamic programming. However,

[9] focuses on the error-bounded V-optimal histogram

construction and ours works for space-bounded histogram

construction. In order to enable interactive analysis of

large-scale array data, we also propose a heuristic algorithm

with two greedy criteria, based on l-grid partitioning.

VI. CONCLUSION

In this paper, aiming to enable the advanced analysis

functionality of spatio-temporal simulation data, we defined

a spatial V-Optimal histogram and propose histogram

construction algorithms for data summarization. We proposed

an optimal algorithm for binary hierarchical histograms, as

well as heuristic approaches based on two greedy criteria,

to further speed up the histogram construction. In order to

verify the effectiveness and efficiency of our methods, we

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1069

(a) Execution time (B = 10) (b) Execution time (increasing B)

Fig. 5 Varying n (execution time)

(a) Error (B = 10) (b) Error (increasing B)

Fig. 6 Varying n (error)

(a) Execution time (b) Error

Fig. 7 Varying B (n = 32)

(a) Execution time (b) Error

Fig. 8 Varying B (n = 128)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1070

conducted experiments on the massive evacuation simulation

data. Experimental results demonstrate that the quality of

the optimal histogram for binary hierarchical histograms is

the best one, while it is time consuming. The efficiency

of the proposed heuristic algorithm is also verified by the

experimental result.

APPENDIX

A. Pseudo-Code of ComputeOpt

The pseudo-code of ComputeOpt is shown in Algorithm 3.

The basic idea is based on (2), i.e., the optimal result is

computed by comparing the candidate results generated by

partitions along x dimension (Line 2-8) and y dimension (Line

9-15), respectively. For each partition (e.g., px or py), the

target region r is split into two subregions, candidate results

are computed by assigning different number of buckets to each

subregion. Finally, the optimal result with bucket number B
with the minimum error is returned.

Algorithm 3: ComputeOpt(r,C,B)

Input: r = (xmin, xmax, ymin, ymax): the target region, C:
candidate result of subregions of r, B: limit number
of buckets

Output: Result histogram
1 opt ← ∅; // Initialize the optimal solution
2 foreach px ∈ [xmin, xmax − 1] do

// Partition along x dimension
3 upR ← (xmin, px, ymin, ymax);
4 downR ← (px+ 1, xmax, ymin, ymax);
5 foreach b ∈ [1, B] do
6 thisOpt ← Cb(upR) ∪ CB−b(downR);
7 if thisOpt.error ≤ opt.error then
8 opt ← thisOpt;

9 foreach py ∈ [ymin, ymax − 1] do
// Partition along y dimension

10 leftR ← (xmin, xmax, ymin, py);
11 rightR ← (xmin, xmax, py + 1, ymax);
12 foreach b ∈ [1, B] do
13 thisOpt ← Cb(leftR) ∪ CB−b(rightR);
14 if thisOpt.error ≤ opt.error then
15 opt ← thisOpt;

16 return opt;

ACKNOWLEDGMENT

This study was partly supported by the Grants-in-aid

for Scientific Research (16H01722) and CREST: “Creation

of Innovative Earthquake and Tsunami Disaster Reduction

Big Data Analysis Foundation by Cooperation of Large-

Scale and High-Resolution Numerical Simulations and Data

Assimilations”.

REFERENCES

[1] S. Acharya, V. Poosala, and S. Ramaswamy. Selectivity estimation in
spatial databases. In SIGMOD, pages 13–24, 1999.

[2] L. Battle, M. Stonebraker, and R. Chang. Dynamic reduction of
query result sets for interactive visualizaton. 2013 IEEE International
Conference on Big Data, pages 1–8, 2013.

[3] N. Bruno, S. Chaudhuri, and L. Gravano. STHoles: A multidimensional
workload-aware histogram. In SIGMOD, pages 211–222, May 2001.

[4] H. Ehsan, M. A. Sharaf, and P. K. Chrysanthis. MuVE: Efficient
multi-objective view recommendation for visual data exploration. In
ICDE, pages 731–742, 2016.

[5] A. Eldawy and M. F. Mokbel. The era of big spatial data: A survey.
Found. Trends databases, 6(3-4):163–273, Dec. 2016.

[6] V. Hristidis, S. C. Chen, T. Li, S. Luis, and Y. Deng. Survey of
data management and analysis in disaster situations. J. Syst. Softw.,
83(10):1701–1714, Oct. 2010.

[7] Y. Ioannidis. The history of histograms (abridged). In VLDB, pages
19–30, 2003.

[8] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik,
and T. Suel. Optimal histograms with quality guarantees. In VLDB,
pages 275–286, 1998.

[9] S. Muthukrishnan, V. Poosala, and T. Suel. On rectangular partitionings
in two dimensions: Algorithms, complexity, and applications. In ICDT,
pages 236–256, 1999.

[10] A. Parameswaran, N. Polyzotis, and H. Garcia-Molina. SeeDB:
Visualizing database queries efficiently. Proceedings of the VLDB
Endowment, 7(4):325–328, 2013.

[11] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the
attribute value independence assumption. In VLDB, pages 486–495,
1997.

[12] X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, N. J. Yuan, and X. Xie. A
simulator of human emergency mobility following disasters: Knowledge
transfer from big disaster data. In AAAI, pages 730–736, 2015.

Jing Zhao is a PhD candidate at Graduate School of Information Science,
Nagoya University. She received her M.S. degree in Information Science
from Nagoya University in 2015, and B.E. degree in Computer Science
and Technology from Tianjin University of Science and Technology, China
in 2012. Her research interests include spatio-temporal databases, scientific
databases, and data warehousing. She is a member of DBSJ.

Yoshiharu Ishikawa is a professor in Graduate School of Information
Science, Nagoya University. His research interests include spatio-temporal
databases, mobile databases, scientific databases, data mining, and Web
information systems. He is a member of the Database Society of Japan, IPSJ,
IEICE, JSAI, ACM, and IEEE Computer Society.

Chuan Xiao is an assistant professor in Graduate School of Information
Science, Nagoya University. He received B.E. degree from Northeastern
University, China in 2005, and Ph.D. degree from The University of New
South Wales in 2010. His research interests include data cleaning, data
integration, textual databases, and graph databases. He is a member of DBSJ.

Kento Sugiura is a research associate in Graduate School of Informatics,
Nagoya University. He received the B.S., M.S., and Ph.D degrees from Nagoya
University in 2013, 2015, and 2018, respectively. His research interests include
data stream processing, uncertain data management, and spatio-temporal data
processing. He is a member of DBSJ, IPSJ, and ACM.

