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 
Abstract—This paper presents the results of a study on the 

influence of varying percentages of rock bridges along a basal surface 
defining a biplanar failure mode. A pseudo-coupled-hydromechanical 
brittle fracture analysis is adopted using the state-of-the-art code 
Slope Model. Model results show that rock bridge failure is strongly 
influenced by the incorporation of groundwater pressures. The 
models show that groundwater pressure can promote total failure of a 
5% rock bridge along the basal surface. Once the percentage of the 
rock bridges increases to 10 and 15%, although, the rock bridges are 
broken, full interconnection of the surface defining the basal surface 
of the biplanar mode does not occur. Increased damage is caused 
when the rock bridge is located at the daylighting end of the basal 
surface in proximity to the blast damage zone. As expected, some 
cracking damage is experienced in the blast damage zone, where 
properties representing a good quality controlled damage blast 
technique were assumed. Model results indicate the potential increase 
of permeability towards the blast damage zone.  

 
Keywords—Slope model, lattice spring, blasting damage zone.  

I. INTRODUCTION 

N open pit mining, groundwater flow usually takes place 
along discontinuities within the pit slope. Water pressure 

acting in pore spaces, fractures or other discontinuities in the 
rock mass present in the pit slope will reduce the rock mass 
and discontinuity strength, and may therefore have a large 
influence on the performance, safety, and economics of a 
mining operation [1]. 

A reduction in pore pressure within a pit slope may occur as 
a result of different processes including: 
1) Groundwater flowing away from a particular zone due to 

seepage forces. 
2) Increase in the total porosity as a result of lithostatic 

unloading and relaxation. 
3) Increase in total porosity as a result of drainage or 

removal of water from the overlying rock. 
In open pit mining environments, changes in pore pressure 

usually occur as a result of groundwater flow [2]. 
Consequently, pore pressure is distributed through the whole 
mass, and not only restricted to the major geological 
structures. 

Deformation as a result of unloading (excavation), leads to 
changes in the stresses and consequent changes in the pore 
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fluid pressure. Additionally, pit excavation reduces the lateral 
and vertical stress resulting in strains that generally increase 
porosity, aperture, and connectivity between fractures [3]. 

At greater depths within the slope (>300m), the pre-existing 
deformation is smaller and the fracture porosity is 
comparatively high [4]. Further mining processes induce slope 
deformation and cause an increase in the porosity. Rock mass 
unloading occurs as a result of the stress field created by 
mining operations and often causes an opening or widening of 
fractures in the zone of relaxation around the mine excavation 
[5]. Hence, the magnitude of pore pressure dissipation, in 
response to material unloading, is more pronounced with 
depth [3], [4].  

The development of the blast-damaged zone (over-break) is 
also important for pore pressure control. The blast-damage 
zone represents the area where properties and conditions are 
altered because of the excavation process. This zone is 
characterized by an area of reduced fluid pressure extending in 
all directions away from the zone. However, the shape and 
extent of the damage zone depends on many factors, including 
blasting procedures and rock properties, which vary 
considerably [4], [6]. The blast-induced damaged zone is 
comprised of macro to micro-cracks of various sizes, lengths, 
and shapes, with numerous rock bridges in between. 
Robertson [7] concluded that the rock bridges must fail in 
tension before global rock mass failure can occur. This 
complex crack pattern can affect the strength characteristics 
and thus influence the overall mechanical response of open pit 
slopes. Diederichs et al. [8] demonstrated the significance of 
the tensile strength of rock bridges under low confinement or 
distressed conditions. According to [9], the tensile strength 
will be very sensitive and important in the mechanical 
response of the blast-induced damaged rock mass around 
underground excavations. Additionally, the presence of 
groundwater in mining operations often creates significant 
geotechnical problems; most important being a reduction in 
stability of the pit slopes. Overall, reduction of pit slope 
stability can be due to pore water pressures and hydrodynamic 
shock due to blasting, which reduces the shear strength and 
can also reduce seepage pressures [10]. 

A. Groundwater Flow in Fractured Rock 

Geological structure is a major contributor to the 
distribution and alignment of fractures in most mine settings. 
In hard rock lithologies, the first-order fracture sets are related 
to the main (primary) zones, and the rock’s overall 
permeability is mostly controlled by the degree of 
interconnection of the first-order fractures with second, third 
and consecutive fractures [10].  
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B. Slope Model Input Parameters 

The general geometry is based on a mine case study and 
represents an open pit of 420 m in height with bench heights 
of approximately 30m. An assumed biplanar overall slope-
scale failure including a rear surface dipping parallel to the 
slope at 57° and a basal surface dipping out of the slope at an 
angle of 15° was simulated. A non-manifold triangular surface 
representing the outer skin and internal surfaces of the model 
can be imported into the Slope Model code; where, internal 
boundaries are considered to be boundaries between materials, 
faults, etc. This model corresponds to a two-dimensional 
model extruded 40m out of plane. Outer surfaces correspond 
to the mechanical boundary conditions imposed as initial 
conditions for the model. The sides of the model are fixed 
such that horizontal displacements are constrained to zero; in 
the same way, the bottom of the model is fixed to ensure that 
no vertical displacements occur. The slope surface is free to 
move. The model geometry is shown in Fig. 4. 

C. Rock Mass Properties 

The rock mass properties used are based on the rock mass 
strength parameters presented in Table I. 

 
TABLE I 

ROCK MASS PROPERTIES USED IN THE SLOPE MODEL CODE 

Property (Granite) Value 
GSI  75 

Blast damage, D  0 

Density (Kg/m3)  2650 

Young’s modulus (GPa)  46 

Poisson’s ratio  0.25 

UCS (MPa)  133 

Tensile strength (MPa)  3.8 

Friction angle (°)  57 

Cohesion (MPa)  6 

Porosity (%) 2 

Permeability (m2) 5.7e-9 [19] 

 
TABLE II 

PROPERTIES USED FOR THE BLAST DAMAGE ZONE 

Property Value 

GSI 75 

Blast damaged 0.7 

Density (Kg/m3) 2650 

Young’s modulus (GPa) 23 

Poisson ratio 0.25 

UCS (MPa) 133 

Tensile strength (MPa) 3.4 

Friction angle (°) 54 

Cohesion (MPa) 5 

Porosity (%) 2 

Permeability (m2) 5.7e-4 [19] 

 
Given the effect of mining activities on the surface of the 

slopes forming the pit, the model presented includes an 
assumed blast damaged zone. According to the guidelines 
provided by [18], a blast damage factor or D factor, should be 
considered when calculating the Hoek-Brown rock mass 
strength for the blast damaged zone. This parameter 

downgrades the rock mass strength, to allow for damage 
caused by blasting and slope dilation during mining activities. 
A factor D = 0.7 was used to account for the blasting effects 
caused on the pit walls. Additionally, the thickness of the blast 
damaged zone according to [18] should be taken into 
consideration. For this specific case, corresponding to a 
controlled blasting design; the thickness of this zone 
corresponds to half the overall bench height. A blasting 
damaged zone of 15m was therefore assumed parallel to the 
slope surface, corresponding to a Tൌ 0.3	to	0.5H; where T is 
the thickness of damaged zone and H corresponds to the 
overall bench height, which in the case of the simulated open 
pit wall is 30m. Properties for models assuming a D = 0.7 for 
the blasting damaged zone are as stated in Table II. 

D. Discontinuity Input Parameters 

Discontinuities in the model were inserted by defining a 
continuous surface for the rear plane with a dip angle of 57°, 
with the mechanical properties shown in Table III. A basal 
surface with a dip angle of 15°, along which the rock bridges 
were considered, was also defined using the properties 
in Table III. 

 
TABLE III 

BASAL AND REAR SURFACE PROPERTIES USED IN SLOPE MODEL 

Property Basal Surface Rear Surface 

Tensile strength (MPa)  0 0 

Friction angle (o) 42 25 

Cohesion (kPa)  25 0 

Kn (GPa/m)  8 4 

Ks (GPa/m)  0.8 0.4 

E. Slope Model Results 

The base case model (Fig. 5) considered the simulation of 
fully persistent structures defining the rear and basal surfaces 
of the assumed biplanar failure mode. Since no preexisting 
discontinuities are incorporated within the sliding volume, 
rock mass dilation must occur entirely through brittle failure 
of lattice springs. Results indicate the creation of 120 cracks in 
the model in which a dry slope was assumed, mostly located 
towards the toe of the cross-section considered. Once 
groundwater is incorporated in the model, a slightly greater 
concentration of cracks is observed in the higher benches of 
the pit, within the blast damaged zone.  

Figs. 6 and 7 show, respectively, the initial pore pressures 
and horizontal displacements for the different locations along 
the planes defining the rear and basal surfaces of the biplanar 
geometry. 

Following the mechanical stage of the model, new 
displacements and cracking result in updating of the flow pipe 
network and hence, new pore water pressures are calculated at 
the points located along the basal and rear surfaces of the 
model. New fractures are created after 3 mechanical seconds 
of simulation (Fig. 8) and the pore pressures change for the 
points located on the rear (2 and 3) and on the basal surface 
(4), with the exception of point 1 which remains zero 
throughout the simulation time, as it is coincident with the 
location of the water table at the surface.  
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will eventually increase and stabilize at similar values. 
The models presented in this paper showed the importance 

of considering the development of brittle fracture as a result of 
the incorporation of groundwater conditions in rock slope 
analysis. The newly developed lattice-spring Slope Model, is 
proven to be a useful means to assess the initiation and 
propagation of brittle fracturing due to the inclusion of pore 
water pressures. 
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