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Abstract—Several techniques exist for determining stress-

intensity factors in linear elastic fracture mechanics analysis. These 
techniques are based on analytical, numerical, and empirical 
approaches that have been well documented in literature and 
engineering handbooks. However, not all techniques share the same 
merit. In addition to overly-conservative results, the numerical 
methods that require extensive computational effort, and those 
requiring copious user parameters hinder practicing engineers from 
efficiently evaluating stress-intensity factors. This paper investigates 
the prospects of reducing the complexity and required variables to 
determine stress-intensity factors through the utilization of the stress 
gradient and a weighting function. The heart of this work resides in 
the understanding that fracture emanating from stress concentration 
locations cannot be explained by a single maximum stress value 
approach, but requires use of a critical volume in which the crack 
exists. In order to understand the effectiveness of this technique, this 
study investigated components of different notch geometry and 
varying levels of stress gradients. Two forms of weighting functions 
were employed to determine stress-intensity factors and results were 
compared to analytical exact methods. The results indicated that the 
“exponential” weighting function was superior to the “absolute” 
weighting function. An error band +/- 10% was met for cases ranging 
from a steep stress gradient in a sharp v-notch to the less severe stress 
transitions of a large circular notch. The incorporation of the 
proposed method has shown to be a worthwhile consideration. 
 

Keywords—Fracture mechanics, finite element method, stress 
intensity factor, stress gradient. 

I. INTRODUCTION 

RACTURE mechanics has been called one of the most 
important developments in the entire field of mechanics. 

Using the stress-intensity factor assists in describing the 
elastic stress field in the vicinity of cracks. Not all techniques 
for determining stress-intensity factors share the same merit. 
In addition to overly-conservative results, methods that are 
computationally intensive, situation specific, and those 
requiring copious user parameters hinder a practicing engineer 
from efficiently generating practical stress-intensity factors. 
The intent of this work was to investigate if a stress-gradient 
based reduced-complexity method for determining stress-
intensity factors can both significantly enhance user 
friendliness and attain levels of accuracy similar to complex 
conventional methods. It is assumed that in order for the 
failure process to occur it requires a physical volume, 
containing some flaw size, to be subjected to an effective 
stress [1]-[4].  
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II. LITERATURE BACKGROUND 

A traditional approach is built from the following 
foundational equation used by Irwin [5], to describe stress 
intensity under elastic stress field in the vicinity of a crack tip: 

 

aFK            (1) 
 
where “F” is used to represent all necessary correction factors 
indicated in the various works by investigators such as 
Murakami [6].  

Additional modifications to (1) involve substitution of the 
crack-length term “a” with variables representing a notch-tip 
radius [7], or a notch depth. Works by Murakami [8]-[11] 
indicated that the stress-intensity factor can be determined as a 
function of area , within an accuracy of 10% in the linear-
elastic fracture mechanics range. A limitation of this method 
resides in the use of a single “applied stress” that may not be 
readily available or present in engineering components or 
under complex multi-axial stress conditions. The analysis of 
stress-intensity factors has also been considered using the 
body force method [12], [13]. Perez et al. [14] and Liu and 
Mandevan [15] employed numerical interpolation while 
capitalizing on existing solutions and expressions to calculate 
stress-intensity factors. Chell [16], [17] indicated that the 
stress-intensity factor for an arbitrary loaded crack could be 
written as the product of the compliance function for the given 
crack subjected to a uniform stress and a weighted integral 
involving the arbitrary stress. Further methods incorporating 
the use of stresses across the length of the crack or flaw are 
seen in the ASME Code [18] and in [19]. Bueckner [20] and 
Rice [21] developed the weight function method, to calculate 
stress-intensity factors. Several researchers have utilized the 
FEA methods or variants of them to determine stress-intensity 
factors. Liu et al. [22], Ju and Chung [23], and Xu et al. [24] 
employed the stresses obtained from FEA to calculate stress-
intensity factors. The ability to evaluate stress-intensity factors 
for non-standard crack configurations is a significant attraction 
for the use of FEA. However, the high stress gradients near a 
crack tip require very refined meshes and special elements, 
resulting in an arduous task to model a crack. 

Works by Taylor and others [25], [26] use volumetric 
average stress around the crack and utilize critical distance 
approach which requires experimental data. Cost and 10% 
uncertainty in results work against this method.  
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III. PROPOSED METHOD 

A. Stress-Intensity Factor Determination Using Stress 
Gradients 

The method begins with a crack free a linear-elastic FEA on 
the modeled component. The maximum principal stress was 
chosen for consideration throughout this work. A “local 
maximum stress point” that exists on the component surface 
(known as the local maximum surface stress point or LMSSP) 
is identified. Focus is on Mode I stress-intensity factor. The 
LMSSP is used as the origin for a radial-distance layering 
process applied to the surrounding stress field. Moving inward 
from the component surface, the internal volume is divided 
into multiple spherical layers (for a 3D model) or radial layers 
(for a 2D model) that surround the LMSSP. A 2D 
representation of the layering method is shown in Fig. 1. The 
stress values contained within each individual layer are then 
simply averaged. This averaging operation results in a 1D 
curve of stress vs. distance from component surface, Fig. 2. 
Using the 1D stress profile and an appropriate curve-
smoothing procedure enables a determination of the local 
stress gradient defined as: 

 
 
x

x





 ,            (2) 

 

 

Fig. 1 Radial Layering Method 
 

 

Fig. 2 1D Averaged Stress Curve 
 

The proposed method accounts for the stress gradient effect 
through the use of a distance-based weighting scheme and the 
relative stress gradient. The local stress gradient is utilized in 
the relative stress gradient, defined according to: 
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The weighting function, ϕ(x,χ), utilizes the relative stress 
gradient along with the distance from the LMSSP to modify 
the stress profile through the following operation: 

 

    ,)( 1 xxx DW           (4)  

 
where σW is the resulting weighted stress profile, σ1D is the 1D 
stress profile from the averaged layers, and ϕ(x,χ) is the 
weighting function (described later). The weighted 1D stress 
( )(xW ) profile is averaged together to arrive at a single 

effective stress for the physical volume/area considered for the 
stress-intensity factor calculation. Determination of exactly 
how much of the stress profile to average is guided by [1], [2] 
by considering that a critical volume of material exists, 
influenced by both the effective stress and effective distance, 
and is established through use of the relative stress gradient. 
Therefore, the distance from the LMSSP to the minimum 
point of the relative stress gradient, defined as “xeff”, 
corresponds to the range of the stress profile which should be 
averaged. Fig. 3 illustrates an example of a relative stress 
gradient with a minimum point at 1.2, thereby establishing that 
the weighted stress profile should be averaged from x = 0 
(LMSSP) to x = 1.2 (xeff =1.2) in the determination of the 
effective stress. 
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Fig. 3 Minimum Relative Stress Gradient at 1.2 
 

Subsequently, using the xeff distance from the relative stress 
gradient, a calculation of the equivalent stress value would 
follow: 

 





effx

x

W
eff

eq dx
x 0

1  .          (5) 

 
The equivalent stress value will be incorporated into a 

“standard” stress-intensity with proposed final form of the 
stress-intensity factor: 

 

aK aeq  ,            (6) 
 
where “a” represents the crack size which can range up to the 
maximum length of xeff. 

IV. INVESTIGATION OF THE PROPOSED METHOD 

The investigation of the proposed method was 
accomplished through the comparison of the method-derived 

x 
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stress-intensity factors to those readily available in 
engineering handbooks. Cases, described later, were chosen to 
accentuate various degrees of possible gradients.  

V. ASSUMPTIONS 

It is important to ensure that the crack dimensions would be 
small against the size of the component for LEFM conditions 
to prevail. Also state of plane strain was assumed. 

VI. CASE STUDIES 

A. A Crack Emanating from a Round Hole in a Plate Under 
Uniaxial Tension 

The approach is explained through this first case. Multiple 
hole diameters were investigated ranging from 1-250 mm. A 
quarter symmetry mesh model is shown in Fig. 4. A 100 MPa 
uniform pressure was applied across the top edge. The 
material properties represent alloy steel with a modulus of 
elasticity of 205 GPa and a Poisson’s ratio of 0.29. The 
LMSSP corresponded to the left-most element along the line 
of horizontal symmetry, shown in Fig. 5.   

 

 

Fig. 4 Quarter Symmetry Model for 1-mm Hole Case 
 

Fig. 6 shows the stress radial layers; the black vertical line 
shows the surface boundary. The arrow points to the region of 
elements used for stress analysis. The stress values for each 
layer were subsequently averaged. Then the resulting single-
layer stress value was modified through the weighting process, 
as described later. The following example (2-mm diameter 
hole) will represent how each case was handled. 

A minimum of ten radial layers should be established as an 
initial starting point for the analysis. Additionally, with the 
limit to the usable defect size corresponding to the distance 
from the LMSSP to the minimum point of the relative stress 
gradient, at least 50% of these initial layers should exist within 
this limiting distance. The necessity of having layers beyond 
the minimum point of the relative stress gradient is a direct 
consequence of not knowing a priori where the minimum 
weighted stress point will be located within the stress field. 
The stress results from the 2 mm case were processed using 
two different weighting functions. Choice of weight functions 

was influenced by [27], [28], which indicated the advantages 
of using volumetric weight functions that deliver 
instantaneous response in terms of relative stress gradients and 
distance from a notch root. Following the layer averaging, a 
fourth-order polynomial was fitted to the stress values. The 
polynomial fitting was used to reduce extreme fluctuations in 
the stress derivatives (Δσ/Δx) as seen in Fig. 7. 

The stress gradient was then determined by taking a 
derivative with respect to distance. Further, an absolute stress 
gradient was determined for each layer’s distance from the 
LMSSP using the following equation: 

 

iabsi x  ,            (7) 
 
where xi corresponds to each layer’s distance from the 
LMSSP. The absolute stress gradient values were divided by 
each corresponding layer’s average stress value (shown in (7)) 
to arrive at the relative stress gradient results in Fig. 8. 
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Fig. 5 LMSSP for Flat Plate with Circular Hole 
 

 

Fig. 6 Radial Layer Construction on a Quad-Dominated Mesh 
Technique 
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Fig. 7 Stress Gradient Fluctuations Resulting from dσ/dx Operation 
on Average Stress Values. 

 
Fig. 8 shows the minimum point of the relative stress 

gradient, xeff, at a distance of 1.2 mm from the LMSSP. This 
distance to the averaged 1D stress-field inflection point 
establishes the limit to how much of the stress profile can be 
utilized in calculations for the stress-intensity factor. 

Prior to completing the stress-intensity factor calculation, 
the stress values for each layer are processed through a 
weighting function. As indicated, two weighting functions, 
“absolute” and “exponential”, were utilized in the 
investigation. They are a function of the relative stress 
gradient and the distance of the layer from the LMSSP. The 
absolute weighting function is defined as: 

  ii xxAbsolute   1,        (8) 
 

while the exponential weight function is denoted as: 
 

  2,
ixi

exlExponentia


           (9) 
 

The weight functions for each layer are shown in Fig. 9.  
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Fig. 8 Relative Stress Gradient for 2 mm Case 
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Fig. 9 Weight Function Comparison for 2 mm Case 
 

The product of the weight function and stress values for 
each layer were calculated as displayed in Fig. 10. The 
weighted stresses are then utilized in determining stress-
intensity factors for different defect sizes. This process is 
completed by using the defect length “a” to average all the 
stress layers that are contained within this length and produce 
an average equivalent stress value, σeq,a, , and it is incorporated 
into a standard stress-intensity factor equation as follows: 

 

aK aeq  , .           (10) 
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Fig. 10 Baseline and Weighted Stress Values (2 mm Case) 
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TABLE I 
DEFECT SIZE, HANDBOOK, ABSOLUTE, AND EXPONENTIAL STRESS-INTENSITY 

FACTORS (MPA*M0.5). 
Defect Size  

(m) eq Absolute (MPa) 
K  

Absolute 
K  

Tada  
K Absolute 

% Error 
0.0005 141.93 5.63 7.23 -22.20 

0.001 115.18 6.46 8.09 -20.20 

0.0012 114.20 7.30 8.42 -16.08 
Defect Size 

(m) eq Exponential (MPa) 
K  

Exponential 
K  

Tada  
K Exponential 

% Error 
0.0005 179.35 7.11 7.23 -1.69 

0.001 146.44 8.21 8.09 1.46 

0.0012 139.58 8.92 8.42 3.47 

 

For example, if the defect size is 0.6 mm, the stress values 
of the layers within this distance would be utilized in (4) to 
produce the corresponding equivalent stress and stress-
intensity factor. Following this logic, stress-intensity factors 
for various defect sizes, up to the permissible limit of 1.2 mm-
- Xeff, were computed (Table I), and compared to handbook 
solutions given by Tada et al [29]. This process was used for 
several notch sizes, with errors shown in Figs. 11 and 12.  

Errors using the “absolute” weight function range from -
22.2 to 12.3%, while the “exponential” weighting function 
produced an error range of -9.5 to 13.74%. 
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Fig. 11 Error in Stress-Intensity Factor Using Absolute Weighting Function 
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Fig. 12 Error in Stress-Intensity Factor Using Exponential Weighting Function 
 

B. A v-Notched Cracked Plate under Pure Tension 

Two notch angles were investigated, and they are 60 and 
120 degrees, respectively. The half-symmetry model is shown 
in Fig. 13, with a close-up of the notch. A 100 MPa uniform 
pressure is applied across the top edge. The vertical boundary 
and a representation of the radial layer construction are shown 
in Fig. 14. The stress intensity computation process described 
earlier is utilized. The resulting relative stress gradients are 
Fig. 15. The minimum point of the relative stress gradient, xeff, 
occurs at a distance of 1.25 mm from the LMSSP. The 

secondary minimum point at approximately 2.5 mm is a 
byproduct of the fourth-order polynomial fitting. Fig. 16 
shows the stress intensity results against handbook values 
[29]. Fig. 17 shows the 120-degree case results. Errors for the 
“absolute” function ranged from -44 to -32 and -34 to -20% 
for the 60 and 120-degree cases, respectively. Errors for the 
“exponential” function ranged from -7 to 8 and -2 to 14% for 
the 60 and 120-degree cases, respectively.  
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Fig. 13 Half-Symmetry Model for 120-Degree V-Notch Case 
 

 

Fig. 14 Radial Layer Construction on a Quad-Dominated Mesh 
Technique 
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Fig. 15 Relative Stress Gradient for 60-Degree Case 

 

-50

-40

-30

-20

-10

0

10

5

10

15

20

25

30

35

40

45

50

0.00050 0.00100 0.00125

%
 E

rr
o

r

S
tr

es
s-

In
te

n
si

ty
 F

ac
to

r 
(M

P
a*

m
^

0.
5)

Defect Size (m)

K Tada [9]

K Absolute

K Exponential

K Absolute % Error

K Exponential % Error

 

Fig. 16 Stress Intensity Factors and Error for 60-Degree V notch Case 
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Fig. 17 Stress Intensity Factors and Error for 120-Degree V notch Case 
 

C. A Pressurized Thick Cylinder with an Internal Crack 

The cylinder contains an internal circumferential crack 
spanning 360 degrees. A closed-form stress solution was used. 
Table II displays the different inside and outside radii (Ri, Ro) 
and thickness (t) used. Since relative stress gradient was 
linear, the minimum point corresponds to the outer wall 
radius. Three limiting distances were used for stress-intensity 
factor determination (1 mm, 5.3 mm, and 10.6 mm), using the 
established process described in case i, and the results are in 
Fig. 18. Using the “absolute” weighting function resulted in 
stress-intensity factor errors ranging from -54 to -4%, while 
using the “exponential” weighing function produced an error 
range of -53 to -2%. Also, using the smallest wall thickness 
(Configuration 3) produced the large error occurring at crack 
size of 0.005 m. 

 
TABLE II 

THICK CYLINDER CASE CONFIGURATIONS 

Configuration 1 2 3 

Pi (MPa) 6 6 6 

Ri (mm) 32 20 13.33 

Ro(mm) 64 40 20 

Ro/Ri 2 2 1.5 

t (mm) 32 20 6.67 
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Fig. 18 Stress-Intensity Factor % Error for All Configurations-Thick 
Cylinder 

VII. OBSERVATIONS AND CONCLUSIONS 

Two primary factors that indicate a divergence in the degree 
of accuracy are the weighting function and the shape of the 
stress profile. For cases where the proposed method produced 
stress-intensity factor results within +/- 10% of the handbook 
solution, more occurred utilizing the exponential weighting 
function as in Table III. 

 
TABLE III 

WEIGHT FUNCTION ACCURACY COMPARISON 

Case 
Number of Results within +/- 10% of Textbook Solution 

Absolute Weighting Function 
Exponential Weighting 

Function 
Cicular Notch 13 28 

V-Notch 0 3 

Cylinder 4 5 

 

With twice as many results falling within +/- 10% of the 
handbook solution, the exponential weighting function has a 
better performance. When considering the weighting value as 
a function of the relative stress gradient, one can see from 
Figs. 19-22 that the absolute weighting function generates 
more occurrences of lower numerical weighting. Figs. 20 and 
22 focus on the highly populated lower relative stress 
gradients (for both weighting functions) that occur in cases 
with high stress gradients. The sensitivity of the absolute 
weighting function to steep gradients results in lower 
equivalent stress. With gentler stress gradients, the weighting 
values tend to stay within 0.9-1 and produce higher equivalent 
stress and more frequency of being in the +/- 10% error band. 
One can see from the error values that the exponential weight 
function is preferred.  

For cases of linear or constant stress, the proposed method 
was unable to signify a permissible effective distance (xeff) and 
generated inconsistent and sometimes large errors in stress-
intensity factors. Although it was shown in the axi-symmetric 
pressure cylinder case that stress-intensity factor error could 
be within a +/- 10% range (-2.25% for Configuration 1, defect 
size 0.005 m) a change in the dimensions of the cylinder 
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resulted in a greater error for the same defect size (-53% for 
Configuration 3). But the extreme nature of the configuration 
should be investigated. In both cases, errors over 50% were 
generated from effective distances that equaled or exceeded 
half of the ligament length, which do not conform to LEFM 
criterion. When excluding the results of these two extreme 
configurations, the maximum error would be 20% (using the 
exponential weighting function).  

The method is effective in generating values within 10% 
error band for a wide range of non-linear stress profiles with 
the exponential weighting function. Additionally, the 
modeling and solution time was fairly short. Adoption of the 
technique with a finite element software would likely 
necessitate automation scheme for computing stress averages 
in layers. Some errors were negative which indicates that the 
proposed method can be non-conservative. A possible solution 
is to include an additional factor into the calculation of the 
final stress-intensity factor. Revisiting the degree of negative 
error values suggests that a 1.2 multiplication factor can be 
considered sufficient to elevate the results in the conservative 
realm. However, this will likely result in increased and 
potentially unwanted levels of conservatism for some other 
cases. Therefore, as with other factors of safety an 
understanding of the potential ramifications from including a 
1.2 multiplication factor cannot be understated. 
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Fig. 19 Absolute Weighting Function Values for Notch Cases (0-2.5 
Relative Stress Gradient) 
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Fig. 20 Absolute Weighting Function Values for Notch 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

W
e
ig
h
ti
n
g 
V
al
u
e

Relative Stress Gradient

1mm

2mm

10mm

50mm

100mm

150mm

200mm

250mm

60Degree

 

Fig. 21 Exponential Weighting Function for Notch Cases (0-2.5 
Relative Stress Gradient) 
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Fig. 22 Exponential Weighting Function Values for Notch Cases (0-
0.25 Relative Stress Gradient) 
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