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    Abstract—The fuzzy set theory has been applied in many fields, 
such as operations research, control theory, and management 
sciences, etc. In particular, an application of this theory in decision 
making problems is linear programming problems with fuzzy 
numbers. In this study, we present a new method for solving fuzzy 
number linear programming problems, by use of linear ranking 
function. In fact, our method is similar to simplex method that was 
used for solving linear programming problems in crisp environment 
before.  
 

Keywords—Fuzzy number linear programming, ranking 
function, simplex method.  

I. INTRODUCTION 
UZZY linear programming first formulated by 
Zimmermann [10]. Recently, these problems are 

considered in several kinds, that is, it is possible that some 
coefficients of the problem in the objective function, technical 
coefficients, the right-hand side coefficients or decision 
making variables be fuzzy number [3], [4], [5], [6], [7], [8],  
[9]. In this work, we focus on the linear programming 
problems with fuzzy numbers in the objective function. 
Verdegay and et al [4], [9] proposed the equivalent parametric 
linear programming problems for these problems by use of a 
certain membership function and proposed a dual method for 
fuzzy number linear programming problems. Here, we first 
explain the concept of the comparison of fuzzy numbers by 
introducing a linear ranking function. Moreover, we describe 
basic feasible solution for the FNLP problems and state 
optimality conditions for these problems. Finally, we provide 
some important results for FNLP problems and we propose 
simplex algorithm for solving these problems. 

II. DEFINITIONS AND NOTATIONS  
We first review necessary backgrounds of fuzzy sets theory. 
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A.  Fuzzy Sets  
Let X be a classical set of objects, called the universe, 

whose generic elements are denoted by x . The membership 
in a crisp subset of X is often viewed as characteristic 
function ( )A xμ  from X to {0,1}such that: 

 ( ) 1A xμ =      , if   x A∈  

              0=     , otherwise 
where {0,1} is called a valuation set. 

 If the valuation set is allowed to be the real interval [0,1] , 

A is called a fuzzy set proposed by Zadeh [2]. ( )A xμ is the 

degree of membership of x in A . The closer the value of 
( )A xμ  is to 1, the more x belong to A . Therefore, A is 

completely characterized by the set of ordered pairs: 
             {( , ( )) | }AA x x x Xμ= ∈ . 

    
The support of a fuzzy set A is the crisp subset of X  and 

is presented as: 

              { | ( ) 0}ASuppA x X xμ= ∈ > . 
      

The levelα − ( cutα − ) set of a fuzzy set A is a crisp 
subset of X and is denoted by  

              { | ( ) }AA x X xα μ α= ∈ ≥ . 
     

A fuzzy set A  in X  is convex if                  
( (1 ) ) min{ ( ), ( )}A A Ax y x yμ λ λ μ μ+ − ≥

, ,x y X∈ and [0,1]λ ∈ . Alternatively, a fuzzy set is 

convex if all levelα −  sets are convex. Note that in this 
paper we suppose that X R= . 
     A fuzzy number A  is a convex normalized fuzzy set on 
the real line R  such that  

1) It exists at least one 0x R∈  with 0( ) 1A xμ = . 

    2) ( )A xμ is piecewise continuous.  
Among the various types of fuzzy numbers, triangular and 

trapezoidal fuzzy numbers are of the most important. Note 
that, in this study we only consider trapezoidal fuzzy numbers.  

A fuzzy number is a trapezoidal fuzzy number if the 
membership function of it be in the following form: 
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            La α−        La                          Ua       Ua β+  

Fig. 1 Trapezoidal Fuzzy Number 
 

We show any trapezoidal fuzzy number by 
( , , , )L Ua a a α β=% , where the support of a%  is 

( , )L Ua aα β− +  , and the modal set of a%  is [ , ]L Ua a . 

Let ( )F R be the set of trapezoidal fuzzy numbers. In the 

next subsection we describe arithmetic on ( )F R .  

B.  Arithmetic on Fuzzy Numbers  

Let ),,,(~ βαUL aaa =  and ),,,(~ θγUL bbb =  be two 

trapezoidal fuzzy numbers and x R∈ . Then, the results of 
applying fuzzy arithmetic on the trapezoidal fuzzy numbers as 
shown in the following: 
    Image of a% :   ( , , , )U La a a β α− = − −%      

   Addition:    ),,,(~~ θβγα ++++=+ UULL bababa  
   Scalar Multiplication: 

0, ( , , , )L Ux x a x a x a x xα β> =%

0, ( , , , )U Lx xa xa xa x xβ α< = − −%                             

III.  RANKING FUNCTIONS   
A convenient method for comparing of the fuzzy numbers 

is by use of ranking functions. A ranking function is a map 
from ( )F R  into the real line. Now, we define orders on 

( )F R  as following: 

            ba ~~
ℜ
≥  if and only if ( ) ( )a bℜ ≥ ℜ %%                     (1) 

            ba ~~
ℜ
>  if and only if ( ) ( )a bℜ > ℜ %%                     (2) 

            ba ~~
ℜ
= if and only if ( ) ( )a bℜ = ℜ %%                      (3)  

where a~  and b~   are  in ( )F R .  It is obvious that we may  

write ba ~~
ℜ
≤  if and only if  ab ~~

ℜ
≥ . Since there are many 

ranking function for comparing fuzzy numbers we only apply   
linear ranking functions. So, it is obvious that if we suppose 
that ℜ  be any linear ranking function, then 

      i) ba ~~
ℜ
≥ if and only if 0~~

ℜ
≥−ba if and only if ab ~~

−≥−
ℜ

  

  ii) If  ba ~~
ℜ
≥  and dc ~~

ℜ
≥ , then dbca ~~~~ +≥+

ℜ
. 

One suggestion for a linear ranking function as following: 

)(
2
1)~( αβ −++=ℜ UL aaa                 (4) 

where ( , , , ) ( )L Ua a a F Rα β= ∈% .  

IV. FUZZY LINEAR PROGRAMMING  
     In this section, we introduce fuzzy linear programming 
(FLP) problems. So, we first define linear programming 
problems.  

A. Linear Programming 
    A linear programming (LP) problem is defined as: 

                               Max   z cx=  
                     s.t.   Ax b=                                    (5) 

                                     0x ≥  
where 1 1( ,..., ), ( ,..., )T

n mc c c b b b= = , and [ ]ij m nA a ×= . 

In the above problem, all of the parameters are crisp [1]. 
Now, if some of the parameters be fuzzy numbers we obtain a 
fuzzy linear programming which is defined in the next 
subsection.   

B.  Fuzzy Linear Programming 
Suppose that in the linear programming problem some 

parameters be fuzzy numbers. Hence, it is possible that some 
coefficients of the problem in the objective function, technical 
coefficients, the right-hand side coefficients or decision 
making variables be fuzzy number [3], [4], [5], [6], [7], [8], 
[9]. Here, we consider the linear programming problems with 
fuzzy numbers in the objective function. 

V. FUZZY NUMBER LINEAR PROGRAMMING   
    A fuzzy number linear programming (FNLP) problem is 
defined as follows: 

                                Max xcz ~~
ℜ
=  

                                 s.t. bAx =                                     (6) 
                                        0≥x   
where , , , ( ( ))m n m n T nb R x R A R c F R×∈ ∈ ∈ ∈% , and ℜ  is a 
linear ranking function. 
Definition 5.1. We say that vector nx R∈ is a feasible 
solution to (6) if and only if x  satisfies the constraints of the 
problem. 
Definition 5.2. A feasible solution *x  is an optimal solution 
for (6), if for all feasible solution x for (6), we have 

xcxc ~~
* ℜ

≥ . 

 
A. Fuzzy Basic Feasible Solution 
Here, we introduce basic feasible solutions for FNLP 

problems. Consider the system Ax b=  and 0,x ≥  where 
A  is an m n×  matrix and b  is an m vector. Now, suppose 

that ( , ) ( )rank A b rank A m= = . Partition after possibly 
rearranging the columns of A as [ , ]B N  where B , 
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m m× , is nonsingular. It is obvious that ( )rank B m= . 

The point ( , )T T T
B Nx x x=  where 1

Bx B b−= , 0Nx =  is 

called a basic solution of the system. If 0Bx ≥ , then x  is 

called a basic feasible solution (BFS) of the system. Here B  
is called the basic matrix and N  is called the nonbasic 
matrix.  The components of Bx  are called a basic variables, 

and the components of Nx  are called nonbasic variables. 

If 0Bx > , then is x called a nondegenerate basic feasible 

solution, and if at least one component of Bx  is zero, then x  
is called a degenerate basic feasible solution. 
   The following theorem characterizes optimal solutions. The 
result corresponds to the so-called nondegenerate problems, 
where all fuzzy basic variables corresponding to every basis B 
are nonzero (and hence positive) [5]. 
 
Theorem 5.1. Assume the FNLP problem is nondegenerate. A 
basic feasible solution 0,1 == −

NB xbBx  is optimal to (6) 

if and only if j jz c
ℜ
≥ %%  for all1 j n≤ ≤ .  

Proof.  Suppose that * ( T
Bx x= TT

Nx )  is a basic feasible 

solution to (6), where 0,1 == −
NB xbBx .  Then  

1
* .B B Bz c x c B b−

ℜ ℜ
= =% %%  On the other hand, for all feasible 

solution x , we have B Nb Ax Bx Nx= = + . Hence, we may 
obtain 

1 1( )
i

B B N N B B j j j
j B

z cx c x c x c B b c B a c x− −

ℜ ℜ ℜ
≠

= = + = − −∑% % % % % %%     

Then,                    * ( )
i

j j j
j B

z z z c x
ℜ

≠

= − −∑ %% % %                 (7) 

Therefore, the results follow immediately from (7) and the 
assumptions of theorem.                                           
 
   In the next section, we propose simplex method for solving 
FNLP problems.    

VI. SIMPLEX   METHOD FOR THE FNLP PROBLEMS   
 Consider the FNLP problem as is defined in (6).             

                      max  B B N Nz c x c x
ℜ
= +% %%  

                  s.t.     B NBx Nx b+ =  

                           , 0B Nx x ≥  

Hence, we may write 1 1
B Nx B Nx B b− −+ = .  Therefore, 

1 1( )B N N Bz c B N c x c B b− −

ℜ
+ − =% % %% . Currently 0Nx = , and 

then 1
Bx B b−=  , and 1

Bz c B b−

ℜ
= %% . Then we rewrite the 

above FNLP problem in the following tableau format: 

                          z%          Bx                   Nx                         R.H.S. 
 

   z%           
 
  Bx  
  
The above tableau gives us all the information we need to 
proceed with the simplex method. The fuzzy cost row in the 
above tableau isγ% 1( )

iB j j j Bc B a c−
≠ℜ

= −% % , which consists of 

the j j jz cγ
ℜ
= −% %% ’s for the nonbasic variables. According to 

the optimality condition for these problems we are at the 
optimal solution if 0jγ

ℜ
≥% for all ij B≠ . On the other hand, if 

0kγ
ℜ
<% , for  a ik B≠  then we may exchange

rBx  with kx . 

Then we compute the vector 1
k ky B a−= . If 0ky ≤  , then 

kx can be increase indefinitely, and then the optimal objective 

is unbounded. On the other hand, if ky has at least one 
positive component, then the increase in will be blocked by 
one of the current basic variables, which drops to zero. 
 
Theorem 6.1. If in a simplex tableau, an l exists such that 

0l lz c
ℜ

− <%% and there exists a basic index i such that 0ily > , 

then a pivoting row r can be found so that pivoting on 

rly will yield a feasible tableau with a corresponding 
nondecreasing fuzzy objective value. 
Proof. We need a criterion for choosing a basic variable to 
leave the basis so that the new simplex tableau will remain 
feasible and the new objective value is nondecreasing. Assume 
column l  is the pivot column. Also, suppose that 
is ( , )T T T

B Nx x x=  a basic feasible solution to the FNLP 

problem, where 1
Bx B b−= , and 0Nx = . Then, the 

corresponding fuzzy objective value is 1
0.B Bz c B b c y−

ℜ ℜ
= =% %%  

On the other hand, for any basic feasible solution to the 
FNLP problem, we have    

0
i

B j j
j B

x y x y
≠

+ =∑                             (8) 

where  1
j jy B a−= .   

So, if lx  enters into the basis we may write  

0B l lx y y x= −                                  (9) 

Since, we want Bx be feasible, hence 0≥
iBx , or 

                 0 0i il ly y x− ≥ , for all 1,..., .i m=  

If 0ily ≤ , then it is obvious that the above condition is hold. 

Hence, for all 0ily > , we need to have 

  1          0%            1
B Nc B N c− −% %           1

Bc B b−%  
 

  0           I              1B N−                 1B b−  
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    0i
l

il

yx
y

≤                                     (10) 

To satisfy (10) it is sufficient to let 

                   0 0min{ | 0}r i
il

rl il

y y y
y y

= >                         (11) 

Also, for any basic feasible solution to the FNLP problem, we 
have 

  0 ( )
i

B j j j
j B

z c y z c x
ℜ

≠

= − −∑% %% %                       (12) 

So, if we enter lx  into the basis we have 

 0 ( )B l l lz c y z c x
ℜ
= − −% %% % .                        (13) 

We note that the new objective value is nondecreasing, since  
                0 0( )B l l l Bz c y z c x c y

ℜ ℜ
= − − ≥% % %% % ,                (14) 

 
Using the fact that ( ) 0l l lz c x

ℜ
− ≤%% .                                

 
Theorem 6.2.  If for any basic feasible solution to the FNLP 
problem there is some column not in basis for which 

0l lz c
ℜ

− <%% and 0ily ≤ , 1,...,i m= , then the FNLP problem 

has an unbounded solution.            
Proof. Suppose that Bx is a basic solution to the FNLP 
problem, so  
        0 ,

i

i

B ij j i
j B

x y x y
≠

+ =∑ 1,..., , 1,..., ,i m j n= =       (15) 

or 
       0 ,

i

i

B i ij j
j B

x y y x
≠

= − ∑  1,..., , 1,..., .i m j n= =        (16) 

Now, if we enter lx  into the basis, then we have 0lx > , and 

0jx = , for all ij B l≠ ∪ . Since 0ily ≤ , 1,...,i m= , hence  

                                0 0i il ly y x− ≥                               (17) 
Therefore, the current basic solution will remain feasible. 
Now, the value of ẑ  for the above feasible solution as 
following: 

 0
1

ˆ ( )
i

m

B B N N B i il l l l
i

z c x c x c y y x c x
ℜ ℜ

=

= + = − +∑% % % %  

     0
1 1

( )
i i

m m

B i B il l l
i i

c y c y c x
ℜ

= =

= − −∑ ∑% % %  

            0 ( )B B l l lc y c y c x
ℜ
= − −% % % ( )l l lz z c x

ℜ
= − − %% %  

So,  
                         ˆ ( )l l lz z z c x

ℜ
= − − %% % .                           (18) 

Hence, we can enter lx  into the basis with arbitrarily large 
value. Then, from (18) we have unbounded solution.                                                                        
 

VII. A NUMERICAL EXAMPLE   
    For an illustration of the above method we solve a FNLP 
problem by use of simplex method.   
 
Example 8.1. 
                Max  1 2(5,8, 2,5) (6,10, 2,6)z x x

ℜ
= +%   

                 s.t.   1 22 3 6x x+ ≤  
                          1 25 4 10x x+ ≤  
                          1 2, 0x x ≥  
We may rewrite 
                         1 2 32 3 6x x x+ + =  
                          1 2 45 4 10x x x+ + =  
                          1 2 3 4, , , 0x x x x ≥  
 
We may write the first feasible simplex tableau as follows: 
 

 
basis
 

        1x                 2x   3x     4x    
. . .R H S  

  z%  ( 8, 5,5,2)− −    ( 10, 6,6,2)− −    0%       0%       0%  

 3x  

 4x  

         2                    3 
 
         5                    4  

   1        0 
 
   0        1 

     6 
 
    10 

 
 
Since 1 1 2 2( , )z c z c− −% %% % (( 8, 5,5, 2), ( 10, 6,6, 2))

ℜ
= − − − − , 

and 1 2 1 2( , ) ( ( ), ( )) ( 14.5, 18)γ γ γ γ= ℜ ℜ = − −% % , then 2x  

enters the basis and the leaving variable is 3x .The new 
tableau is:  
 

 
basis
 

    1x          2x         3x          4x    . . .R H S  

  z%  5 19
3 3( 4, , ,6)−    0%  10 2

3 3(2, , , 2)  0%  (12,20,4,12)
 

 2x  
 
 4x  

      2
3            1 

 
      7

3            0  

        1
3             0 

 
       4

3
−            1 

         2  
 
 
         2 

 
Now, from 1 3( , )γ γ% %  5 19 10 2

3 3 3 3(( 4, , ,6), (2, , , 2))
ℜ
= −  and 

5
1 3 1 3 2( ( ), ( )) ( , ) ( ,6)γ γ γ γ −ℜ ℜ = =% % , it follows that 1x is an 

entering variable and 4x  is a leaving variable.  
The last tableau is shown in the below. 
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basis 1x  2x            3x                    4x    . . .R H S  

  z%  0%     0%  30 30 382
7 7 7 7( , , , )− 5 18 1912

7 7 7 7( , , , )−  90 148 32 90
7 7 7 7( , , , )

 
 2x  
 
 1x  

 0     1 
 
 
1     0  

          
5
7                    2

7
−  

 

         4
7

−                     
3
7  

      
10
7   

 

      
6
7  

 
  1 1 30 30 38 5 18 192 12

2 1 7 7 7 7 7 7 7 7( , ) (( , , , ), ( , , , ))Bw c B c c B− − −−

ℜ ℜ ℜ
= = =% % % %  

    1 90 148 32 90
7 7 7 7( , , , )Bwb c B b−

ℜ ℜ
= =% % , 1 267( )

7Bc B b−ℜ =%  

    3 4( , ) ( )NwN cγ γ
ℜ
= −% % % % 30 30 38 5 18 192 12

7 7 7 7 7 7 7 7(( , , , ), ( , , , ))−−

ℜ
=  

    32 15
3 4 3 4 7 14( , ) ( ( ), ( )) ( , ) 0γ γ γ γ= ℜ ℜ = >% % , 2 1 0γ γ

ℜ ℜ
= = %% % .   

 
Now, using optimality condition there is not any variable that 
enters the basis. Therefore, this basis is optimal.    

VIII. CONCLUSION 
We considered fuzzy number linear programming problems 

and introduced the basic feasible solution for these problems. 
Finally, we obtained some important results and we proposed 
a new algorithm for solving these problems directly, by use of 
linear ranking function.  
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