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Abstract—This paper presents an algorithm for reconstructing 

phase and magnitude responses of the impulse response when only 
the output data are available. The system is driven by a zero-mean 
independent identically distributed (i.i.d) non-Gaussian sequence that 
is not observed. The additive noise is assumed to be Gaussian. This is 
an important and essential problem in many practical applications of 
various science and engineering areas such as biomedical, seismic, 
and speech processing signals. The method is based on evaluating the 
bicepstrum of the third-order statistics of the observed output data. 
Simulations results are presented that demonstrate the performance 
of this method. 
 

Keywords— Cepstrum, bicepstrum, third order statistics 

I. INTRODUCTION 
ISTORICALLY, the cepstrum is concerned with the 
problem of deconvolution[8, 15, 6]. Bogert et al. [6] 

observed that the logarithm of the power spectrum of a signal 
containing an echo has an additive periodic component due to 
the echo. Hence, the Fourier transform of the logarithm of the 
power spectrum exhibits a peak at the echo delay. That is, the 
effect in the log spectrum turns out to be a ripple. The 
frequency of this ripple is determined by calculating the 
spectrum of the logarithm spectrum wherein this frequency 
will appear as a peak. It should be mentioned that the units of 
frequency of this ripple in the logarithm spectrum are in units 
of time. To avoid confusion, Bogert et al. [6] introduced new 
terms according to a syllabic interchange rule. The term that 
has been widely used is the cepstrum that was obtained by 
interchanging letters in the word spectrum. In defining the 
complex cepstrum, any base can be used for the logarithm 
[13]. Typically, the natural logarithm (i.e., base e) is used. 
     The transformation of a signal into its cepstrum function is 
known as a homomorphic transformation [13]. Homomorphic 
transformation is an important property of the cepstrum in 
which the output is a superposition of the input signals; i.e., 
the input signals and their corresponding responses are 
superimposed by an operation that has the algebraic 
characteristics of addition. Under a cepstral transformation, 
the convolution of two signals  becomes 
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equivalent to the sum of the cepstra of the signals 
. Since introduction of the cepstrum, the concepts 

of the cepstrum have proven to be useful in signal analysis 
and have been applied in geophysics, sonar, radar, 
communications, and biomedical signal analysis problems to 
decompose superimposed signals [16, 11, 5]. For example, if 
the wave shape of the original signal is known, then cepstrum 
techniques can be used to reconstruct the number of echoes, 
the amplitude, and the number of occurrence. Bogert and 
Ossana [7] showed that the power cepstrum approach can 
detect echoes when the autocorrelation of the received signal 
could not do so. In speech signal processing, the cepstrum has 
been used to estimate the spectral content of the speech from 
the pitch frequency of the speech [17]. For voiced speech, the 
vocal tract spectral envelope multiplies the frequency 
spectrum in which the discrete line spectrum of the periodic 
excitation. Cepstral truncation is used to remove the pitch 
ripple. 

     The use of second-order statistics (i.e., autocorrelation) is 
motivated by the implicit assumption that the processes are 
Gaussian. For modeling time series data, second order 
statistics are almost exclusively used because they are usually 
based on least-squares optimization criteria. However, most 
real world signals are non-Gaussian [3]. The information 
contained in the power spectrum is that which is present in the 
autocorrelation sequence. Since autocorrelation-based 
techniques are phase-blind, all phase information is 
suppressed in the autocorrelation domain. Therefore, a 
nonminimum phase system will be identified as being 
minimum phase. Hence, these techniques often have serous 
difficulties. However, there are practical applications in which 
one must look beyond the second order statistics and extract 
signal phase information. 

     With the expansion of basic digital signal processing 
theory and the rapid growth in applications due to the 
development of fast and inexpensive digital signal processors, 
there is a growing interest in higher order statistics. The field 
of higher order statistics (HOS) has been used widely for 
analyzing non-Gaussian processes [3, 4]. There are several 
motivations behind the interest of HOS [11]. The emphasis of 
this paper is based on the property that HOS preserve the true 
phase character of parametric signals. Hence, cumulants are 
useful for identifying nonminimum phase systems or for 
reconstructing nonminimum phase signals if the signals are 
non-Gaussian. 

     This paper presents a method for extracting signal phase 
and magnitude responses of the impulse response from the 

Signal Reconstruction using Cepstrum of 
Higher Order Statistics 

Adnan Al-Smadi and Mahmoud Smadi

H 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:6, 2007

291

 

 

observed corrupted system. The proposed algorithm uses 
higher order cumulants and higher order cepstra of the 
distorted signal. The organization of the paper is as follows. 
Section 2 presents the proposed method. Illustrative examples 
and simulations are presented in section 3. Section 4 presents 
some conclusion remarks.  

  

II. PROBLEM FORMULATION 
     Consider the general causal linear time-invariant (LTI) 
recursive system described by the linear difference equation 
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where x(k) is the input signal and s(k) is the noiseless output 
signal. The system in (1) produces an autoregressive moving 
average (ARMA) process. The ai and bi are the coefficients of 
the ARMA model with order (p,q). The system is assumed 
causal, stable, and generally nonminimum phase. The input 
signal s(k) is a sequence of independent identically distributed 
(i.i.d), zero-mean, non-Gaussian random process. The signal 
s(n) is observed in additive noise 

                        y(n) = s(n) + d(n)                                          (2) 

where d(n) is additive Gaussian noise. The transfer function of 
the ARMA system is given by 
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or equivalently, 

               H(w) =  |H(w)| exp[jθ(w)]                                      (4) 

where |H(w)|  is the magnitude and θ(w) is the phase of the 
Fourier transform. If the system is minimum phase, then 
autocorrelation-based methods will correctly identify both 
magnitude and phase. If H(w) is nonminimum phase, then the 
autocorrelation- based methods will correctly identify the 
magnitude but not the phase. However, both |H(w)| and θ(w) 
can be correctly estimated by exploring the use of higher order 
spectra. Namely, bispectrum that is by definition, the Fourier 
transform of the third order cumulant sequence. Assuming 
that s(k) is stationary, then the third order cumulant is [1] 

                 R(m,n) = E{s(k)s(k+m)s(k+n)}                            (5)  

Then its bispectrum is defined as [2] 
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which is the third order cumulant spectrum. 

Now, the cepstrum is defined as the inverse Fourier transform 
of the logarithm of H(w) in Equation (4); that is [9] 
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where [.]1−F  denotes the inverse Fourier transform. 
Substituting (4) into (7) 
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Hence, the cepstrum is the spectrum of ln[H(w)]. We can 
separate the inverse Fourier transform in (9) to magnitude and 
phase as follows. 
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     In some applications such as speech signal processing, we 
are interested in magnitude only; hence, only the component 
hmag(n) is computed. In such case, the phase of the signal is 
ignored. Therefore, the signal cannot be reconstructed from 
the magnitude only.  

       The transfer function H(z) in Equation (3) may also be 
written in terms of poles and zeros [6] 
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where |ak|, |bk|, |ck|, and |dk| are all less than unity. The 
parameter L is a constant and r is a positive integer. The term 
zr corresponds to a delay or advance of the sequence h(n). If r 
=0, then this term vanishes. The expression in (11) is called 
the minimum-phase maximum-phase decomposition. The 
factors of the form (1-akz-1) and (1-ckz-1) correspond to Mi 
zeros and Ni poles inside the unit circle. The factors (1-bkz) 
and (1-dkz) correspond to the Mo zeros and No poles outside 
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the unit circle. That is, H(z) can be decomposed into the 
product of its minimum and maximum delay components, as 
follows. 

                                     H(z)=Hmin(z)Hmax(z)                        (13) 

 So that 

                                  hc(n)=hmin(n)∗ hmax(n)                       (14) 

Now, 
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It is shown as follows using the initial value theorem that ln|L| 
is the cepstrum at n=0; i.e., ln|L|=hc(0). For a causal sequence 
hc(n), we can write Equation (12) as  

     Hc(z)=hc(0) + hc(1)z-1 + hc(2)z-2 + …+ hc(n)z-n +…      (16) 

It is seen as z → ∞ , the term z-n → 0 for each n> 0, so that  

                                )0()(lim ccz
hzH =
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                          (17) 

The second term in Equation (15) is the causal part and the 
third term is the anticausal part. Hence,  

               )0(||lnlim)](ln[lim czcz
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              (18) 

Therefore,   ln|L|=hc(0).                                                               

     Now, the cepstrum, ps(m), of the power spectrum Φ(w)  is 
defined as  

                  ps(m) = )}({ln1 wF Φ−                                   (19) 

 which is equal to [2] 
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where A(k) and B(k) are the cepstral coefficients containing 
the minimum and maximum phase information, respectively. 
Recall that 

                               Φ(w) = |H(w)|2                                     (21) 

The cepstral coefficients are  
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The bicepstrum can be computed directly from the observed 
data as follows [15]. 

                  

]
)},({

)},({
[1),(

2

21
2 nmRF

nmRmF
F

m
nmbs

•
= −                          (24) 

where {.}2F and {.}1
2
−F denote two-dimensional Fourier and 

inverse Fourier transforms, respectively, R(m,n) is the third 
order cumulants and is estimated as follows. 
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In this equation, N denotes the length of the sequence. It 
should be stated that the bicepstrum can also be obtained from 
the cepstral coefficients A(k) and B(k) as follows [14].   
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Pan and Nikias [14] showed that the bicepstrum of s(k) is zero 
everywhere except on the axes m=0, n=0, and on the diagonal 
( i.e., m=n). We estimate the phase of the system as follows. 
We first calculate the third order cumulants of the system 
using Equation (5). Then, the bicepstrum is obtained from the 
observed data using Equation (24). After that, the cepstral 
coefficients are calculated from the bicepstrum using Equation 
(26). Having the cepstral coefficients, we can extract the 
phase response as follows.  

                    θ(w) = F{ )]()([
2

mBmA
m
j

− }                   (27) 

Now, substituting Equation (21) into Equation (19) 

                    Ps(m) = F-1{ln|H(w)|2}                                    (28) 

Taking Fourier transforms of both sides of (28),   

                                  F{ps(m)} =  ln|H(w)|2                                

   Raising both sides to the base e    
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Solving for |H(w)|, we obtain 

             |H(w)| =  )})({exp( mpF s                               (30) 

That is, the magnitude response is obtained using the Fourier 
transform of the cepstrum of power spectrum of the available 
distorted signal.  

III. NUMERICAL EXAMPLES 
    To demonstrate the effectiveness of the proposed method, 
several numerical examples were considered. The simulations 
were carried out using MATLAB.  

Example 1: The system under consideration was  

            h = [.7   1  .8   -.7   .6   -.5  .4   -.3   .2   -.1]             (31) 

A Gaussian noise of 25 dB signal-to-noise ratio (SNR) was 
added to the system. The third order cumulants of the 
corrupted signal were computed. Then, the bicepstrum was 
obtained using two-dimensional Fourier and inverse Fourier 
transforms of the cumulants. Next, the cepstral coefficients 
were obtained. Finally, the phase and the magnitude responses 
were recovered. The simulation with noise with different 
seeds was performed 100 times. Then, these simulations were 
averaged to estimate the desired phase and magnitude of the 
system. Figure 1 shows the average result of 100 Monte Carlo 
simulations that estimated the phase versus the true phase 
responses of the system. Figure 2 shows the average result of 
100 Monte Carlo simulations of the estimates of the 
magnitude versus the true magnitude response of the system. 
Table 1 shows the first 10 by 10 entries of the bicepstrum 
matrix.  

Example 2: The system under consideration was  

      h = [  1   .9   1.9   -1   1   -.4   1.5 -.4  .5   -1]                 (32) 

As in example 1, the system was corrupted with additive 
Gaussian noise with SNR of 25 dB on the output signal. The 
third order cumulants of the corrupted signal were computed. 
The phase and magnitude responses were recovered. The true 
phase versus the estimated phase responses (an average result 
of 100 Monte Carlo simulations) of the system are shown in 
Figure 3. The true magnitude versus the estimated magnitude 
(an average result of 100 Monte Carlo simulations) is shown 
in Figure 4. Table 2 shows the first 10 by 10 entries of the 
bicepstrum matrix. 

 In these examples, the phase and magnitude responses are 
reconstructed and the estimated values appear almost on the 
top of the true values. The superior performance of this 
algorithm is because higher order cumulants are blind to all 
kinds of Gaussian noise. That is, higher order cumulants for a 
Gaussian process are identically zero. 

 

IV. CONCLUSION 
In this paper, a cepstrum based method for recovering the 

phase and magnitude responses of the impulse response from 
a distorted with additive Gaussian noise output data was 
described. The proposed algorithm uses third order cumulants 
and higher order cepstra coefficients of the corrupted signal. 
Examples show that the reconstructed phase and magnitude 
are in close agreement with the true values. 
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Fig. 1 True VS estimated phase for Example 1 
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Fig. 2 True VS estimated magnitude for Example 1 
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TABLE I  

THE FIRST 10 BY 10 ENTRIES OF THE BICEPSTRUM MATRIX 

 m 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.883 0.965 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.372 0.000 -0.046 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.196 0.000 0.00 -0.106 0.000 0.000 0.000 0.000 0.000 0.000 

0.071 0.000 0.000 0.000 0.086 0.000 0.000 0.000 0.000 0.000 

-0.007 0.000 0.000 0.000 0.000 -0.040 0.000 0.000 0.000 0.000 

-0.034 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 

0.041 0.000 0.000 0.000 0.000 0.000 0.000 0.007 0.000 0.000 

-0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.007 0.000 

 

 

 

 

n 

-0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 

 
TABLE II 

 THE FIRST 10 BY 10 ENTRIES OF THE BICEPSTRUM MATRIX 

 m 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.211 0.324 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.372 0.000 -0.518 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

-0.196 0.000 0.00 -0.127 0.000 0.000 0.000 0.000 0.000 0.000 

0.071 0.000 0.000 0.000 0.036 0.000 0.000 0.000 0.000 0.000 

-0.007 0.000 0.000 0.000 0.000 0.0115 0.000 0.000 0.000 0.000 

-0.034 0.000 0.000 0.000 0.000 0.000 -0.138 0.000 0.000 0.000 

0.041 0.000 0.000 0.000 0.000 0.000 0.000 -0.011 0.000 0.000 

-0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.012 0.000 

 

 

 

 

 
n 

-0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.057 
 


