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Siding Mode Control of Pitch-Rate of an F-16

Aircraft
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Abstract— This paper considers the control of the longitudinal
flight dynamics of an F-16 aircraft. The primary design objective
is model-following of the pitch rate q, which is the preferred
system for aircraft approach and landing. Regulation of the aircraft
velocity V (or the Mach-hold autopilot) is also considered, but
as a secondary objective. The problem is challenging because the
system is nonlinear, and also non-affine in the input. A sliding
mode controller is designed for the pitch rate, that exploits the
modal decomposition of the linearized dynamics into its short-period
and phugoid approximations. The inherent robustness of the SMC
design provides a convenient way to design controllers without gain
scheduling, with a steady-state response that is comparable to that
of a conventional polynomial based gain-scheduled approach with
integral control, but with improved transient performance. Integral
action is introduced in the sliding mode design using the recently
developed technique of “conditional integrators”, and it is shown that
robust regulation is achieved with asymptotically constant exogenous
signals, without degrading the transient response. Through extensive
simulation on the nonlinear multiple-input multiple-output (MIMO)
longitudinal model of the F-16 aircraft, it is shown that the conditional
integrator design outperforms the one based on the conventional linear
control, without requiring any scheduling.

Keywords— Sliding-mode Control, Integral Control, Model Fol-
lowing, F-16 Longitudinal Dynamics, Pitch-Rate Control.

I. INTRODUCTION

THE dynamic response characteristics of aircraft are

highly nonlinear. Traditionally, flight control systems

have been designed using mathematical models of the aircraft

linearized at various flight conditions, with the controller pa-

rameters or gains “scheduled” or varied with the flight operat-

ing conditions. Various robust multivariable techniques includ-

ing linear quadratic optimal control (LQR/LQG), H∞ control,

and structured singular value μ-synthesis have been employed

in controller design, an excellent and exhaustive compendium

of which is available in [15]. In order to guarantee stability

and performance of the resulting gain-scheduled controllers,

analytical frameworks of gain scheduling have been developed

(see, for example, [11]), including the powerful technique of

linear-parameter-varying (LPV) control (see, for example, [4],

[5], [13], [14], [24], [28]). Nonlinear design techniques such

as dynamic inversion have been used in [1], [19], [26], while

a technique that combines model inversion control with an

online adaptive neural network to “robustify” the design is

described in [21], and a nonlinear adaptive design based on

backstepping and neural networks in [12]. A succinct “industry
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perspective” on flight control design, including the techniques

of robust control (H∞, μ-synthesis), LPV control, dynamic

inversion, adaptive control, neural networks, and more, can be

found in [2].

Our interest is in the design of robust sliding mode control

(SMC) for the longitudinal flight dynamics of a F-16 air-

craft that is not based on LPV models or gain-scheduling.

LPV/gain-scheduling based designs for a F-16 have been

pursued, for example, in [7], [9], [13], [14]. The application

of SMC to flight control has been pursued by several others

authors, for example, [6], [8], [25]. Our work differs from

earlier ones in that it is based on a recent technique in [22] for

introducing integral action in SMC. While we design a non-

linear controller, it is designed based upon plant linearization.

In particular, our design exploits the modal decomposition

of the linearized dynamics into its short-period and phugoid

approximations. Our primary emphasis is on the transient and

steady-state performance of control of the aircraft’s pitch rate,

with the steady-state performance and disturbance rejection

of the aircraft’s velocity as a (minor) secondary objective.

The desired transient and steady-state specifications for the

pitch rate are encapsulated in the response of a reference

model, and the (SMC) controller is designed as a model-

following controller. As a consequence of exploiting the

modal decomposition of the aircraft dynamics, the pitch rate

controller has a very simple structure. It is simply a high-

gain PI controller with an “anti-windup” integrator, followed

by saturation. This controller structure is a special case of a

general design for robust output regulation for multiple-input

multiple-output (MIMO) nonlinear systems transformable to

the normal form, with analytical results for stability and per-

formance described in [22]. Through extensive simulations, we

show that this design outperforms a traditional gain-scheduled

controller design based on the polynomial approach to model-

following design. A preliminary version of this paper appeared

in the Proceedings of the 17th IFAC World Congress in Seoul,

2008 [18].

The rest of this paper is organized as follows. In Section

2, we describe the nonlinear mathematical aircraft model, its

linearization and the decomposition of the dynamics into the

short-period and phugoid modes. This section is extracted

mostly from [29], with the Simulink model for simulation

purposes based on [20]. The design of the pitch controller

based on the “conditional integrator” SMC design of [22]

is taken up in Section 3, and simulation results showing

the efficacy of the design, along with comparisons to gain

scheduled controllers using the (linear) transfer-function based

polynomial approach to model-following are presented in Sec-
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tion 4. Finally, a summary of our work and some suggestions

for possible extensions are provided in Section 5.

II. 3-DOF LONGITUDINAL MODEL

The equations for pure longitudinal motion of an aircraft

with no thrust-vectoring can be described by the 5th order

nonlinear state model

V̇ = q̄Sc̄q
2mV

[Cxq(α) cos α + Czq(α) sin α]

+ q̄S
m

[Cx(α, δe) cosα + Cz(α, δe) sin α]
− g sin (θ − α) + T

m
cos (α)

α̇ = q
[
1 + q̄Sc̄

2mV 2 (Czq(α) cos α − Cxq sin α)
]

+ q̄S
mV

[Cz(α, δe) cos α − Cx(α, δe) sin α]
+ g

V
cos (θ − α) − T

mV
sin (α)

θ̇ = q

q̇ = q̄Sc̄q
2IyV

[c̄Cmq(α) + ΔCzq(α)]

+ q̄Sc̄
Iy

[
Cm(α, δe) + Δ

c̄
Cz(α, δe)

]
ḣ = V sin (θ − α)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

where V , α, θ, q and h are the aircraft’s velocity, angle-of-

attack, pitch attitude, pitch rate and altitude respectively, T
the thrust force, δe the elevator angle, m the mass of the

aircraft, Iy the moment of intertia about the Y-body axis,

q̄ = q̄(h, V ) = 1

2
ρ(h)V 2 the dynamic pressure, S the wing

area, Δ the distance between the reference and actual center

of gravity, Cm(·) the pitching moment coefficient along the

Y-body axis, Cmq(·) = ∂Cm

∂q
the variation of Cm with pitch

rate, Cx(·) and Cz(·) the force coefficients along the stability

X and Z axes respectively, and Cxq(·) and Czq(·) the variations

of these coefficients with the pitch rate. Defining the state x,

input u and output y 1 respectively as

x = [V α θ q h]T ∈ R5, u = [T δe]
T ∈ R2, y = [V h]T ∈ R2

the system (1) can be compactly written in standard form as

ẋ = f(x, u), y = h(x, u) (2)

For the purpose of simulating our controller design, we build

a Simulink model for the longitudinal dynamics of a scaled

F-16 aircraft model based on the NASA Langley wind tunnel

tests in [16], and described in [20], [29]. Our model differs

from the ones in [20], [29] primarily in that

1) We only build a 3-DOF 5th order longitudinal model (so

β = 0) as opposed to the 6-DOF model for the full 12th

order nonlinear state model.

2) We do not include actuator models, in particular, we

ignore lag effects and rate saturation (we include mag-

nitude saturation though). For example, the NASA data

[16] includes a model of the F-16 afterburning turbofan

engine, in which the thrust response is modeled as a first-

order lag, and the lag time constant is a function of the

actual engine power level, and the commanded power.

The command power is related to the throttle position

δth, which is taken as the input in place of the thrust

T , and the inclusion of the engine model increases the

1We use h and V as the “linearizing outputs”, but the “regulated outputs”
are the pitch-rate q and the velocity V .

system order by one. As will be evident from the control

design in Section 3, the inclusion of actuator dynamics

(usually modled as first-order lag filters) can easily be

incorporated in our design. We do not do so since it

detracts from our intended contribution, which is the

use of the conditional integrator apporach to improve

transient performance.

3) We ignore the leading flap edge deflection. The F-16

has a leading-edge flap that is automatically controlled

as a function of α and Mach and responds rapidly to α
changes during maneuvering (see [20], [27] for a further

discussion), and

4) We consider a smaller dynamic range for the angle of

attack, α ∈ [−10◦, 45◦].

In particular, the model that we build corresponds to the low

fidelity F-16 longitudinal model in [20], and to the longitudinal

F-16 model developed in [13], but without thrust vectoring.

For the aerodynamic data we use the approximate data in [16],

[29], with the mass and geometric properties as listed in Table

I.

TABLE I
MASS AND GEOMETRIC PROPERTIES.

Parameter Symbol Value

Weight W (lb) 20500

Moment of inertia Iy (slug-ft2) 55814

Wing area S (ft2) 300

Mean aerodynamic chord c̄ (ft) 11.32

Reference CG location xcg,ref 0.35c̄

The coefficients Cxq(α), Czq(α), Cmq(α), Cx(α, δe),
Cz(α, δe), and Cm(α, δe) are taken from [16], [29], and

are included in [17, Appendix A.1] in tabular form. In the

simulation, the data is interpolated linearly between the points,

and extrapolated beyond the table boundaries.

Control design for (1) is challenging because the system

is nonlinear, and moreover, non-affine in the input. While

we believe that a controller design based on an affine ap-

proximation of the form ẋ = f0(x) + g0(x)(u + gδ(x, u))
is feasible 2, we do not pursue that here, and instead adopt

the more common linearization based approach. In order to

perform the linearization, we make the following assumption.

Assumption 1: Given any desired equilibrium value ŷ =
[V̂ , ĥ]T , there exist a unique equilibrium input u = û and

state x = x̂, such that f(x̂, û) = 0, and ŷ = h(x̂, û) = 0.

Defining the perturbation input, state, and output respec-

tively by

uδ = u − û, xδ = x − x̂, yδ = y − ŷ (3)

and expanding (2) in a Taylor series about (x̂, û), and neglect-

ing the higher order terms yields the linear approximation

ẋδ = Axδ + Buδ, yδ = Cxδ + Duδ (4)

2A design for non-affine systems that partially uses the idea above can be
found in [31].
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where

A =
∂f

∂x
(x̂, û), B =

∂f

∂u
(x̂, û), C =

∂h

∂x
(x̂, û), D =

∂h

∂u
(x̂, û)

(5)

Since the drag coefficients Ci(·) are not specified explicitly

as functions of their arguments, but in tabular form (as look-

up data), we use numerical techniques to solve for the trim

(equilibrium) points and to compute the linearization. The

flight envelope that we use for computing the trim conditions

and the linearization is the cross product set (V̂ , ĥ) ∈ ΩV ×Ωh,

where ΩV = [300, 900] ft/s in steps of 100, while Ωh =
[5000, 40000] ft in steps of 5000.

It is well-known that it is possible to do a modal decomposi-

tion of the linearized multi-input, multi-output (MIMO) flight

dynamics into its component “short-period” and “phugoid”

modes, which (i) reduces the MIMO system into two (essen-

tially) single-input, single-output (SISO) systems, but more

importantly (ii) offers physical insight into the dynamic be-

havior of the aircraft. In particular, it can be verified 3 that

the MIMO linearization can be decoupled into the SISO-like

state equations

ż1δ =

[
α̇δ

q̇δ

]
≈ A11

[
αδ

qδ

]
+ B12 δeδ

˙z2δ =

[
V̇δ

θ̇δ

]
≈ A21

[
αδ

qδ

]
+ A22

[
Vδ

θδ

]
+ B21 Tδ + B22 δeδ

(6)

with the dynamics of the variables z1 and z2 constituting the

short-period and phugoid modes respectively. Note that we did

not include the altitude equation in (6). This is because (i) h
is not a regulated output, and (ii) from (6), h does not enter

the short-period and phugoid approximations explicitly, and is

therefore not important for the control design.

We exploit the decoupling in (6) in our controller designs

in the next section. In particular, we use the elevator δe to

control the pitch rate q, and the thrust T to control the aircraft’s

velocity V . We emphasize that this decoupling, along with

knowledge about the relative degree and high-frequency gain

of the short-period dynamics, are the only aspects of the

linearization that are used in our SMC design in the next

section. The linearization is also explicitly used to design a

classical gain-scheduled controller against which we compare

our SMC design. Our design, while based implicitly on (6),

is evaluated on the full fifth order nonlinear state model (2).

III. CONTROL DESIGN

Our primary control objective in this work is the design

of a pitch-rate command system. It is well-known that a

deadbeat response to pitch-rate commands is well suited to

precise tracking of a target by means of a sighting device,

and that control of the pitch rate is also the preferred system

for approach and landing. Since the original system is MIMO,

we also consider, but as a secondary objective, a Mach-hold

autopilot, which is chiefly used on military aircraft during

3While an analytical discussion can be found in any standard textbook, such
as [29, Chapter 4], this approximate decoupling been verified numerically in
[17] for the F-16 model (1), for each operating condition.

climb and descent. During a climb the throttles may be set

at a fairly high power level, with the constant Mach number

providing the best fuel efficiency. Similarly, a descent will be

flown at constant Mach with the throttles near idle.

For the pitch-rate command system, the entire dynamic

response is important, and we assume that the desired spec-

ifications are encapsulated in a reference model. We employ

the same reference model as in [3]

Gm(s) =
qm(s)

qd(s)
=

1.4s + 1

s2 + 1.5s + 1

where qd is the pitch rate pilot command. Our approach to

control design for the pitch-rate is based on minimum-phase

systems transformable to the normal form

η̇ = φ(η, ξ)

ξ̇ = Acξ + Bc γ(x) [u − α(x)]

y = Ccξ

where x ∈ Rn is the state, u the input, ρ is the system’s

relative degree, ξ ∈ Rρ the output and its derivatives up to

order ρ − 1, η ∈ Rn−ρ the part of the state corresponding to

the internal dynamics, and the triple (Ac, Bc, Cc) a canonical

form representation of a chain of ρ integrators. A SMC design

for such systems was carried out in [22], with the assumption

that the internal dynamics η̇ = φ(η, ξ) are input-to-state stable

(ISS) with ξ as the driving input. We apply this design to the

short period approximation (6), with δeδ
as input and qδ as

output. Note that this is a relative degree ρ = 1 system. In

order to apply the technique in [22], we need to transform the

system to normal form and check internal stability. The next

assumption states these properties.

Assumption 2: Consider the short-period approximation[
α̇δ

q̇δ

]
def
=

[
aαα aαq

aqα aqq

] [
αδ

qδ

]
+

[
bαδ

bqδ

]
δeδ

with output qδ . Then (i) bqδ < 0, (ii) the (invertible) change

of coordinates [
ξ
η

]
def
=

[
0 1

1 − bαδ

bqδ

] [
αδ

qδ

]

transforms the system to normal form[
η̇

ξ̇

]
def
=

[
aηη aηξ

aξη aξξ

] [
η
ξ

]
+

[
0
1

]
δeδ

qδ = ξ

and (iii) aηη < 0, i.e., the system is minimum-phase.

As before, we have verified parts (i) and (iii) of Assumption (2)

numerically, for each trim condition, but an analytic discussion

based on the stability derivatives can be found in [29].

Assumption (2) allows us to use the SMC controller design

in [22] for the q-dynamics. For completeness, we briefly point

out the ingredients of this design. In the absence of integral

control, a standard SMC design for such a system takes the

form

u = k sgn(s), s = e
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where e = q − qm is the tracking error 4, and sgn(s) the

signum function. It is easy to show that the design achieves

asymptotic error regulation for “sufficiently large” k. In order

to alleviate the chattering problem (see [32]) that is common

with ideal discontinuous control, it is common to replace the

above design with its continuous approximation

u = k sat

(
s

μ

)

where sat(s) is the standard saturation function, and μ the

width of the “boundary layer”. This modification can reduce

chattering, but at the expense of only achieving practical

regulation of the error e, with |e| = O(μ). Consequently,

reducing the steady-state error requires making μ small, which

again leads to chattering. In order to achieve asymptotic error

regulation with continuous SMC, robustly in the presence of

disturbances and unknown parameter values, one can augment

the system with an integrator driven by the error, i.e. σ̇ = e,

and include the integrator output σ as part of the sliding

variable s. Such a design can be found in [10], where it is

shown that the design reduces to a saturated high-gain PI

controller. The drawback of this design is that the recovery of

the steady-state asymptotic error regulation (of ideal SMC) is

achieved at the expense of transient performance degradation,

in part due to an increase in system order, and in part as

a consequence of controller saturation interacting with the

integrator, resulting in “integrator windup”.

The “conditional integrator” design in [22] is a novel way to

introduce integral action in continuous SMC, while retaining

the transient response of ideal SMC (without integral control).

In this approach, we modify the sliding surface design to

s = k0σ + e (7)

where k0 > 0 is arbitrary, and σ is the output of

σ̇ = −k0σ + μsat(s/μ), σ(0) = 0 (8)

To see the relation of (8) to integral control, observe that

inside the boundary layer {|s| ≤ μ}, (8) reduces to σ̇ = e,

which implies that e = 0 at equilibrium. Thus (8) represents

a “conditional integrator” that provides integral action only

inside the boundary layer. The control is simply taken as the

continuous approximation of ideal SMC, i.e.,

δe = ksat(s/μ) = ksat

(
k0σ + e

μ

)
(9)

This completes the design of the pitch-rate controller. With this

design, we don’t need to make μ small to achieve zero steady-

state error, only “small enough” to stabilize the equilibrium

point. The effect of this observation on robustness to switch-

ing imperfections such as time delays will be demonstrated

through simulation in Section 4.

While analytical results for stability and performance of the

above SMC design are given in [22, Theorems 1, 2], they are

not directly applicable to the work in this paper since they

were done for control affine systems. Consequently, we use the

4Note that for each trim condition q̂ = 0, so that qδ ≡ q, which is why
we simply use q in defining e.

(control affine) linear approximation (6) as the starting point

of our design, and verify the efficacy of the design through

simulations. A mention of stability and boundedness under this

design is made in the concluding paragraph of this section.

Since we are only interested in the Mach-hold autopilot (for

V ) as a secondary objective (of minor importance), and this is

usually designed simply to meet specifications on steady-state

error and disturbance rejection, we only design a simple PI

controller for the thrust T to regulate V . However, extending

this to a “better” controller design is straightforward.

It is easy to check that the equation for Vδ in (6) is of the

form

V̇δ
def
= aV ααδ + aV qqδ + aV V Vδ + aV θθδ + bV T Tδ + bV δδeδ

(10)

and it can be verified that for each trim condition, aV V < 0,

i.e., the Vδ-subsystem is stable. We view the term aV ααδ+
aV qqδ+ aV θθδ+ bV δδeδ

as constituting a “matched distur-

bance”, and simply augment the stability of this system by

designing Tδ as the PI controller

Tδ = −kP Vδ − kIσV , σ̇V = Vδ (11)

with the gains kp, kI > 0 chosen to assign the eigenvalues of

the 2nd-order system with states σV and Vδ at desired pole

locations. The control is then taken as T = T̂ + Tδ. Clearly,

an alternate implementation where we don’t need the nominal

control T̂ = T̂ (ĥ, V̂ ) is to simply use the control

T = −kP Vδ − kIσV , σ̇V = Vδ

Since we don’t wish to gain-schedule, we use the alternate

implementation, with the control saturated at its physically

allowable limits. This completes the design of the Mach-hold

autopilot controller.

As previously mentioned, the analytical results of [22] do

not directly apply to this design. However, assuming that

the short-period and phugoid decomposition approximately

holds, a naive argument that our controller design achieves

boundedness of all states, and asymptotic error regulation of

the error e is presented below. The SMC (9) achieves robust

regulation of the pitch-rate q, provided the value of k is

“sufficiently large” 5. The variable α is bounded since the

system is minimum-phase. The variable θ evolves according to

θ̇ = q, and hence is bounded whenever q is. The PI controller

(11) achieves boundedness of the velocity V . Finally, from the

equation of ḣ, it follows that h is bounded for all finite time

whenever V is, so that with our SMC and PI controllers for

δe and T respectively, all the states of the closed-loop system

are bounded. Our simulation results, which we present next,

appear to validate the above conclusions.

IV. SIMULATION RESULTS

We present simulation results showing the effectiveness of

our SMC design. Our design is compared against a more

classical gain-scheduled approach to model following, with the

details of the design described in [17, Chapter 3]. Briefly, this

5Alternately, when the gain k is fixed apriori, one can estimate the
corresponding region of attraction, see [22].
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is a 2-DOF linear controller of the form Ruδ = Tuδm −Syδ,

where uδm is the command input, and R, S, and T are

polynomials chosen such that the closed-loop transfer function

(at each trim-condition) equals that of the reference model. In

order to ensure performance robustness, the controller contains

an integrator, i.e., R = sR̄ for some R̄. The controller coef-

ficients are automatically computed for each trim condition

by a matlab program, and continuously scheduled using a 2-

dimensional linear interpolation with (h, V ) as the scheduling

variables.

Numerical values of the SMC parameters that we use in

all the simulations are k0 = 10, and that k = 25, so

that −25 ≤ δe ≤ 25, which are the limits mentioned in

[20], [27]. The thrust T is assumed to be constrained as

T ∈ [0, 1000] lbs. The boundary layer width μ is chosen

“sufficiently small”, and we will say more on this shortly. The

initial values in all simulations correspond to trim conditions

with (V̂ , ĥ) = (600ft/s, 20000ft). For ease of presentation,

we first present our results with just the continuous SMC with

no integral action, so that u = −k sat
(

e1

μ

)
, and then repeat

the simulations with the conditional integrator design (9).

A. SMC Without Integral Control

Case 1: Short-period approximation with plant uncer-

tainties: Our first simulation compares the SMC design with

the polynomial-based approach when implemented on the 2nd-

order linear SISO short-period approximation (6) of q with

δe as the control input, when there are uncertainties in the

aircraft model. For example, it is well-known (see, for example

[7]) that the pitching moment Cm is associated with as much

as 70% and 80% uncertainty on its lower and upper bounds

respectively, i.e.,

0.3Cm
def
= Cm ≤ Cm ≤ 1.8Cm

def
= Cm

where Cm is the nominal value used in the look-up table. Such

uncertainties will lead to errors in both the linearization, and

the trim values of the inputs, and hence a loss of nominal

performance. For the purpose of simulation, we simply model

the uncertainties as random perturbations of the coefficients of

A11 in (6) to within 50% of their nominal values. The pilot

pitch-rate command qd is a doublet of magnitude 30 deg/s.

Figure 1 shows the tracking errors for the values μ = 0.1
and μ = 0.01. It is clear that (i) the SMC has much

better transient performance compared to the polynomial

approach (we have clipped the y-axis limits at ±1, otherwise

the plots for the two values of μ are indistinguishable), and

(ii) as we decrease μ, the performance of the SMC gets

better (with μ = 0.01, the error is almost identically zero

!). However, recall that too small a value of μ could result

in chattering, when there are switching imperfections such as

delays, something that we will show by simulation shortly.

Note that the SMC design does not use any information about

the linearization except for the relative degree and the sign of

the high-frequency gain bqδ .

Case 2: Full linear model with input-additive distur-

bance: In order to demonstrate the performance of the robust-

ness of the SMC approach to matched disturbances, we assume
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 −
 q
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Polynomial approach

SMC, μ = 0.1
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Fig. 1. Short-period approximation with uncertainties.

that there is an input additive disturbance at the elevator input

(which can alternately be thought of as offset of the trim value

of δe), i.e., δe = δ̂e +d. The SMC and polynomial designs are

now tested on the (full) 5th-order MIMO linearized model (4)-

(5) instead of just the short-period approximation (6). Figure 2

shows the simulation results for d = 5, and it is again clear

that the SMC far outperforms the polynomial approach based

controller design.
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Fig. 2. Full linear model with input additive disturbance.

Case 3: Full Nonlinear Model: Next, we demonstrate the

performance of our controller on the full nonlinear model (1).

Figure 3 shows the simulation results for 2 different values of

magnitude of qd, 5 deg/s and 30 deg/s, and 2 different values of

μ in the SMC design, and we see that the performance of the

SMC is superior to the polynomial approach. As before, we

have had to clip the y-axis limits in the error subplots so that

the difference between the errors for μ = 0.1 and μ = 0.01
can be observed. For the first error subplot, corresponding

to qd = 5, the error for the polynomial approach is roughly

between ≈ ±1, while we have limited the plot axis to ±0.1.

Similarly, for the error subplot corresponding to qd = 30, the

error for the polynomial approach is roughly between ≈ ±7,

while we have limited the plot axis to ±0.7. By contrast, the

error for the SMC with μ = 0.1 is roughly less than 0.02 for

qd = 5, and less than 0.1 for qd = 30 in “steady-state”. By

steady-state, we refer to the period t > 2s. The reason for the

relatively large error of about 0.5 (which itself is roughly 14

times smaller than the error with the polynomial approach !)

is that the control reaches its saturation limits (in particular,
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δ = −25◦ between 0.7 and 1.35s) with the SMC approach.

We do not apply saturation limits for the polynomial approach.

In other words, this simulation shows that SMC with no gain-

scheduling, and with imposed saturation limits, outperforms

the gain-scheduled polynomial approach controller without

saturation.
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Fig. 3. Nonlinear model: qd = 5, and qd = 30 deg/s.

B. SMC With Conditional Integrator

1: Full Nonlinear Model: We repeat the last simulation

of the preceding subsection (performance with the nonlinear

model), but with the conditional integrator. Since we have

already plotted the results of SMC without integral control

and shown that they are superior to the polynomial approach,

we simply compare the errors for the SMC with and without

integral control, and only do so for qd = 30 deg/s. The

simulation results are done for μ = 1 and μ = 0.1. The reason

to include a larger value of μ is twofold (i) to demonstrate the

fact that the inclusion of integral action means that we don’t

need to make μ very small to achieve regulation, only small

enough to stabilize the equilibrium point, and (ii) to highlight

the issue of chattering with small μ, which we relegate to the

next simulation. The simulation results are shown in Figure 4,

from which two inferences might be drawn. The first is that,

in the absence of integral control, since |e| = O(μ), we must

decrease μ in order to achieve smaller steady-steady state

errors, and this is clear from the two subplots. The second

inference is that the inclusion of integral action decreases

the steady-state error, and in fact, achieves asymptotic error

regulation.

2: Robustness to Switching Implementations and Chat-

tering: Next, we show decreasing μ, while reducing the

steady-state error in an ideal scenario, can lead to chattering

when there are switching imperfections such as delays. To

demonstrate this, we repeat the previous simulation with a

delay of 5ms (which is not really very large) preceding the

input. The simulation results are shown in Figure 5, and

we see considerable chattering in the control for μ = 0.1,

and we see that the control frequently hits the saturation

limits. This chattering can cause actuator wear, degrade system

performance, excite unmodeled high-frequency dynamics, and

even result in instability. In order that chattering be avoided,

we must make μ large, but doing so without integral control
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Fig. 4. Tracking errors with with conditional integrator SMC: Nonlinear
model, qd = 30 deg/s.

will lead to larger errors, since |e| = O(μ). The inclusion of

integral control using conditional integrators offers a way to

retain transient performance of ideal SMC and achieve zero

steady-state error, without having to make μ very small, so

that chattering can be avoided, and this is readily inferred

from Figure 5.
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Fig. 5. Time-delays and chattering in continuous SMC.

3: Mach-hold Autopilot: Lastly, before we summarize our

results, we present our results for velocity tracking with the PI

controller, with gains kP = 828.4 and kI = 191.2 chosen to

assign the roots of the closed-loop characteristic polynomial

λ2 + bV T kP λ + bV T kI

at -0.3 and -1. The desired velocity reference is the output

of the first order filter H(s) = 1

s+1
, to which the input is a

doublet-like signal with an initial value of 600 ft/s, changing

to 500 ft/s at t = 17s, and to 700 ft/s at t = 35s. The

results are shown in Figure 6, and it is clear that this simple

controller achieve robust regulation, even though its transient
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performance is not very good, as expected. We can improve the

design of the velocity controller using techniques like SMC or

other robust linear techniques, but do not pursue it here, since

velocity control is only a secondary objective.

15 20 25 30 35 40 45
450

500

550

600

650

700

750

V
 (

ft/
s)

 

 

15 20 25 30 35 40 45
−60

−40

−20

0

20

40

60

e 
=

 V
m

 −
 V

 

Time (sec)

Velocity input
PI controller

Fig. 6. Velocity (Mach-hold) autopilot response to velocity command: PI
controller.

V. CONCLUSIONS

This paper presented a new SMC design for control of

the pitch-rate of an F-16 aircraft, based on the conditional

integrator design of [22]. The design exploits the short-period

approximation of the linearized flight dynamics. The control

has a very simple structure: it is simply a saturated high-

gain PI controller with an anti-windup integrator; and the

only precise information that it uses are the relative degree

and sign of the high-frequency gain of the linearized short-

period approximation. The robustness of the method to mod-

eling uncertainty, disturbances, and time-delays was demon-

strated through extensive simulation, and the simulation results

showed that the method outperforms, without any scheduling

requirement, the transient and steady-state performance of a

conventional gain-scheduled model-following controller. The

conditional integrator design allows us to introduce integral

action to achieve zero steady-state errors without degrading the

transient performance of ideal SMC. Consequently, we believe

that the results presented in this paper are a promising start

to demonstrate the efficacy of the conditional integrator based

SMC design to flight control. In fact, while we presented our

design for control of the pitch-rate, an extension of our results

to regulation of the angle of attack can be found in [23], while

an extension to control of the lateral flight dynamics can be

found in [30].
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