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Abstract—Design and modeling of nonlinear systems require the 

knowledge of all inside acting parameters and effects. An empirical 

alternative is to identify the system’s transfer function from input and 

output data as a black box model. This paper presents a procedure 

using least squares algorithm for the identification of a feed drive 

system coefficients in time domain using a reduced model based on 

windowed input and output data. The command and response of the 

axis are first measured in the first 4 ms, and then least squares are 

applied to predict the transfer function coefficients for this 

displacement segment. From the identified coefficients, the next 

command response segments are estimated. The obtained results 

reveal a considerable potential of least squares method to identify the 

system’s time-based coefficients and predict accurately the command 

response as compared to measurements. 

 

Keywords—feed drive systems, least squares algorithm, online 

parameter identification, short time window 

I. INTRODUCTION 

MPROVING the performance of high speed high precision feed 

drive systems in terms of productivity and tracking accuracy 

remains an actual challenge for machine tool designers. 

Therefore, a significant amount of research has been dedicated 

to design integrated system models combining mechanical and 

control subsystems together in order to optimize the whole 

system parameters and predict precisely the system dynamic 

response with time [1]-[4].  

As feed drive systems comprise nonlinear components in 

high speed machine tools, algorithms and techniques such as 

least squares methods, fuzzy logic, and neural networks [5] are 

applied to model their behavior either by differential equations 

or in s-domain transfer function form [6]. 

Recursive Least Squares (RLS) method was used to identify 

DC motor actual parameters in terms of mechanical time 

constant and gain using input voltage and output rotation speed 

of the motor [7].  

The same technique was applied for online identification of a 

permanent magnet DC motor in open loop conditions [8]. 

However, for induction motors the problem is more complex  
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because the rotor state variables cannot be obtained from 

measurements and simplifying the model by assuming the 

parameters to be linearly varying results in high residual error.  

Nonlinear least squares approach was applied to induction 

motors for the online estimation of the motor parameters 

effective values in terms of inductance, resistance, load torque 

and inertia [9]. With this method, the parameters values can be 

corrected continuously during operation. 

Compact modeling using least-squares algorithm in the 

orthogonal form was efficiently applied in the identification of 

actual parameter identification for nonlinear complex system 

models such as magnetosphere dynamic system problem [10]. 

In the same work, Error Reduction Ratio (ERR) and mutual 

information criteria were used as two competitive methods to 

define and select the significant parameters of the reduced 

model.  

Other techniques such as Neural Networks (NN) and fuzzy 

logic are used in the field of high speed machine tools as a 

parameter estimator for nonlinear systems [11]-[12]. Online 

nonlinear system parameters identification has been achieved 

using recurrent radial basis function NN with the aid of a multi 

stage training algorithm [13]. To overcome the problem of 

network instability in case of un-modeled dynamics and 

disturbances, training of a recurrent neural network is being 

modified by the use of an input-to-state stability approach [14].  

A calibration method has been used to identify the actual 

geometric and kinematic parameters of a single degree of 

freedom mechanism with the aid of radial basis function neuron 

algorithm in order to minimize the differences between 

measurement and simulation results [15]. For such mechanism, 

NN is trained with simulated scenarios to identify gray box 

model parameters from sensor based acquired data. 

For uncoupled closed loop DC motors, feed forward with 

back propagation neural networks were applied [16] to estimate 

the actual system parameters. Using a voltage step input to the 

system, the network was trained by several current values as 

inputs and the correlated transfer function parameters 

(resistance, inductance, friction, and rotor inertia) as outputs of 

the network.  

Most of previous researches focused on identifying the 

nonlinear systems parameters and, hence, transfer functions in 

offline phase only. Furthermore, many measurements and/or 

simulations are necessary to estimate the coefficients of a 

system’s transfer function at a single operating point. As 

system parameters may change with time during operation due 

to effects such as position dependant stiffness, mechanical 

friction, and variable preloading, it is difficult to minimize the 

tracking error.  
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There is a need for online identification algorithm to adjust the 

controller parameters values continuously to yield better 

tracking performance. This may be done with an adaptive 

controller approach or by a model based correction of the set 

point values. 

In this work, nonlinear Least Squares Method (LSM) is 

proposed as a promising tool to predict the transfer function of 

feed drive system in short time periods based on windowed 

input/output inverse modeling. A short time window of 4

applied to input/output signals at the start of 

inverse Laplace transform, the transfer function of the system is 

converted into a set of system equations in time domain 

LSM is then conducted on the windowed signals to get 

knowledge about the system coefficients.  

These identified coefficients are then 

system output for the next 2 ms and compared to 

measurements. With shifting forward the time window, the 

dynamic response of the system is estimated

The tested feed drive system and its virtual model

described and the principle of nonlinear LSM and parameter 

identification procedure is introduced. The algorithm is 

illustrated and discussed with measurements.

II. SYSTEM DESCRIPTION

A. Physical system 

In this investigation, feed drive system is chosen 

example for a nonlinear system. Its development 

[17] and [18]. The components consist 

flexible coupling, nut, and thrust bearings

The ball screw has a 10 mm pitch, 10

320 mm length. The nut supports the tool center point 

feed motion.  

A closed loop servo system consisting of DC permanent 

magnet motor and a servo drive is used to drive the assembly 

and perform the tracking commands. The controller 

used to control the motion is P/PI cascaded structure.

Fig. 1 A typical ball screw feed drive system: 1) DC motor, 2) flexible 

coupling, 3) ball screw, 4) tool center point, 5) fixation jig, 

linear bearing guideways

 

The controller structure is closed with

measuring system [19] using rotary encoders (built in the servo 

motor) and linear encoders (mounted on the table)

the linear encoder signals are interpreted and stored b

signal processing and acquisition device. 

B. Simulation Model 

A physical model as shown in fig. 2 is constructed for the 

original feed drive system; where Jm, Jbearing
the servo motor rotor, bearings, coupling 

 

ification algorithm to adjust the 

controller parameters values continuously to yield better 

tracking performance. This may be done with an adaptive 

controller approach or by a model based correction of the set 

uares Method (LSM) is 

proposed as a promising tool to predict the transfer function of 

feed drive system in short time periods based on windowed 

A short time window of 4 ms is 

applied to input/output signals at the start of motion. Using 

inverse Laplace transform, the transfer function of the system is 

converted into a set of system equations in time domain and 

LSM is then conducted on the windowed signals to get 

 

 used to predict the 

ms and compared to 

With shifting forward the time window, the 

estimated accurately online. 

The tested feed drive system and its virtual model are 

described and the principle of nonlinear LSM and parameter 

identification procedure is introduced. The algorithm is 

illustrated and discussed with measurements. 

ESCRIPTION 

In this investigation, feed drive system is chosen as an 

example for a nonlinear system. Its development is described in 

 of a ball screw, a 

flexible coupling, nut, and thrust bearings -as shown in fig.1. 

mm pitch, 10 mm diameter, and 

the tool center point during 

A closed loop servo system consisting of DC permanent 

magnet motor and a servo drive is used to drive the assembly 

acking commands. The controller scheme 

tion is P/PI cascaded structure.  

 
A typical ball screw feed drive system: 1) DC motor, 2) flexible 

coupling, 3) ball screw, 4) tool center point, 5) fixation jig, and 6) 

linear bearing guideways 

The controller structure is closed with a dual position 

using rotary encoders (built in the servo 

motor) and linear encoders (mounted on the table). In addition, 

the linear encoder signals are interpreted and stored by a digital 

del as shown in fig. 2 is constructed for the 

bearings, Jcoupling and Jbs are 

, coupling and ball screw 

inertias. C is the viscous damping coefficient. 

and Kbearing are the ball screw, nut, coupling, and bearing 

stiffness. The equivalent axial stiffness

Jtotal for the axis can be calculated as foll

1 1 1 1

2l bs bearing nutK K K K

 
= + +  

 

total bs m bearingsJ J J J= + +

Fig. 2 Physical model of 

Inertia and axial stiffness of the coupling element

assumed to be insignificant 

considered in the physical model

during motion is modeled separately. 

in fig. 2, a block diagram of the system is construct

Matlab/Simulink software, as shown in fig. A1

mechanical and control parameters

system are placed in the compact model to 

differences between simulation and measurement results. The 

s-domain transfer function of the control system between the 

command position and actual position and its coeffici

expressed in the equations (A3)

However, undesired differences between 

measurement results are presented always due to the fact that 

the model includes only basic parameters 

system. Furthermore, nonlinearities presented in the real feed 

drive system such as position dependant stiffness

friction, and variable preloading change the values of system 

parameters significantly during motion

identification process of the

parameters in the model was successfully conducted using feed 

forward NN with back propagation learning algorithm 

III. IDENTIFICATION 

As described in the previous section, t

(Tf) of the feed drive system is
0 0

2 7

( ) / ( )
a s i i

i i

Tf X s X s N s D s
= =

= = ∑ ∑
where Xa and Xs are output and input 

indicate the number of numerator and denominator coefficients 

in descending powers of s. 

The work aims at determining the

hence, the transfer function 

transfer function is divided by
0 0

8 8

2 7

( ) / ( ) i i

a s i i

i i

X s X s N s D s
− −

= =

= ∑ ∑
In this work, a rough but accepted simplification is made by 

assuming that the input and output signals from system are 

equal to the state description of numerator and 

viscous damping coefficient. Kbs, Knut, Kcoupling 

are the ball screw, nut, coupling, and bearing 

The equivalent axial stiffness Kl and the total inertia 

axis can be calculated as follows: 

1 1 1 1

l bs bearing nutK K K K

 
= + +  

 
 (1) 

total bs m bearingsJ J J J  (2) 

 
Physical model of the feed drive system 

 

axial stiffness of the coupling element are 

insignificant for the simulation; they are not 

physical model. The effect of linear mass 

g motion is modeled separately. From the physical model 

, a block diagram of the system is constructed in 

nk software, as shown in fig. A1(Appendix). The 

mechanical and control parameters values in the original 

system are placed in the compact model to investigate the 

differences between simulation and measurement results. The 

domain transfer function of the control system between the 

command position and actual position and its coefficients are 

expressed in the equations (A3)-(A13) (Appendix).  

However, undesired differences between the analytical and 

are presented always due to the fact that 

basic parameters of the gray box real 

rmore, nonlinearities presented in the real feed 

position dependant stiffness, mechanical 

friction, and variable preloading change the values of system 

during motion. Therefore, an 

of the effective values of system 

was successfully conducted using feed 

forward NN with back propagation learning algorithm [20]. 

DENTIFICATION ALGORITHM 

As described in the previous section, the Transfer function 

is expressed as follows: 
0 0

2 7

i i

a s i i

i i

Tf X s X s N s D s
= =
∑ ∑  (3) 

are output and input trajectory. N and D 

numerator and denominator coefficients 

The work aims at determining the coefficients Ni and Di, and 

 of system with time. First, the 

by s
8
: 

0 0
8 8

2 7

i i

a s i i

i i

X s X s N s D s
− −

= =
∑ ∑  (4) 

a rough but accepted simplification is made by 

he input and output signals from system are 

the state description of numerator and denominator. By 
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applying the inverse Laplace transform to (5) they are found in 

time domain in (6). 
0

8

2

0
8

7
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−

=

−

=


=



 =
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∑

∑

 (5) 

5

7

0

7

( )

( )

i

a i

i

i

s i

i

X t P t

X t Q t

=

=


=



 =


∑

∑

 (6) 

where P7=N0/5040, P6=N1/720, P5=N2/120, Q7=D0/5040, 

Q6=D1/720, Q5=D2/120, Q4=D3/24, Q3=D4/6, Q2=D5/2, 

Q1=D6, Q0=D7. 

Using (6), curve fitting of the windowed output and input 

trajectories is conducted to compute the local coefficients. 

Equation (6) can be rewritten as a following general fitting 

model, e.g. Xa (t) equation: 

2 1 0
ˆ ( ; , , )

i i
Y Y t N N N=  (7) 

where 
i
Y  is measured output, ˆ

i
Y  is estimated function, and t is 

the time base. 

The principle of the least squares is to find the coefficients N 

that minimize the sum of squares of the residuals δ  as shown 

in (8) [21]. 

2

2 1 0
1

ˆ( ( ; , , ))
n

i i

i

Y Y t N N Nδ
=

= −∑  (8) 

To obtain regression coefficients N of the function (8), the 

basic simplex method is applied. Simplex method is a 

technique in local frame that works on the processed current 

data set to predict the future values of data with minimum error 

[22], [23]. 

The coefficients obtained from least squares are substituted 

in (3) in order to find the estimated next trajectory for the next 

short period. In the following section, the procedure is 

illustrated in detail. 

IV. PROCEDURE OF WORK 

The work starts experimentally and analytically by 

commanding the feed drive system to run with a ramp function 

of 30 mm amplitude and set velocity of 50 mm/s. Then, the 

measured input and output signals are acquired with a sampling 

rate of 5 KHz. Curve fitting function in (6) is applied then with 

a window of size 4 ms (20 points) to both signals at the start of 

motion and the coefficients of the function are estimated using 

(7) and (8). 

The computed actual coefficients values are substituted in 

the transfer function in (3) to predict the next 2 ms (10 points) 

of trajectory. The same procedure is done for the next window 

with 20 samples and the window function is shifted over the 

whole signal to obtain the predicted system command response 

for the ramp function. The procedure of work is illustrated in 

Fig.3. In order to validate the proposed algorithm, the same 

steps are conducted with a step function of 1 mm amplitude in 

0.2 ms applied to the feed drive system. The calculated results 

are compared with the measurements again. 

 

 
Fig. 3 The general procedure of work for model identification using 

nonlinear least squares method 

V. RESULTS AND DISCUSSION 

In order to investigate the effectiveness of the proposed 

algorithm to estimate the next trajectory data in short time, 

three kinds of results are compared in this section; the measured 

data from the axis motion, the simulation response from the 

simulation model (Appendix), and the short time identified 

model using least squares curve fitting technique. 

In Fig.5, a zoomed view of the applied ramp function in first 

60 ms of the motion is chosen for comparison. As compared to 

the simulation model, least squares estimated response shows 

more accuracy in tracking the measurements than the 

simulation model. However, periodic ripples are presented in 

the identified model response. These ripples are due to the high 

order of curve fitting functions. Reducing the order of the 

windowed transfer function may improve the accuracy of curve 

fitting. This overfitting problem and the suitable window size 

are to be studied in future work. 

In fig.6, it can be observed that the calculated error as the 

difference between LSM model response and measurements is 

in range of 40 µm whereas the error between the simulation 

model and measurements is equal to 80 µm. Fig. 6 proves that 

the LSM model is more accurate in estimating system response 

than the simulation model. 
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Fig. 5 Identified model results against measurement and simulation 

response results in the first 0.06 s for a ramp function 

 
Fig. 6 LSM model error and simulation model error as compared to 

real system measurements 

 

Fig. 7 presents the results for the step function. It can be seen 

that same periodic ripples are presented in the estimated model 

response within the time window and the LSM model results 

follow the measurements. 

 
Fig. 7 Identified model results against measurement and simulation 

response results in the first 0.06 s for a step function 

 
Fig. 8 LSM model error and simulation model error as compared to 

real system measurements 

 

The calculated error, as the difference between both model 

results and measurements, is found to be higher in amplitude 

than the error in case of the ramp function - as shown in fig. 8. 

This is due to the higher slope of the trajectory in the 

acceleration phase presented in step function. The maximum 

error of LSM model is found around 0.15 mm at the start of 

motion, i.e. during acceleration phase. The error value is higher 

than the simulation model and decreases with time for both 

methods. The experimental results show that the proposed least 

squares model can identify the dynamic behavior in the short 

time window. The accuracy is reduced with increasing of the 

severity of curve slope.  

VI. CONCLUSION AND FUTURE WORKS 

A method to identify the dynamic behavior of a nonlinear 

feed drive system in short time is presented in this work. 

Nonlinear least squares function is applied to windowed input 

and output signals from the system and the time-based transfer 

function coefficients are identified in time domain.  

The system parameters calculated from the windowed 

signals are then used to estimate the system response for the 

next time steps. By shifting the constant windowed function 

with time, the system response with time is estimated. As 

compared to the simulation model response and measurement 

results, the short time windowed least squares model is found to 

be more accurate than the simulation model and proves to 

predict the command response of the system with time in case 

of a ramp function. Similar results are found when a step 

function is applied. 

For future work, the performance of the proposed method is 

to be examined under various window sizes. Alternatively, 

other techniques such as neural networks are to be investigated 

to estimate the system response in short time and compared 

with the current method.  

Moreover, reduction of the transfer function order is to be 

investigated and according to the fitted curve, the order will be 

selected automatically to obtain more accuracy of the fitting 

process and minimize the response ripples. 
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We have identified successfully the system transfer function 

in short time. With this proposed method, model based 

compensation can improve the position accuracy of feed drive 

system by a model based adjustment of the command trajectory. 

On the other hand, if the parameters in the control system, like 

Kv, Kp and Ki, can be calculated though the identified 

coefficients Ni and Di by the local transfer function, the 

compensation of the real trajectory in online is also achievable. 

APPENDIX 

Fig. 1 presents a block diagram of the feed drive system 

simulation model. The model is constructed in 

Matlab/Simulink software where; KT (N/m) is the torque 

constant, C1 and C2 (Ns/m) are the damping coefficients of 

motor and table, K (N/m) is the axial equivalent stiffness, CL is 

the current loop, J (Kgm
2
) is the system total inertia, and R = L/ 

2π where L (m) is the lead. 

  

 
Fig. 1  Block diagram of the feed drive system model 

 

The Transfer function of the control system in the s-domain between the command position and actual position is expressed as in 

the following equation: 
2

2 1 0

7 6 5 4 3 2

7 6 5 4 3 2 1 0

( )

( )

+ +
= =

+ + + + + + +
a

s

X s N s N s N
Tf

X s D s D s D s D s D s D s D s D
 (1) 

N and D are the numerator and denominator coefficients of the system with descending order of s where the coefficients of 

numerator are: 
2

2 1. . . . .= v p pi tN K K K K K K  (2) 

2

1 1. . . . . ( )= +pi t v p ii iN K K K K K K K K  (3) 

2

0 1. . . . . . .= pi t ii p i vN K K K K K K K K  (4) 

Whereas the denominator coefficients are: 

7 1. . .=D K M L J  (5) 

6 2 1 1 1 1 1. . . . . . . . . . . .= + + + piD C L K J L K C M K J R M K J K M  (6) 

2

5 1 1 1 2 1 2 1 1 1 2 1 1

2 2

1 1 1

. . . . . . . . . . . . . . . . . .

        . . . . . . . . . . . . .

= + + + + + +

+ + +

pi pi

p ii t p t pi

D L K K J L K C C K J RC K C R M K J K C K K C M

K J K K M K K M K K K K M r K M L
 (7) 

2 2 2

4 1 1 1 1 1 2 1 1 1 2 1 2

2

1 1 1 2 1 2 1 1

2 2 2

. . . . . . . . . . . . . . . . . . .
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        . . . . . . . . .
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D K K LC K J R K K C RC K K J K K C K C K J K K C

K C K K M K Kt C K K K K C K K K K K M K K K K M K

r K C L r K M R r K M K
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2 2 2

2 1 1 1 1

2

1 2 2

. . . . . . . . . . . . . .

        . . . . . . . . .

= + + +

+

p ii t pi p i t p pi ii
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D K K C K K K K K K K K K K K K K K

K K K K C K r K C K K
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0 0=D N  (12) 

Where Kv (1000/min) is position loop gain, Kp (As /rad) and Ki (1/ms) are velocity loop proportional and integral gain, and Kpi 

(V/A) and Kii (1/ms) are current loop proportional and integral gain. 
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