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Abstract—This paper describes an automatic algorithm to restore 

the shape of three-dimensional (3D) left ventricle (LV) models created 

from magnetic resonance imaging (MRI) data using a geometry-driven 

optimization approach. Our basic premise is to restore the LV shape 

such that the LV epicardial surface is smooth after the restoration. A 

geometrical measure known as the Minimum Principle Curvature (κ2) 

is used to assess the smoothness of the LV. This measure is used to 

construct the objective function of a two-step optimization process. 

The objective of the optimization is to achieve a smooth epicardial 

shape by iterative in-plane translation of the MRI slices. 

Quantitatively, this yields a minimum sum in terms of the magnitude 

of κ2, when κ2 is negative. A limited memory quasi-Newton algorithm, 

L-BFGS-B, is used to solve the optimization problem. We tested our 

algorithm on an in vitro theoretical LV model and 10 in vivo 

patient-specific models which contain significant motion artifacts. The 

results show that our method is able to automatically restore the shape 

of LV models back to smoothness without altering the general shape of 

the model. The magnitudes of in-plane translations are also consistent 

with existing registration techniques and experimental findings.       

 

Keywords—Magnetic Resonance Imaging, Left Ventricle, Shape 

Restoration, Principle Curvature, Optimization 
  

I. INTRODUCTION 

REATH-HOLD cine Magnetic Resonance Imaging (MRI) is 

an advanced imaging technique for cardiac morphology 

and function assessment in clinical practice. While 

conventional methods of evaluation are based on MRI images, 

several recent methods [1], [2] have transited to utilize 

three-dimensional (3D) models reconstructed from the MRI 

data. However, factors such as respiration and patient 

movement contribute to misalignments in the MRI data which 

results in inaccuracies in the 3D models. While MRI scans can 

be acquired over multiple phases of the cardiac cycle in about 

12 seconds to avoid errors induced by respiratory motions, 

many subjects are not able to hold their breath for prolonged 

periods. Moreover, MRI data acquired over different 

breath-hold positions also induce errors in the reconstructed 

models.  

Cardiac image registration methods are often used to 

compensate for these motions. Existing methods include 

external skin marker-based techniques [3], landmark-based 
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techniques [4] and thorax surface-based techniques [5]. In [6], 

the paper reviewed a number of cardiac image registration 

methods. They are categorized into geometric image feature 

approach and voxel similarity measure approach. In the first 

category, registration relies on geometric features such as 

point-based, surface-based or edge-based registration. In the 

latter, registration relies on moments (spatial distribution of the 

mass of the image), principal axis and intensity difference and 

correlation methods. Recently, some post-processing methods 

have also been proposed. The method proposed by Elen et al. 

[7] demonstrates the use of constrained optimization of the 

intensity similarity of intersecting image lines. This proposed 

correction method is based on the assumption that the similarity 

of gray values at the intersection lines of different slices is 

higher when the relative positioning of the slices is correct than 

when the slices are misaligned. This method corrects relative 

positions of all long-axis (LA) and short-axis (SA) slices, using 

only the LA and SA image data and DICOM header 

information, by optimizing the full 3D translation and rotation 

of each image slice.  

The main dilemma of using an image registration approach 

to restore the shape of the LV is that errors induced by motion 

are already embedded in the images. While multi-view image 

registration techniques could potentially reduce such errors, 

these methods are essentially using data which contain error for 

self-correction. In our work, we make use of morphological 

knowledge of the LV to drive the shape restoration. Instead of 

using image-based parameters, such as gray values, our LV 

shape restoration method is based on geometrical 

consideration. The basic premise is that the LV epicardial 

surface must be smooth after the restoration and that the general 

shape of the LV cannot be lost in the process. The Minimum 

Principle Curvature (κ2) is used as the geometric measure to 

quantitate the smoothness of the LV surfaces.  

 

 
Fig. 1 Three-dimensional left ventricle mesh models: (a) with motion 

artifacts, and (b) desired result after shape restoration 

 

The input to our algorithm is an initial 3D LV mesh model 

reconstructed from contours representing the myocardial 

borders. Fig. 1 (a) shows a reconstructed 3D LV mesh model 

from MRI data containing motion artifacts. We aim to achieve a 

May-Ling Tan, Yi Su, Chi-Wan Lim, Liang Zhong, Ru-San Tan 

Shape Restoration of the Left Ventricle 

B

(a) (b) 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:5, No:11, 2011

593

 

 

smooth LV mesh as shown in Fig. 1 (b). This is achieved by 

shifting the myocardium contours by translating each slice in 

the in-plane direction. We formulate a smoothness objective 

function based on κ2 and solve the problem using a limited 

memory quasi-Newton optimization algorithm, L-BFGS-B [8]. 

The L-BFGS-B algorithm is an adaptation of the BFGS 

algorithm with limited matrix update and it is adept at solving 

multivariate nonlinear bound constrained optimization 

problems. 

This paper is organized as follows: Section II provides 

detailed explanation of the methodology of our LV shape 

restoration algorithm; Section III describes the experiments to 

test the performance of the algorithm; Section IV discusses the 

implications of the experimental results and provides direction 

for future work; and Section V concludes the paper. 

II. METHOD 

A. Overview 

As the 3D LV models are reconstructed from contours of the 

myocardial borders, the restoration works by progressively 

translating these contours in the plane of their respective 

short-axis (SA) slice. Fig. 2 illustrates the shifting of the 

contour on a SA slice in the in-plane direction. One can view 

this as a semi-rigid mesh modification since we are keeping the 

shape of the contours constant while shifting their position. 

Without loss of generality, we specify that the SA slices lie 

parallel to the xy-plane. For every slice, a centroid ( iCX , , iCY , ) 

is calculated by averaging the x- and y-coordinates of all the 

points from that particular slice, where i is the slice index. The 

optimization algorithm, L-BFGS-B, will solve for the optimal 

( CX ′ , CY ′ ) for all the slices to satisfy a specified objective 

function representative of the smoothness.  

Using the assumption that the LV epicardial surface must 

be smooth implies a surface with minimum concavity. From a 

geometry point of view, our objective is to find optimal 

translations in the xy- planes for each individual slice such that 

the total concavity of the whole LV is at its global minimum. 

From a computation point of view, we can calculate the 

minimum principle curvatures κ2 for every point on the LV 

epicardial surface mesh to assess the amount of concavity or 

convexity of the surface. When κ2 is negative, it implies that the 

surface at which a point lies on is concaved. Therefore to 

minimize concavity, the objective function F only takes into 

account the summation of κ2 values of all points with negative 

κ2, that is, 
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where κ2,i is the minimum principal curvature at vertex i and m 

is the total number of vertices in the epicardial surface mesh. 

This will create a balance between concavity and convexity 

where geometrical kinks will be smoothed out but not at the 

expense of creating more kinks in other locations. This 

improves the overall smoothness in the LV shape. Constraints 

on the translation distance of ( iCX , , iCY , ) are set and the 

L-BFGS-B algorithm is used to solve the optimal translations in 

the xy-planes of all the SA slices of the LV mesh. The optimal 

( CX ′ , CY ′ ) are then used to update the mesh.  

 

 
Fig. 2 Modifying shape of 3D LV epicardial surface mesh by 

translating the contours on SA slice in x- and y-directions 

 

 

B. Calculation of Minimum Principle Curvature κ 2  

In this section, we discuss briefly the formulation of κ2. In 

order to interrogate the geometrical properties of the LV 

epicardial surface mesh, we use a quadric fitting method to 

approximate the underlying geometry at every vertex of the 

mesh. A quadric surface S in 3D space can be expressed in the 

parametric form  
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where u and v are the surface parameters and {a, b, c, d, e} are 

the quadric coefficients. To fit S at a vertex p, we select a 

neighborhood around p which represents the region to which S 

is to be fitted. The extent of this neighborhood is quantified by 

an n-ring measure. The quadric coefficients of S are then 

obtained by solving a system of linear equations associated 

with the n-ring neighborhood using a least square method [9].  

The surface S approximates the local geometry in the vicinity 

of a point p on the 3D mesh model. In differential geometry, the 

curvature of a surface S(u,v) at a point p(u,v) is evaluated with 

respect to a normal section. This is done by constructing a plane 

π such that it passes through the unit surface normal �� and unit 

tangent vector in the direction of υ&  (where [ ]T,vu &&& =υ ). The 

intersection of π with S results in a curve called the normal 

section. The normal curvature )(υκ & can be evaluated by  
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fundamental matrices of the surface, respectively.  

 

The unit surface normal can be calculated by  
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In terms of the quadric coefficients, the equation to calculate κ2 

is 
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where 122 ++= edA  and bdecdcaeaB ++++= 22 . The 

value of κ2 is negative when the surface around the point p is 

concave. 

The value of n-ring used in the quadric fitting affects the 

value of κ2 because it determines how sensitive the method is to 

the effect of geometrical variation. With a bigger n-ring value, 

shape of the surface over a larger extent is interrogated. This 

takes into account the general variation of the shape, ignoring 

the high frequency variation in the geometry. With a smaller 

n-ring value, the shape of the surface over a localized region is 

inspected. This captures the inter-slice variations in shape.  

C. Optimization 

As described in the Overview section, our goal is to minimize 

the concavity of the LV epicardial surface. This can be 

quantified by taking into account the absolute values of κ2 

when it is negative. In mathematical terms, our goal is   

 

0where,||||min 2vertices 2 <∑∀
κκ  (6) 

 

We achieve this by formulating an optimization problem 

with a suitable objective function, i.e., Eqn. (1). We minimize 

this non-linear objective function using the L-BFGS-B 

algorithm [8] which is adept at solving multivariate nonlinear 

bound constrained optimization problems. It is based on the 

gradient projection method and uses a limited-memory BFGS 

matrix to approximate the Hessian of the objective function. 

The algorithm does not store the results from all iterations but 

only a user-specified subset. Its advantage is that it makes 

simple approximations of the Hessian matrices which are still 

good enough for a fast rate linear convergence and requires 

minimal storage [8]. This makes it adept at solving large 

non-linear optimization problems with simple bounds on the 

variables.  

To set up the optimization problem, we can write Eqn. (1) as 

F(x) with n variables, such that x contains the centroid 

coordinates ( CX , CY ) of the contours on the SA slices, i.e., 
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Hence, the number of variables in the optimization problem is 

twice the number of SA slices, i.e., n = 2×N. Each of the 
variables xi in F(x) is subjected to the bounded-constraints 

 

niubxlb iii ,,3,2,1 K=≤≤  (7) 

 

where lbi and ubi are the lower and upper bounds of xi, 

respectively. In this work, the variables are constrained to 

translate within a bound of ±20 mm. This value is consistent 

with what was observed experimentally [10] (expected to be in 

the range of 0 to 21 mm). The constraint on the translation in 

the y-direction is 
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where iCX ,′  is the solution and iCX ,  is the initial x-coordinate 

of the centroid position of the i-th contour. Similarly, the 

constraint on the translation in the y-direction is 
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where iCY ,′  is the solution and iCY ,  is the initial y-coordinate of 

the centroid position of the i-th contour. 

In addition, the gradient gi associated with each variable xi 

must also be defined such that 
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Since F(x) is in a non-analytical form, we need to approximate 

gi using finite differences. In this work, we use the forward 

difference method to approximate the gradient, i.e., 
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where ∆xi is a small increment in xi.  

In order to retain the general variation of the LV shape, we 

perform the optimization in two stages. First, we perform the 

optimization using an n-ring setting of 5 in the computation of 

the objective function. When n-ring = 5, κ2 is calculated by 

taking into account points from 5 layers above and below the 

current SA slice, and 5 points to the right and left of the point of 

interest. All the slices will shift to minimize the objection 

function in (1). Next, to further minimize surface concavity 

over a localized region, the intermediate mesh (updated with 

the previously obtained solution using n-ring = 5) is subjected 

to a second pass of optimization using n-ring = 2. In this case, 

κ2 is calculated by taking into account points from 2 layers 

above and below the current SA slice, and 2 points to the right 

and left of the point of interest. This second pass is essential to 

further minimize the concavity over a localized region. The 

results from setting n-ring value = 5 and then n-ring = 2 are 

shown in Fig. 3. As observed, the end result restores 

smoothness with minimum principle curvature to the LV heart. 

 
Fig. 3 Shape restoration using two-stage optimization: (a) original 

mesh with motion artifact, (b) intermediate mesh after optimization 

using n-ring = 5, and (c) final mesh after optimization using n-ring = 2 

III. RESULTS 

A.  In vitro Theoretical Model 

For theoretical validation of our method, we used an 

ellipsoidal mesh model for testing. The ellipsoidal model is 

chosen since it is a widely accepted idealization of the LV 

chamber. The lengths of the semi-axes are 40 mm, 40 mm and 

80 mm. Five contours are randomly chosen and shifted some 

distance away from their original location in the x- and 

y-directions. The limits are set to 11.5mm in the anterior 

direction, 1.3mm in the posterior direction, 1.8mm to the left 

and 6.1mm to the right, in accordance to [10]. The theoretical 

model and the result after a two-stage optimization (i.e., 

running with n-ring = 5 followed by n-ring = 2) are shown in 

Fig. 4. From the figure, we observed that smoothness is 

restored.  

 
Fig. 4 Theoretical model: (a) with random slice displacement, and (b) 

after two-stage optimization using n-ring = 5 followed by n-ring = 2 

 

B.  In vivo Patient-specific Models 

To further validate the applicability of our method, we tested 

our algorithm on 10 patient-specific 3D LV models 

reconstructed from MRI data containing motion artifacts. The 

MRI scan was performed using breath-held steady-state free 

precession technique on a 1.5T Siemens scanner (Avanto, 

Siemens Medical Solutions, Erlangen). TrueFISP (fast imaging 

with steady-state precession) MR pulse sequence with 

segmented k-space and retrospective electrocardiographic 

gating were used to acquire 2D cine images of the LV in the LA 

plane, as well as a parallel stack of 2D cine images of the LV in 

the SA plane, from the LV base to apex (8 mm interslice 

thickness, no interslice gap). Each slice was acquired in a single 

breath hold, with 25 temporal phases per heart cycle.  

The epicardial and endocardial borders of contiguous SA 

slices were manually delineated by an experienced cardiologist 

using a commercially-available software CMRtools 

(Cardiovascular Imaging Solution, UK). Both SA and LA 

views were utilized to carry out 3D LV reconstruction at the 

end-diastole phase. 

We tested our algorithm with 10 patient samples. Three of 

the patient samples and their corresponding LV shape 

restoration results are shown in Fig. 5.  

IV. DISCUSSION 

A. Results 

From the results, we observed that the shape restoration of 

the LV epicardial surface was successful. Visually, we verified 

that the asymmetry of the LV geometry was preserved while 

the geometrical kinks on the surface were significantly reduced. 

Quantitatively, the absolute values of κ2 were reduced 

considerably after the shape restoration, as shown in Fig. 5. The 

results of the 10 patients indicated that average contour 

displacements in the x- and y-directions on the SA planes were 

1.62 ± 0.87 mm and 1.46 ± 0.96 mm, respectively. Validation 

of results of our shape restoration technique with clinical results 

is important for the method to be accepted clinically. 

Registration methods are often validated using external 

(a) (b) 

(a) 

(c) 

(b) 
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markers or anatomical landmarks [11]. However such 

validations are difficult because they are not readily available. 

In our work, we compared the mean contour displacement 

values of our method with those of existing image registration 

techniques [6], as shown in Table 1. The minimum and 

maximum translations in the x- and y-directions lie between 0 

to 4.8 mm, while our results lie in the range of 0.5 to 2.5 mm. 

Therefore, we conclude that our results are within the range 

with the existing literature.  

 

 
Fig. 5 Three samples of patient-specific 3D LV mesh model before 

and after two-stage shape restoration  

 

B. Limitations and Future Work 

In our current algorithm design, we have only considered 

translational displacement of the SA slices. However, in actual 

fact, motion artifacts are also generated by rotational movement, 

as well as motion in and out of the SA slice planes. In our future 

work, we will incorporate additional degree of freedoms in the 

contour movement by including rotation of the SA slices, and 

motion in a direction orthogonal to the SA slice planes. In 

addition, the existing form of our algorithm uses a semi-rigid 

geometrical deformation process to restore the shape of the LV 

epicardial surface. In future work, we will incorporate free form 

deformation to the algorithm. We aim to do this by using an 

error-restricted volume-preserving local smoothing process.  
 

 

TABLE I 

OVERVIEW OF EVALUATED CARDIAC AND THORAX IMAGE REGISTRATION 

METHODS [6] 

Thorax surface based registration 

Reference Movement Correction (mm) 

[12] 2.19 ± 0.52 

[13] (x,y) 3.0 

[14] 2.8 ± 0.5 

Heart surface based registration 

Reference Error (mm) 

[15] 2.7 

[16] 1.95 ± 1.6 

[17] 2.5 

Intensity difference and correlation methods 

Reference Error (mm) 

[18] (x)1.23 ± 0.06, (y) 3.25 ± 1.04 

[19] (x) 3.0, (y) 1.6 

[20] (x,y,z) 1.0 

[21] (x,y) 1.7 

[22] (x) 1.9, (y) 2.4 

[23] (x,y) 0.5 ± 0.5 

[24] 2.5 ± 1.2 

[25] 3.1 ± 1.7 

[26] (x,y,z) 1.5 

V. CONCLUSION 

In this paper, we presented an automatic algorithm to restore 

the shape of a 3D LV mesh model using a geometry-driven 

optimization approach. The method used an analytical surface 

fitting method to approximate the geometry of the LV mesh and 

computed the minimum principal curvature as a quantification 

of the surface smoothness. Next, a limited memory 

quasi-Newton algorithm, L-BFGS-B, was used to correct the 

positions of all SA slices to achieve an optimal shape with 

minimal concavity. To retain the overall shape of the LV mesh, 

such as its asymmetrical configuration, we performed 

optimization using n-ring = 5. Next, to achieve localized 

smoothing, we performed a second pass of optimization using 

n-ring = 2. A set of in vitro simulated data and 10 in vivo LV 

epicardial datasets at end-diastole are used as inputs to 

investigate the performance of our shape restoration algorithm. 

The results showed that there were significant improvements in 

the smoothness of the LV mesh both visually and quantitatively 

(in terms of the magnitude of minimum principal curvature). 

Also, our algorithm was successful in preserving the overall 

shape of the LV mesh without over smoothing. The mean 

displacements in the x- and y- directions are 1.78 ± 1.88 mm 

and 1.63 ± 2.96 mm, respectively. These values are consistent 

with results of existing image registration techniques. In future 

work, we will incorporate additional rotational and 

through-plane degrees of freedom, as well as free form 

deformation to enhance the results of the shape restoration.   

 

original after shape restoration 

after shape restoration original 

after shape restoration original 
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