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Abstract—Adaptive observers used in sensorless control of
induction motors suffer from instability especally in regener-
ating mode. In this paper, an optimal feed back gain design
is proposed, it can reduce the instability region in the torque
speed plane .
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I. Introduction

During the last decade, there has been a considerable
interest in studying stability of adaptive observers used in
sensorless control of induction motors. This is mainly due
to their economical benefit and fragility of mechanical sen-
sors and also the difficulty of installing this type of sensor
in many applications. These systems suffer from instability
problems and sensitivity to parameter mismatch at low
speed operation. The sensorless systems require estimation
of internal state variables of the machine such as speed
and rotor flux from input variables like stator voltage and
stator current [1] [3] .

Many works were led in order to eliminate or to reduce
unstable regions.They acts on:

• speed adaptation law [6]
• feedback gain [4], [7],
• speed adaptation law and feedback gain simultane-

ously [2].
In this paper, first, stability of induction motor alone is
done and second the design of a feed back gain that mini-
mizes the unstability regions in the torque-speed plane to
a straight line corresponding to DC excitation is described.

II. Controller design

The four parameter induction motor model using com-
plex notations is described in the synchronous rotating
reference frame by the following equations :
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With :τσ =
Lσ

RR +Rs
and τr =

LM

RR
.

is = isd + jisq stator current space vector
ψR = ψrd + jψrq Rotor flux space vector
ψref Rotor flux reference

ωsl slip frequency
ω electrical rotor speed
Rs, RR Stator and Rotor resistance
LM , Lσ Magnetizing and Leakage inductance

A. Stability analysis of induction motor

Stability analysis of induction motor alone can be
studied by linearizing system (1) around an equilibrium
operating point [5]. the obtained system is :
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With : δψRd + jδψRq = δψR, δisd + jδisq = δis

The state matrix corresponding to the state vector
δx = [ δψRd δψRq δisd δisq δω ]T is:
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(3)

With: ωsl = τrωslo

Ploting unstable eigen values (E.V) of the state matrix
Ao permit localization of unstable regions in the torque
speed plane as shown on figure (1) .

Note that the line (D1) is known as the unobsrvability
line obtained in the case of DC excitation (ωso = 0).
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Fig. 1. Unstable E.V in the plan {ωo, TLo}

B. Analytical expression of IM unstable regions

In order to establish analytical expression of stability
limits, the following property is used

det(Ao) =
5∏
i=1

λi (4)

where λi are the eigen values of matrix Ao. the system
stability implies that the five eigen values must have a
negative real part. Consequently, a condition of stability
for system (3) is

det(Ao) < 0. (5)

The limit of stability is done by det(Ao) = 0. Using Map-
ple/Matlab and without any simplification, the expression
find is
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Fig. 2. Stability limits in the angular speed/torque plane

These conditions of stability are represented in the
torque/velocity plane by figure (2) . It can be verified that
unstable regions are the same as obtained previously with
eigen values.
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Fig. 3. Operating points

Fig. 4 and 5 show tries in quadrant I and II under load
torque TLo = 9.3N.m, for tow operating points s1 and
s2 ,localized respectively in unstable and stable regions
(figure 3).
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Fig. 4. Tries in stable region (quadrant II): actual velocity (solid
line), reference velocity (dashed line). ωref = −100rad/s , load
torque TLo = 9.3N.m
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Fig. 5. Tries in unstable region (quadrant II): actual velocity (solid
line), reference velocity (dashed line). ωref = −20rad/s , load torque
TLo = 9.3N.m
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III. Observer design

The conventional full-order observer is defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
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with:
e−jφ = cosφ− jsinφ (8)

Gr =
[
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]
, Gs =
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]

System obtained by linearizing observer model (7), and
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with: eido = isdo − îsdo, eiqo = isqo − îsqo,

IV. Global stability analysis

A new state vector δe is defined with
:δe =

[
δeψd δeψq δeid δeiq δeω

]
.

The state matrix describing the estimation error is
:
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Â1(52) = (Kiω −
Kpω

τσ
)ψref
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To locate unstable zones, a representation of poles which
have a positive real part is proposed . Figure (6) shows
these zones for Kiω = 3000, and different Kpω .
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Fig. 6. Unstable zones for Kiω = 3000, and different Kpω

These figures show that unstable poles apeare in both
monitoring and regenerating modes. For Kpω = 50 unsta-
ble zones in monitoring mode are eliminated.
Criterion of determinant is used to find analytical expres-
sion of these regions in torque-speed plane . It gives:⎧⎪⎪⎨

⎪⎪⎩
TLo = −p

ψ2
ref

RR
ωo (D1)

TLo = −p
ψ2
ref

RR
(

Lσ + LM

τrRs + Lσ + LM
)ωo (D2)

(11)

These tow lines (figure 7)define the limits of unstable
regions in regenerating mode whatever is Kpω .
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To validate these results, in figure (8) ,simulations are
done when the induction motor is operating in regener-
ating mode. It is clear that as soon as the motor run
across the boundary into the predicted unstable region,
the sensorless system becomes unstable.
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Fig. 8. Simulation results showing unstable region in torque speed
plane

Figures (9 a, b) illustrate simulation results for speed
reverse under nominal torque TLo = 7N.m and load torque
TLo = −10N.m respectively .

Results show that in regenerating modes (quadrant II
and IV in torque speed plane) divergence is highlighted
between real and estimate variables.
Stability of observers employed in sensorless control of in-
duction motor is not ensured. The drives dynamic perfor-
mance and the estimators tracking capability are strongly
affected. Solution to this problem is to find an optimal
feedback gain which can reduce or eliminate unstable
zones.

V. Optimal gain design

The principle of the optimal unstability reduction pro-
posed here consists in the calculation of the feedback gain
imposing the condition

(D1) = (D2) (12)
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Fig. 9. Reversal speed trajectory from stable to unstable
region:(a)TLo = 7N.m,(b) TLo = −10N.m

More precisely, a feed back gain superposing (D2) with
(D1), must be calculated. Then, the unstable region will
be limited to the line (D1) (Fig. 10). It can be noted that,
whatever the structure of the matrix G, (D1) is always
defined by ωso = 0.
In this case the determiant may be expressed as:

det(Â1) = αω2
so (13)
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The particular forms Gr = 0 and Gs =
[
gsd 0
0 gsd

]
are

choosen
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This gives:

det(Â1) = −
kiωψ

2
refωso

Lστs[
ωso(1 +

τs

τr
+ gsdτs) − ωo(1 + τsgsd −

RR

RR +Rs
)
]
(14)

To obtain form expressed by (13), we choose:

gsd = −
Rs

Lσ
(15)

In order to validate the proposed design, simulations
results are presented. In Fig. 11, the operating point
is brought in the vicinity of (D1). This show that the
unstability region is considerably reduced by the proposed
gain design.
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Fig. 11. Velocity transient in the vicinity of (D1) in regenerating
mode (quadrant 2) (a), from TLo = 0 N.m to TLo = 7 N.m (c), low
velocity (ωo = 15, 1rd/s) (b), Ki = 3000, Kp = 300.

Fig. 12 shows simulation results for tries at constant
nominal torque in renerating mode. The operating point
trajectory cross the line (D1) without unstability.
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Fig. 12. Stable velocity transient crossing (D1), from P1 to P2,
in regenerating mode (quadrant 4) (a), from ωo = 14.7 rad/s to
ωo = 15.3 rad/s (b), nominal torque (TLo = −7N.m) (c), Ki = 3000,
Kp = 300.

Fig. 13 illustrates simulation results for speed reverse
under nominal torque . this figure shows that there is
no loose of control, and estimator tracking capability is
garanteed.
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Fig. 13. Actual velocity (solid line), reference velocity (dashed line).
Transition from stable to stable region crossing the line of unstability
(D1)

VI. Conclusion

In this paper,stability of the speed sensorless vector
control of induction motors is analysed. This allows to
design an optimal feed back gain which can reduce the
unstable zones to a line defined by DC excitation when
all parameters are known. The gain obtained depend on
motor parameters. These parameters change during motor
operation due to temperature rise. Perspectives proposed
is to study the stability of an extended adaptive observer
which estimates rotor speed and stator resistance simulta-
neously.
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