
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:1, 2008

20

Abstract—Verification of real-time software systems can be

expensive in terms of time and resources. Testing is the main method
of proving correctness but has been shown to be a long and time
consuming process. Everyday engineers are usually unwilling to
adopt formal approaches to correctness because of the overhead
associated with developing their knowledge of such techniques.
Performance modelling techniques allow systems to be evaluated
with respect to timing constraints. This paper describes PARTES, a
framework which guides the extraction of performance models from
programs written in an annotated subset of C.

Keywords—Performance Modelling, Real-time, Sensitivity
Analysis.

I. INTRODUCTION
EAL-TIME systems are everywhere in modern day
society [1], such systems are usually part of a self-

contained product and are known as embedded real-time
systems [2]. The range of application domains where a
potential error could be disastrous makes the construction of a
fault-free dependable real-time system of the highest priority
[3]. Time as a continuous factor can prove to be a difficult
element to account for. Continuous real-time software
systems vary in the granularity of the models of time they use
from coarse to finely-grained representations. Time must be
regarded as an intrinsic item in modern day safety-critical
system development as a potentially catastrophic fault may
occur at any given epoch [2, 4].

The addition of real-time values leads to increased
difficulty when we verify the correctness levels of the system
which has been developed. Testing techniques have
traditionally been used to prove correctness of real-time
software systems but are regarded as being very time
consuming and laborious when trying to achieve adequate test
coverage [5, 6]. This paper describes in detail how the
mechanisms that underpin PARTES [7] (Performance
Analysis of Real-Time Embedded Systems), a framework
where performance modelling technology is used to facilitate
the verification of real-time software systems, can assist in the
assurance of real-time embedded systems. For a brief 2-page
overview of PARTES please see [7].

The remainder of this paper has the following structure; §II
introduces the real-time dining philosophers example which

B. Gorry is with BAE Systems Rapid Engineering, Military Air Solutions,

Warton Aerodrome, Preston, Lancashire, England.
A. Ireland and P. King are with the School of Mathematical and Computer

Sciences, Heriot-Watt University, Riccarton, Edinburgh, Scotland.

will be used to illustrate our approach, §III presents the
background behind the formal analysis approach used by
PARTES, and §IV discusses how PARTES develops formal
models for analysis. §V discusses how PARTES can be used
via a series of example case studies and §VI discusses what
PARTES provides us with. Our conclusions are listed in
§VII.

II. REAL-TIME DINING PHILOSOPHERS
The real-time dining philosophers example has been

adapted from Dijkstra's example as cited by Hoare [8]. It
involves n philosophers, where each philosopher can be
thought of as a generic system component. Each philosopher
has in their possession one fork and must have the use of two
forks to eat. Each philosopher thinks for a period of time then
attempts to gain control of their own fork and their neighbours
fork. If a philosopher has obtained both forks they then eat
for a period of time and then relinquish control of their own
fork and then their neighbours fork. If a philosopher cannot
obtain both forks at the first attempt they repeatedly attempt to
obtain both forks until they do so. The real-time areas in this
example are:

• Each philosopher takes a random time to think; with
a maximum value of 5 seconds.

• Each philosopher takes a random time to eat; with a
maximum value of 5 seconds.

These values are set as timing restrictions placed on the source
code for the purpose of this case study; they are not
restrictions placed on the models which are extracted for
analysis. Each philosopher is to be checked for the timing
constraint “when a philosopher has completed thinking they
must have, from this point in time, obtained access to both
their fork and their neighbours fork and completed eating
within 10 seconds”. If this was not in place a philosopher
may continue eating forever, this would cause the other
philosopher to starve to death. Real-time examples such as
the dining philosophers problem may involve several
distributed components competing for a number of shared
resources. The system timing constraints may be stringent,
therefore there is a requirement to identify any areas of timing
concern which may cause these timing constraints to be
violated. This example has been modelled in the language
ANSI-C and the method of communication which has been
used is the User Datagram Protocol. The reduced source code
for philosopher 1 is listed in Fig. 1. The correctness of a real-
time system depends not only on the logical result of the
computation performed, but also on the time at which the

Sensitivity Analysis of Real-Time Systems
Benjamin Gorry, Andrew Ireland, and Peter King

R

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:1, 2008

21

results are produced [4]. Since it is estimated that testing
consumes at least half of the labour expended to produce a
working program [5, 6] it is desirable that we reduce this
consumption of resources. If we are to use testing:

Fig. 1 Source Code with Annotations for a Real-Time Dining
Philosopher

“our goal should be to provide enough testing to ensure that

the probability of failure due to hibernating bugs is low
enough to accept” [5].

If we could focus our areas of testing, our costs in terms of
time and labour could be reduced and we could spend more
time testing potentially problematic areas of our system.

III. BACKGROUND

A. Performance Modelling
Performance Modelling techniques can provide us with

enough information to allow us to determine if the design or
system we are analysing will perform as we intend it to. This
analysis often takes the form of probabilistic analysis and can
involve the use of a process algebra such as CSP [8]. There
are a number of tools available which use these algebras to
carry out probabilistic analysis, such as PEPA [9]. A widely
used performance analysis tool is SPNP (Stochastic Petri Net
Package) [10, 11] which analyses models written in CSPL
(C-based Stochastic Petri Net language) form, a language akin
in syntax to C. Testing often proves to be expensive in terms

of money, time, and manpower. To eradicate this problem we
can use performance modelling techniques; by representing
the intrinsic characteristics of the timing elements of the
system we can evaluate how the system will perform under a
range of possible conditions [12].

SPNP offers a wide variety of user-definable options on a
range of model-types, the most widely used of which are
Generalised Stochastic Petri Nets (GSPNs). For our
purposes, we require analysis which can represent both timed
and un-timed sections of the system, GSPNs deliver this.
SPNP offers an analytic-numeric solution technique.
Analytic-numeric solution allows us to specify a stochastic
reward net as a Continuous Time Markov Chain (CTMC).
The CTMC eliminates the need for analysis in discrete steps.
With analytic-numeric solution, we can perform sensitivity
analysis on a CSPL model.

The problem with performance modelling tools is that the
models have to be constructed manually. If we could
mechanise the construction of these models we could increase
the accessibility of performance modelling techniques to the
software community.

B. Sensitivity Analysis
Performance modelling offers an approach called sensitivity

analysis. Sensitivity analysis allows us to analyse how
variations of system parameters affect the performance of a
model and is defined as:

“the study of how variation in the output of a model
(numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation, and of how

the given approach depends upon the information fed into it”
[13].

Sensitivity analysis allows us to observe how the individual
sections of a system will behave by generating partial
derivatives of these measures. These partial derivatives
provide us with an indication of the likelihood of a section or
sections of a system being a contributing factor to causing the

Fig. 2 An Example of Absorption (Deadlock)

timing constraint to be violated. From this, we can then
investigate these areas of concern. A common sensitivity
measure is the MTTA (Mean Time To Absorption). The
MTTA provides a measure of when an absorbing state will
be reached, if an absorbing state is reached the system will
progress no further (it will deadlock). In PARTES, each
partial derivative which is generated is a partial derivative of

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:1, 2008

22

the MTTA with respect to an area of timing importance in the
model (those areas which represent sections of program
source code). If the value of a partial derivative:

• Increases - a section of source code is likely to cause
a system timing constraint to be violated.

• Decreases - a section of source code is unlikely to
cause a system timing constraint to be violated.

• Remains constant - a section of source code is not
directly related to the system timing constraint being
analysed.

The concept of an absorbing state is illustrated in Fig. 2. As
we see in Fig. 2 (a), the token is initially in place P1. From
P1, the token could travel either to place P2 (as shown in Fig.
2 (b)) or place P3 (as shown in Fig. 2 (c)). If the token moves
to place P2 it will then return to place P1. However, if the
token moves to place P3 it has nowhere else to go and is
“absorbed” into place P3. From this, we see that the model
will not progress any further, for this reason we can say that
when a state of absorption is reached the model has reached a
point of “deadlock”.

IV. PARTES
PARTES links performance modelling techniques to the

source code level. If any real-time areas of concern are
identified this information can be used to inform traditional
testing techniques by allowing testing efforts to be focused on
specific areas of concern. By using a set of annotations which
can be placed directly in the ANSI-C source code a set of
structured formal models which represent faithful abstractions
of the real-time system can be extracted. After formal
analysis has been performed, the engineer can relate the
results of any errors produced back to the sections of program
source code which the model represents. We now discuss the
development and analysis of PARTES performance models.

A. PARTES Performance Models
PARTES extracts the structure of a performance model

from the program source code in the form of a performance
test harness. To produce CSPL models, this information is
then combined with the results of analysing the pertinent real-
time sections of the program source code to gather actual
mean system execution times. Fig. 1 shows the placement of
annotations in the ANSI-C code for a philosopher, each
annotation begins with the // symbol. To begin with, the user
must identify which procedures within the source code are of
importance. To identify the pertinent procedures the user
places the annotation listed on line 1 of Fig. 1 prior to the
beginning of each procedure which they wish to include as
part of the performance test harness.

The annotation on line 12 of Fig. 1 indicates that a shared
binary resource ‘fork1’ has been created. To request access to
‘fork1’ or release control of ‘fork1’ the annotations are listed
on lines 16 and 24 of Fig. 1 respectively. By using
annotations we can indicate exactly where an area of real-time

concern exists. Annotations which delimit an area of timing
concern within a procedure are, for the start and end point
respectively listed on lines 6 and 10 of Fig. 1 to indicate when
a philosopher is thinking and on lines 19 and 22 of Fig. 1 to
indicate when a philosopher is eating. To add a real time
correctness constraint to a procedure the annotations which
delimit the start and end point are listed on lines 14 and 28 of
Fig. 1. Line 14 indicates that the value of the timing
constraint for a philosopher is 10 seconds. Using these
annotations, a performance test harness which represents the
structure of the program source code in Petri net form is
automatically extracted. This test harness represents a number
of Petri net components; these are illustrated alongside the
corresponding source code sections/PARTES annotations
from Fig. 1 in Fig. 3. From the annotations in Fig. 1 the Petri
net

Fig. 3 PARTES Petri net Components

components in Fig. 3 are plugged together to construct CSPL
models. To begin with, an initial place indicating a starting
point in the model is created. This place is linked to another
place via a timed transition; this is illustrated as Fig. 3 (a).
Line 12 of Fig. 1 states that the shared resource “fork1” has
been created. This is represented as the structure in Fig. 3 (d).
A sequence of variable assignments or expressions is
represented as a place linked to another place via an
immediate transition. This is represented as the structure in
Fig. 3 (b). Lines 16 and 24 of Fig. 1 represent access and
release requests to shared resource “fork1”. These are
represented as structures (e) and (f) in Fig. 3, respectively.
The annotations on lines 6 and 10, along with the annotations
on lines 19 and 22 of Fig. 1 delimit areas of timing concern.
These are represented as a place linked to another place via a
timed transition. This is represented as structure (g) in Fig. 3.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:1, 2008

23

The development of the structure of performance models in
PARTES is a generic process which uses the constructs
outlined in Figs. 3 and 5. By using annotations we can
indicate, at any point in the source code within a procedure,
exactly where an area of real-time concern exists. When
annotations which delimit an area of timing importance are
encountered any ANSI-C constructs are ignored since it is the
area of timing importance which is important, not the ANSI-C
source code structures contained within it. The two areas
identified in Fig, 1 represent a philosophers thinking and
eating times.

For structure (g) we require times to model as transition
firing rates. Gathering the actual system timing values can be
problematic. During the first stage of PARTES the user
places paired annotations in the ANSI-C source code. These
annotations are then automatically numbered to indicate the
position of pairs. For an area of timing importance,
annotations which delimit the boundaries take the form
//BEGIN_FOCUS_RT t and //END_FOCUS_RT t where “t”
is the number assigned to a particular pair of annotations. In
PARTES these annotations act as timing hooks which are
replaced by additional sections of source code which are used
to gather timing information. The source code which has been
augmented with the additional code is executed on the actual
system hardware to allow us to gather timing values which
represent the actual system execution times.

To capture timing values the clock() function from the C
library <time.h> is used. This provides the elapsed processor
time used by the program. This value is then divided by
CLOCKS_PER_SEC, the number of processor clock ticks per
second, to provide us with the value of the total program
execution time in seconds. This calculation is performed at
the point of each annotation and from this the value of the first
calculation is subtracted from the second calculation to
provide us with a timing value in seconds. Since the system is
run on the actual hardware which it is intended to run on, the
times which we gather are as accurate as possible a
representation of what the system timing values will be when
the system is executed without any adverse interruptions to
performance. Two mean execution times were gathered for
each philosopher, the mean time a philosopher spends
thinking and the mean time a philosopher spends eating. The
mean time philosopher 1 spent thinking was 3 seconds while
the mean time philosopher 1 spent eating was 3 seconds.
These values are placed as parameters at the relevant points in
the model which are represented as structure (g) in Fig. 3.
The mean time philosopher 2 spent thinking was 4 seconds
while the mean time philosopher 2 spent eating was 2
seconds. Up to this point only two philosophers are included,
both are generic in structure. Later in this paper we will
discuss the real-time dining philosophers example for several
philosophers. In addition to this, an example illustrating the
use of PARTES on a system containing bespoke components
is discussed.

Since we are measuring the execution time of the program
relevant to the hardware it is expected to run on, there may be

occasions when the program execution times vary. To
account for the possible spurious nature of some timing results
we have used confidence intervals. Confidence intervals
provide us with a degree of confidence that the mean value, in
this case the mean timing value for a section of source code,
lies within a pair of numbers known as confidence limits. For
the purposes of timing analysis confidence intervals set at
95% have been used. A confidence interval of 95% states that
on 95% of occasions, the mean value will fall within the
interval bounded by these limits. In PARTES the mean value
is taken as the mean value between these confidence intervals.
After a sample size of 30+ execution runs the mean value is
calculated and if it lies within these confidence limits we take
this mean value to be an accurate representation of the timing
value.

For the real-time dining philosophers example, a
diagrammatic representation of a model of a generic
philosopher is presented in Fig. 4. The only Petri net
construct

Fig. 4 Petri Net Of Real-Time Dining Philosophers Example

in Fig. 4 which is not illustrated in Fig. 3 are the timed
transitions which link the end point of a model to the
beginning and the conclusion of a correctness timing
constraint. The timed transition which links the end point of a
model to the beginning is used to close the loop of the model
to ensure that it does not halt when it reaches the end place.
Fig. 5 illustrates the Petri net notation which corresponds to a
system timing constraint. The black bars in Fig. 5 represent
immediate transitions, these indicate the points in the model
where the timing constraint is linked into the model, these link
points may also be timed transitions. The upper timed
transition represents a link point which corresponds to the
annotation on line 14 of Fig. 1. The end point of the area

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:1, 2008

24

Fig. 5 Structure of a Correctness Timing Constraint

which the timing constraint must hold over is represented by
the annotation on line 28 of Fig. 1. The upper transition link
point leads to a place which then links to the lower transition
link point. The value of the timing constraint is determined by
the number 10 as part of the annotation on line 14 of Fig. 1.

If the total time taken to execute the sections of source code
which the timing constraint must hold over is less than the
value of the timing constraint, the timed transition which
represents the timing constraint will not fire and therefore the
state (place) of absorption will not be reached. This would
indicate that it is likely that the sections of source code which
the timing constraint must hold over will execute in the
desired time. If the place of absorption is reached, inhibitor
arcs which are linked from the absorbing place to each of the
timed transitions in the model will halt any further progress
through the model. For the real-time dining philosophers
example sensitivity analysis showed that if the eating times
for both philosophers summed to 10 seconds or greater it is
likely that the timing constraint will be violated. The average
eating times were 3 seconds for philosopher 1 and 2 seconds
for philosopher 2. We continually increased the eating time
for philosopher 1, while keeping the eating time for
philosopher 2 constant at 2 seconds, and found that a state of
absorption

Fig. 6 Philosopher 1 and 2 Eating – Sensitivity to Causing Deadlock

was approached when philosopher 1 took 8 seconds to eat.
This can be seen on the graphs in Fig. 6. The graphs in Fig. 6
illustrate how the sensitivity of the eating time of philosopher

1 (Fig. 6 (a)) and the eating time of philosopher 2 (Fig. 6 (b))
contribute to causing a state of absorption to be reached as the
eating time of philosopher 1 varies between 1 and 20 seconds.
The graph in Fig. 6 (a) shows that the differences between
the partial derivatives increases linearly up until the point in
time at 8 seconds when they begin to decrease in difference.
Conversely, the graph in Fig. 6 (b) shows that the differences
between the partial derivatives decrease rapidly up until the
point in time at 8 seconds where it appears that there is very
little difference when comparing the values of the partial
derivatives from this point onwards. These graphs indicate
that it is likely that a state of absorption has been approached
when the philosopher eating times sum to 10 seconds and that
the eating time of philosopher 1, shown in Fig. 6 (a), is more
likely to be the cause of this absorption than the eating time
of philosopher 2, shown in Fig. 6 (b).

Since a philosopher is allowed up to 5 seconds to eat and
the average eating times were 3 seconds and 2 seconds,
respectively, for philosopher 1 and philosopher 2, they appear

TABLE I

 EIGHT DINING PHILOSOPHERS WITH RESULTS FROM ANALYSIS

to be acceptable and will not cause the system to reach a state
of absorption. Performance analysis has shown that it is likely
that this system will not violate its timing constraints while
providing an indication of when the system may violate its
timing constraints. This analysis has provided the engineer
with a degree of assurance that their system is correct for the
current timing values while providing an indication of which
timing values they should remain within the bounds of to
prevent a possible violation of the system timing constraint. A
full description of this case study can be found in [14].
 Following the analysis of two philosophers,
combinations from a selection of 8 philosophers, that have
different thinking and eating times, were analysed. A table
listing the details of these eight philosophers is presented as
Table I (a). Each philosopher was paired with each other
philosopher and sensitivity analysis was performed. The
results from this analysis are listed in Table I (b). The
presence of an `X' shows that a particular pairing of
philosophers will cause a correctness timing constraint to be
violated. These results show that philosopher 4 is the only
philosopher that can be safely paired with every other
philosopher. Further analysis involved combinations of three
philosophers. Results from this showed that safe
combinations of philosophers are 1, 2 and 4 or 1, 2, and 5.

V. CASE STUDIES
To illustrate how PARTES can be used we have developed

two other case studies which show what value PARTES can

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:1, 2008

25

deliver when identifying possible areas of real-time concern.
These are now discussed. Further details can be found in [14].
These case studies differ in:

• The placement of annotations.
• The number of areas of timing importance.
• The range of timing values used.
• Whether the system components are bespoke or

generic.
• The number of shared resources in use.

A. Shared Train Track Example
The shared train track example involves two trains which

run on parallel tracks and contend for the use of a single
stretch of track. This single stretch of track allows only one
train at a time to cross a bridge. Each train approaches the
bridge then requests access to the bridge. If the bridge is not
in use by another train the train is granted access to the bridge.
If the bridge is in use by another train the train waits until the
bridge becomes available. When the train has access to the
bridge the train crosses the bridge. The bridge is then free to
be used. The real-time values in this example are:

• Each train takes a random time to approach the
bridge; with a maximum value of 10 seconds.

• Each train will take a random time to cross the
bridge; with a maximum value of 10 seconds.

These values are set as timing restrictions placed on the
source code for the purpose of this case study; they are not
restrictions placed on the models which are extracted for
analysis. The embedded software which controls each train is
to be checked for the timing constraint:

“when a train has completed its approach to the bridge it
must have, from this point in time, obtained access to the
bridge and completed its crossing of the bridge within 20

seconds.”

For train 1, the mean time it took the train to approach the
bridge was 9 seconds while the mean time it took to cross the
bridge was 5 seconds. For train 2, the mean time it took the
train to approach the bridge was 7 seconds while the mean
time it took to cross the bridge was 7 seconds.

Results showed that the system begins to reach a state of
absorption at a time when the sum of the bridge crossing times
for both trains exceeds 20 seconds. Since a train is allowed up
to 10 seconds to cross the bridge and the average bridge
crossing times were 5 seconds and 7 seconds, respectively, for
train 1 and train 2, they appear to be acceptable. Therefore
these times will not cause the system to reach a state of
absorption. Performance analysis of the shared train track
example has shown that it is likely that this system will not
violate its timing constraints. After establishing that there
appeared to be no areas of concern in the shared train track
example, further sensitivity test were performed on the
example. Trains may vary in the time they take to approach
the bridge and the time they take to cross the bridge. The

times for eight different trains are listed in Table II (a).

TABLE II
TIMING VALUES AND PAIRING RESULTS FOR EIGHT TRAINS

Each of these trains was paired with each other train and
sensitivity analysis was performed on each system. This
allows us to determine if previous conclusions which were
based on the first two trains listed in Table II (a) are correct or
not. Table II (b) lists eight pairings for each of the eight
trains. An `X' symbol indicates that a pairing is not possible
since the paring of a particular pair of trains will cause the
timing constraint to be violated. These sensitivity tests
confirmed that if the sum of the train bridge crossing times
exceeds 20 seconds the system begins to reach a state of
deadlock. In addition to this, train bridge crossing times
which exceed 10 seconds have been included and, if paired
with a train that brings the combined sum of the bridge
crossing times to less than 20 seconds, the system timing
constraint will not be violated. In this situation, sensitivity
analysis shows that even though the combined sum of the
bridge crossing times of two trains may not exceed 20
seconds, the train which exceeds the maximum crossing time
of 10 seconds will be identified as being likely to cause a
violation of the system timing constraint. Even though a
system timing constraint has not been violated a possible area
of concern has been identified. As well as a possible area of
timing concern, this identifies that additional system time is
available since one train has exceeded the maximum crossing
time without violating any system timing constraint. This
time could then be allocated elsewhere in the system.

B. Embedded Control System
The embedded control system example is taken from a

paper by Muppala, Ciardo, and Trivedi [15]. It consists of an
input processor which is connected to three sensors, an output
processor which is connected to two actuators (one active
actuator and one spare actuator), a main processor, and a
communications bus. The input processor takes readings from
its three sensors, performs some computation on these
readings and passes the result to the main processor. The
main processor takes this result and converts it into commands
which are passed to the output processor which in turn passes
these commands to an actuator. This system could be used in
a variety of environments including the chemical and avionics
industries [15]. The real-time values in this example are:

• The input processor takes a random time to check
sensor values; with a maximum value of 5 seconds.

• The main processor takes a random time to convert
input sensor results into output sensor commands;
with a maximum value of 5 seconds.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:1, 2008

26

• The output processor takes a random time to
communicate commands to its actuator; with a
maximum value of 5 seconds.

These values are set as timing restrictions placed on the source
code for the purpose of this case study; they are not
restrictions placed on the models which are extracted for
analysis. The embedded control system is to be checked for
the timing constraint:

“during a complete system cycle the system must have
performed each of the tasks listed above within 20 seconds.”

The input and output processors each have timing constraints
of 10 seconds while the main processor has a timing constraint
of 20 seconds. The mean time the input processor spent
gathering sensor values was 4 seconds, the mean time the
main processor spent converting sensor values into actuator
commands was 3 seconds, and the mean time the output
processor spent issuing the actuator commands was 4 seconds.
 Results showed that when the MTTA was observed for the
sample sensitivity analysis experiments it showed that the
model appeared to reach a state of absorption when the input
processor took 10 seconds or more to check the input sensors,
even though the time that the main processor spent converting
sensor values into actuator commands was 3 seconds and the
time the output processor spent issuing the actuator commands
was 4 seconds (less than 20 seconds in total). At this point it
was observed that the main processor looked sensitive to
being the cause of absorption. This was a consequence of the
relationship between the input processor and the main
processor. From the results we can say that for a system to
avoid causing a state of deadlock the timing values for either
the input or output processors should be no greater than 10
seconds. It appears that the system begins to reach a state of
deadlock at a time when either of the three system timing
constraints have been violated. Even though the main
processor has a constraint value of 20 seconds, sensitivity
analysis has shown how this can be effected by the links the
main processor has with the input and output processors.
Since the actual times were 4 seconds, 3 seconds, and 4
seconds for the input processor, main processor, and output
processor, respectively, they appear to be acceptable and will
not cause the system to reach a state of absorption.
Performance analysis has shown that this system will not
violate its timing constraints.

The CSPL models generated by PARTES use a notation so
that the areas of timing concern can be related directly back to
the original source code which has been annotated. Since we
are able to identify potential problem areas, we can then focus
the attention of further analysis techniques on these areas and
potentially guide the application of fault tolerant approaches.

VI. DISCUSSION
We have illustrated a framework which supports the

mechanisation of the extraction of a test harness which allows

existing technology to be utilised while extracting
performance models which can be used to evaluate real-time
correctness properties. Once the source code has been
annotated any minimal changes to future revisions will make
the generation of a test harness relatively simple.

By adopting an annotation-driven approach to abstraction,
based at the level of the program source code, we minimize
the amount of knowledge of formal techniques that an
engineer requires while allowing them to benefit from using
approaches such as model-checking and performance
modelling. If engineers at the levels of testing and
verification employed a technique similar to that discussed in
this paper, it may allow them to use verification technology to
focus on potentially problematic areas of the software system
under analysis.

VII. CONCLUSION
We have presented a framework which builds on an

existing technique to help aid in the verification of real-time
correctness properties of software systems. This approach has
been discussed via example case studies which highlight its
flexibility and strength. A discussion of the benefits of such
an approach has been provided. We aim to further investigate
the range of performance modelling technologies and features
which are available so that we can maximize their use and
provide a varied range of options for use by the engineer. A
long-term aim will be to investigate other modelling
technologies such as [9] and [16] along with their related
specification languages to investigate whether a set of tools
could be developed.

REFERENCES
[1] Albert M. K. Cheng, Real-Time Systems - Scheduling, Analysis, and

Verification, John Wiley & Sons, Inc, 2002.
[2] H. Kopetz, Real-Time Systems, Design principles for Distributed

Embedded Applications, Kluwer Academic Publishers, 1997.
[3] J-C Laprie, Dependability: Basic Concepts and Terminology, Springer-

Verlag Wien New York, 1991.
[4] A. Burns and A. Wellings, Real-Time Systems and Programming

Languages, Pearson Education Limited, 2001.
[5] B. Beizer, Software Testing Techniques, International Thomson

Computer Press, 1990.
[6] E. Kit, Software Testing In The Real World, ACM Press, 1995.
[7] B. Gorry, A. Ireland and P. King, PARTES : Performance Analysis of

Real-Time Embedded Systems, Proceedings of the 4th International
Conference on the Quantitative Evaluation of SysTems (QEST), pg 271-
272, 2007.

[8] C. A. R. Hoare, Communicating Sequential Processes, Prentice Hall
International (UK) Ltd, 1985.

[9] S. Gillmore and J. Hillston, The PEPA Workbench: A Tool to Support a
Process Algebra-based Approach to Performance Modelling,
Proceedings 7th Int. Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, 353-368, 1994.

[10] G. Ciardo, J. Muppala and K. Trivedi, SPNP: Stochastic Petri Net
Package, Department of Computer Science, Duke University, Durham,
1989.

[11] K. Trivedi, SPNP User's Manual Version 6.0, Center for Advanced
Computing and Communication (CACC) Department of electrical and
Computer Engineering, Duke University, 1999.

[12] P. J. B. King., Computer and Communication Systems Performance
Modelling, Prentice Hall International (UK) Ltd, 1990.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:1, 2008

27

[13] A. Saltelli, K. Chan and E. M. Scott, Sensitivity Analysis, John Wiley &
Sons, Ltd., 2004.

[14] B. Gorry, A. Ireland and P. King, Performance Analysis Of Real-Time
Embedded Systems, Heriot-Watt University, School Of Mathematical
And Computer Sciences, Departmental Technical Report HW-MACS-
TR-0040, 2006.

[15] J. K. Muppala, G. Ciardo and K. S. Trivedi, Stochastic Reward Nets for
Reliability Prediction, Communications In Reliability, Maintainability,
and Serviceability, 1, 9-20, 1994.

[16] M. Kwiatkowska, Probabilistic Symbolic Model Checking with PRISM:
A Hybrid Approach, 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS`02),
2002.

