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Abstract—Verification of real-time software systems can be 

expensive in terms of time and resources. Testing is the main method 
of proving correctness but has been shown to be a long and time 
consuming process.  Everyday engineers are usually unwilling to 
adopt formal approaches to correctness because of the overhead 
associated with developing their knowledge of such techniques.  
Performance modelling techniques allow systems to be evaluated 
with respect to timing constraints.  This paper describes PARTES, a 
framework which guides the extraction of performance models from 
programs written in an annotated subset of C.  
 

Keywords—Performance Modelling, Real-time, Sensitivity 
Analysis. 

I. INTRODUCTION 
EAL-TIME systems are everywhere in modern day 
society [1], such systems are usually part of a self-

contained product and are known as embedded real-time 
systems [2].  The range of application domains where a 
potential error could be disastrous makes the construction of a 
fault-free dependable real-time system of the highest priority 
[3].  Time as a continuous factor can prove to be a difficult 
element to account for.  Continuous real-time software 
systems vary in the granularity of the models of time they use 
from coarse to finely-grained representations.  Time must be 
regarded as an intrinsic item in modern day safety-critical 
system development as a potentially catastrophic fault may 
occur at any given epoch [2, 4].  

The addition of real-time values leads to increased 
difficulty when we verify the correctness levels of the system 
which has been developed.  Testing techniques have 
traditionally been used to prove correctness of real-time 
software systems but are regarded as being very time 
consuming and laborious when trying to achieve adequate test 
coverage [5, 6].  This paper describes in detail how the 
mechanisms that underpin PARTES [7] (Performance 
Analysis of Real-Time Embedded Systems), a framework 
where performance modelling technology is used to facilitate 
the verification of real-time software systems, can assist in the 
assurance of real-time embedded systems.  For a brief 2-page 
overview of PARTES please see [7]. 

The remainder of this paper has the following structure; §II 
introduces the real-time dining philosophers example which  
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will be used to illustrate our approach, §III presents the 
background behind the formal analysis approach used by 
PARTES, and §IV discusses how PARTES develops formal 
models for analysis.  §V discusses how PARTES can be used 
via a series of example case studies and §VI discusses what 
PARTES provides us with.  Our conclusions are listed in 
§VII.  

II. REAL-TIME DINING PHILOSOPHERS 
The real-time dining philosophers example has been 

adapted from Dijkstra's example as cited by Hoare [8].  It 
involves n philosophers, where each philosopher can be 
thought of as a generic system component.  Each philosopher 
has in their possession one fork and must have the use of two 
forks to eat.  Each philosopher thinks for a period of time then 
attempts to gain control of their own fork and their neighbours 
fork.  If a philosopher has obtained both forks they then eat 
for a period of time and then relinquish control of their own 
fork and then their neighbours fork.  If a philosopher cannot 
obtain both forks at the first attempt they repeatedly attempt to 
obtain both forks until they do so.  The real-time areas in this 
example are: 

• Each philosopher takes a random time to think; with 
a maximum value of 5 seconds.  

• Each philosopher takes a random time to eat; with a 
maximum value of 5 seconds. 

These values are set as timing restrictions placed on the source 
code for the purpose of this case study; they are not 
restrictions placed on the models which are extracted for 
analysis.  Each philosopher is to be checked for the timing 
constraint “when a philosopher has completed thinking they 
must have, from this point in time, obtained access to both 
their fork and their neighbours fork and completed eating 
within 10 seconds”.  If this was not in place a philosopher 
may continue eating forever, this would cause the other 
philosopher to starve to death.  Real-time examples such as 
the dining philosophers problem may involve several 
distributed components competing for a number of shared 
resources.  The system timing constraints may be stringent, 
therefore there is a requirement to identify any areas of timing 
concern which may cause these timing constraints to be 
violated.  This example has been modelled in the language 
ANSI-C and the method of communication which has been 
used is the User Datagram Protocol.  The reduced source code 
for philosopher 1 is listed in Fig. 1.  The correctness of a real-
time system depends not only on the logical result of the 
computation performed, but also on the time at which the 
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results are produced [4].  Since it is estimated that testing 
consumes at least half of the labour expended to produce a 
working program [5, 6] it is desirable that we reduce this 
consumption of resources.  If we are to use testing: 
 

 
 

Fig. 1 Source Code with Annotations for a Real-Time Dining 
Philosopher 

 
“our goal should be to provide enough testing to ensure that 

the probability of failure due to hibernating bugs is low 
enough to accept” [5]. 

 
If we could focus our areas of testing, our costs in terms of 
time and labour could be reduced and we could spend more 
time testing potentially problematic areas of our system. 
 

III. BACKGROUND 

A. Performance Modelling 
Performance Modelling techniques can provide us with 

enough information to allow us to determine if the design or  
system we are analysing will perform as we intend it to.  This 
analysis often takes the form of probabilistic analysis and can 
involve the use of a process algebra such as CSP [8].  There 
are a number of tools available which use these algebras to 
carry out probabilistic analysis, such as PEPA [9].  A widely 
used performance analysis tool is SPNP (Stochastic Petri Net 
Package) [10, 11] which analyses models written in  CSPL 
(C-based Stochastic Petri Net language) form, a language akin 
in syntax to C.  Testing often proves to be expensive in terms 

of money, time, and manpower.  To eradicate this problem we 
can use performance modelling techniques; by representing 
the intrinsic characteristics of the timing elements of the 
system we can evaluate how the system will perform under a 
range of possible conditions [12].  

SPNP offers a wide variety of user-definable options on a 
range of model-types, the most widely used of which are 
Generalised Stochastic Petri Nets (GSPNs).  For our 
purposes, we require analysis which can represent both timed 
and un-timed sections of the system, GSPNs deliver this.  
SPNP offers an analytic-numeric solution technique.  
Analytic-numeric solution allows us to specify a stochastic 
reward net as a Continuous Time Markov Chain (CTMC).  
The CTMC eliminates the need for analysis in discrete steps.  
With analytic-numeric solution, we can perform sensitivity 
analysis on a CSPL model. 

The problem with performance modelling tools is that the 
models have to be constructed manually.  If we could 
mechanise the construction of these models we could increase 
the accessibility of performance modelling techniques to the 
software community.  
 

B. Sensitivity Analysis 
Performance modelling offers an approach called sensitivity 

analysis.  Sensitivity analysis allows us to analyse how 
variations of system parameters affect the performance of a 
model and is defined as: 
 

“the study of how variation in the output of a model 
(numerical or otherwise) can be apportioned, qualitatively or 
quantitatively, to different sources of variation,   and of how 

the given approach depends upon the information fed into it” 
[13]. 

 
Sensitivity analysis allows us to observe how the individual 
sections of a system will behave by generating partial 
derivatives of these measures.  These partial derivatives 
provide us with an indication of the likelihood of a section or 
sections of a system being a contributing factor to causing the  
 

 
 

Fig. 2 An Example of Absorption (Deadlock) 
 
timing constraint to be violated.  From this, we can then 
investigate these areas of concern.  A common sensitivity 
measure is the MTTA (Mean Time To Absorption).  The 
MTTA provides a measure of when an absorbing   state will 
be reached, if an absorbing state is reached the system   will 
progress no further (it will deadlock).  In PARTES, each 
partial derivative which is generated is a partial derivative of 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:1, 2008

22

 

 

the MTTA with respect to an area of timing importance in the 
model (those areas which represent sections of program 
source code).  If the value of a partial derivative: 

• Increases - a section of source code is likely to cause 
a system timing constraint to be violated. 

• Decreases - a section of source code is unlikely to 
cause a system timing constraint to be violated. 

• Remains constant - a section of source code is not 
directly related to the system timing constraint being 
analysed. 

The concept of an absorbing state is illustrated in Fig. 2.  As 
we see in Fig. 2 (a), the token is initially in place P1.  From 
P1, the token could travel either to place P2 (as shown in Fig. 
2 (b)) or place P3 (as shown in Fig. 2 (c)).  If the token moves 
to place P2 it   will then return to place P1.  However, if the 
token moves to place   P3 it has nowhere else to go and is 
“absorbed” into place P3.  From this, we see that the model 
will not progress any further, for   this reason we can say that 
when a state of absorption is reached the model has reached a 
point of “deadlock”.     
 

IV. PARTES 
PARTES links performance modelling techniques to the 

source code level.  If any real-time areas of concern are 
identified this information can be used to inform traditional 
testing techniques by allowing testing efforts to be focused on 
specific areas of concern.  By using a set of annotations which 
can be placed directly in the ANSI-C source code a set of 
structured formal models which represent faithful abstractions 
of the real-time system can be extracted.  After formal 
analysis has been performed, the engineer can relate the 
results of any errors produced back to the sections of program 
source code which the model represents.  We now discuss the 
development and analysis of PARTES performance models. 
 

A. PARTES Performance Models 
PARTES extracts the structure of a performance model 

from the program source code in the form of a performance 
test harness.  To produce CSPL models, this information is 
then combined with the results of analysing the pertinent real-
time sections of the program source code to gather actual 
mean system execution times.  Fig. 1 shows the placement of 
annotations in the ANSI-C code for a philosopher, each 
annotation begins with the // symbol.  To begin with, the user 
must identify which procedures within the source code are of 
importance.  To identify the pertinent procedures the user 
places the annotation listed on line 1 of Fig. 1 prior to the 
beginning of each procedure which they wish to include as 
part of the performance test harness.   

The annotation on line 12 of Fig. 1 indicates that a shared 
binary resource ‘fork1’ has been created.  To request access to 
‘fork1’ or release control of ‘fork1’ the annotations are listed 
on lines 16 and 24 of Fig. 1 respectively.  By using 
annotations we can indicate exactly where an area of real-time 

concern exists.  Annotations which delimit an area of timing 
concern within a procedure are, for the start and end point 
respectively listed on lines 6 and 10 of Fig. 1 to indicate when 
a philosopher is thinking and on lines 19 and 22 of Fig. 1 to 
indicate when a philosopher is eating.  To add a real time 
correctness constraint to a procedure the annotations which 
delimit the start and end point are listed on lines 14 and 28 of 
Fig. 1.  Line 14 indicates that the value of the timing 
constraint for a philosopher is 10 seconds.  Using these 
annotations, a performance test harness which represents the 
structure of the program source code in Petri net form is 
automatically extracted.  This test harness represents a number 
of Petri net components; these are illustrated alongside the 
corresponding source code sections/PARTES annotations 
from Fig. 1 in Fig. 3.  From the annotations in Fig. 1 the Petri 
net 
 

 
 

Fig. 3 PARTES Petri net Components 
 

components in Fig. 3 are plugged together to construct CSPL 
models.  To begin with, an initial place indicating a starting 
point in the model is created.  This place is linked to another 
place via a timed transition; this is illustrated as Fig. 3 (a).  
Line 12 of Fig. 1 states that the shared resource “fork1” has 
been created.  This is represented as the structure in Fig. 3 (d).  
A sequence of variable assignments or expressions is 
represented as a place linked to another place via an 
immediate transition.  This is represented as the structure in 
Fig. 3 (b).  Lines 16 and 24 of Fig. 1 represent access and 
release requests to shared resource “fork1”.  These are 
represented as structures (e) and (f) in Fig. 3, respectively.  
The annotations on lines 6 and 10, along with the annotations 
on lines 19 and 22 of Fig. 1 delimit areas of timing concern. 
These are represented as a place linked to another place via a 
timed transition.  This is represented as structure (g) in Fig. 3.  
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The development of the structure of performance models in 
PARTES is a generic process which uses the constructs 
outlined in Figs. 3 and 5.  By using annotations we can 
indicate, at any point in the source code within a procedure, 
exactly where an area of real-time concern exists.  When 
annotations which delimit an area of timing importance are 
encountered any ANSI-C constructs are ignored since it is the 
area of timing importance which is important, not the ANSI-C 
source code structures contained within it.  The two areas 
identified in Fig, 1 represent a philosophers thinking and 
eating times. 

For structure (g) we require times to model as transition 
firing rates.  Gathering the actual system timing values can be 
problematic.  During the first stage of PARTES the user 
places paired annotations in the ANSI-C source code.  These 
annotations are then automatically numbered to indicate the 
position of pairs.  For an area of timing importance, 
annotations which delimit the boundaries take the form 
//BEGIN_FOCUS_RT t and //END_FOCUS_RT t where “t” 
is the number assigned to a particular pair of annotations.  In 
PARTES these annotations act as timing hooks which are 
replaced by additional sections of source code which are used 
to gather timing information.  The source code which has been 
augmented with the additional code is executed on the actual 
system hardware to allow us to gather timing values which 
represent the actual system execution times. 

To capture timing values the clock() function from the C 
library <time.h> is used.  This provides the elapsed processor 
time used by the program.  This value is then divided by 
CLOCKS_PER_SEC, the number of processor clock ticks per 
second, to provide us with the value of the total program 
execution time in seconds.  This calculation is performed at 
the point of each annotation and from this the value of the first 
calculation is subtracted from the second calculation to 
provide us with a timing value in seconds.  Since the system is 
run on the actual hardware which it is intended to run on, the 
times which we gather are as accurate as possible a 
representation of what the system timing values will be when 
the system is executed without any adverse interruptions to 
performance.  Two mean execution times were gathered for 
each philosopher, the mean time a philosopher spends 
thinking and the mean time a philosopher spends eating.  The 
mean time philosopher 1 spent thinking was 3 seconds while 
the mean time philosopher 1 spent eating was 3 seconds.  
These values are placed as parameters at the relevant points in 
the model which are represented as structure (g) in Fig. 3.  
The mean time philosopher 2 spent thinking was 4 seconds 
while the mean time philosopher 2 spent eating was 2 
seconds.  Up to this point only two philosophers are included, 
both are generic in structure.  Later in this paper we will 
discuss the real-time dining philosophers example for several 
philosophers.  In addition to this, an example illustrating the 
use of PARTES on a system containing bespoke components 
is discussed.  

Since we are measuring the execution time of the program 
relevant to the hardware it is expected to run on, there may be 

occasions when the program execution times vary.  To 
account for the possible spurious nature of some timing results 
we have used confidence intervals.  Confidence intervals 
provide us with a degree of confidence that the mean value, in 
this case the mean timing value for a section of source code, 
lies within a pair of numbers known as confidence limits.  For 
the purposes of timing analysis confidence intervals set at 
95% have been used.  A confidence interval of 95% states that 
on 95% of occasions, the mean value will fall within the 
interval bounded by these limits.  In PARTES the mean value 
is taken as the mean value between these confidence intervals.  
After a sample size of 30+ execution runs the mean value is 
calculated and if it lies within these confidence limits we take 
this mean value to be an accurate representation of the timing 
value.  

For the real-time dining philosophers example, a 
diagrammatic representation of a model of a generic 
philosopher is presented in Fig. 4.  The only Petri net 
construct  

 

 
 

Fig. 4 Petri Net Of Real-Time Dining Philosophers Example 
 

in Fig. 4 which is not illustrated in Fig. 3 are the timed 
transitions which link the end point of a model to the 
beginning and the conclusion of a correctness timing 
constraint.  The timed transition which links the end point of a 
model to the beginning is used to close the loop of the model 
to ensure that it does not halt when it reaches the end place.  
Fig. 5 illustrates the Petri net notation which corresponds to a 
system timing constraint.  The black bars in Fig. 5 represent 
immediate transitions, these indicate the points in the model 
where the timing constraint is linked into the model, these link 
points may also be timed transitions.  The upper timed 
transition represents a link point which corresponds to the 
annotation on line 14 of Fig. 1.  The end point of the area  
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Fig. 5 Structure of a Correctness Timing Constraint 
 
which the timing constraint must hold over is represented by 
the annotation on line 28 of Fig. 1.  The upper transition link 
point leads to a place which then links to the lower transition 
link point.  The value of the timing constraint is determined by 
the number 10 as part of the annotation on line 14 of Fig. 1.   

If the total time taken to execute the sections of source code 
which the timing constraint must hold over is less than the 
value of the timing constraint, the timed transition which 
represents the timing constraint will not fire and therefore the 
state (place) of absorption will not be reached.  This would 
indicate that it is likely that the sections of source code which 
the timing constraint must hold over will execute in the 
desired time.  If the place of absorption is reached, inhibitor 
arcs which are linked from the absorbing place to each of the 
timed transitions in the model will halt any further progress 
through the model.  For the real-time dining philosophers 
example  sensitivity analysis showed that if the eating times 
for both philosophers summed to 10 seconds or greater it is 
likely that the timing constraint will be violated.  The average 
eating times were 3 seconds for philosopher 1 and 2 seconds 
for philosopher 2.  We continually increased the eating time 
for philosopher 1, while keeping the eating time for 
philosopher 2 constant at 2 seconds, and found that a state of 
absorption  

 

 
 

Fig. 6 Philosopher 1 and 2 Eating – Sensitivity to Causing Deadlock 
 

was approached when philosopher 1 took 8 seconds to eat.  
This can be seen on the graphs in Fig. 6.  The graphs in Fig. 6 
illustrate how the sensitivity of the eating time of philosopher 

1 (Fig. 6 (a)) and the eating time of philosopher 2 (Fig. 6 (b)) 
contribute to causing a state of absorption to be reached as the 
eating time of philosopher 1 varies between 1 and 20 seconds.  
The graph in Fig. 6 (a) shows that the differences between   
the partial derivatives increases linearly up until the point in   
time at 8 seconds when they begin to decrease in difference.    
Conversely, the graph in Fig. 6 (b) shows that the differences 
between   the partial derivatives decrease rapidly up until the 
point in time   at 8 seconds where it appears that there is very 
little difference   when comparing the values of the partial 
derivatives from this point onwards.  These graphs   indicate 
that it is likely that a state of absorption has been approached 
when the philosopher eating times sum to 10 seconds and that 
the eating time of philosopher 1, shown in Fig. 6 (a), is more 
likely to be the   cause of this absorption than the eating time 
of philosopher 2, shown in Fig. 6 (b).   

Since a philosopher is allowed up to 5 seconds to eat and 
the average eating times were 3 seconds and 2 seconds, 
respectively, for philosopher 1 and philosopher 2, they appear  

 
TABLE I  

 EIGHT DINING PHILOSOPHERS WITH RESULTS FROM ANALYSIS 

 
 
to be acceptable and will not cause the system to reach a state 
of absorption.  Performance analysis has shown that it is likely 
that this system will not violate its timing constraints while 
providing an indication of when the system may violate its 
timing constraints.  This analysis has provided the engineer 
with a degree of assurance that their system is correct for the 
current timing values while providing an indication of which 
timing values they should remain within the bounds of to 
prevent a possible violation of the system timing constraint.  A 
full description of this case study can be found in [14].      
      Following the analysis of two philosophers,   
combinations from a selection of 8 philosophers, that have 
different   thinking and eating times, were analysed.  A table 
listing the details of these eight philosophers is presented as 
Table I (a).  Each   philosopher was paired with each other 
philosopher and sensitivity   analysis was performed.  The 
results from this analysis are listed in Table I (b).  The 
presence of an `X' shows that a particular pairing of 
philosophers will cause a correctness timing   constraint to be 
violated.  These results show that philosopher 4 is   the only 
philosopher that can be safely paired with every other   
philosopher.  Further analysis involved combinations of three   
philosophers.  Results from this showed that safe 
combinations of philosophers are 1, 2 and 4 or 1, 2, and 5.     

V. CASE STUDIES 
To illustrate how PARTES can be used we have developed 

two other case studies which show what value PARTES can 
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deliver when identifying possible areas of real-time concern.  
These are now discussed.  Further details can be found in [14].  
These case studies differ in: 

• The placement of annotations. 
• The number of areas of timing importance. 
• The range of timing values used. 
• Whether the system components are bespoke or 

generic. 
• The number of shared resources in use. 

 

A. Shared Train Track Example 
The shared train track example involves two trains which 

run on parallel tracks and contend for the use of a single 
stretch of track.  This single stretch of track allows only one 
train at a time to cross a bridge.  Each train approaches the 
bridge then requests access to the bridge.  If the bridge is not 
in use by another train the train is granted access to the bridge.  
If the bridge is in use by another train the train waits until the 
bridge becomes available.  When the train has access to the 
bridge the train crosses the bridge.  The bridge is then free to 
be used.  The real-time values in this example are: 

• Each train takes a random time to approach the 
bridge; with a maximum value of 10 seconds.  

• Each train will take a random time to cross the 
bridge; with a maximum value of 10 seconds. 

These values are set as timing restrictions placed on the 
source code for the purpose of this case study; they are not 
restrictions placed on the models which are extracted for 
analysis.  The embedded software which controls each train is 
to be checked for the timing constraint: 
 

“when a train has completed its approach to the bridge it 
must have, from this point in time, obtained access to the 
bridge and completed its crossing of the bridge within 20 

seconds.” 
 
For train 1, the mean time it took the train to approach the 
bridge was 9 seconds while the mean time it took to cross the 
bridge was 5 seconds.  For train 2, the mean time it took the 
train to approach the bridge was 7 seconds while the mean 
time it took to cross the bridge was 7 seconds. 

Results showed that the system begins to reach a state of 
absorption at a time when the sum of the bridge crossing times 
for both trains exceeds 20 seconds.  Since a train is allowed up 
to 10 seconds to cross the bridge and the average bridge 
crossing times were 5 seconds and 7 seconds, respectively, for 
train 1 and train 2, they appear to be acceptable.  Therefore 
these times will not cause the system to reach a state of 
absorption.  Performance analysis of the shared train track 
example has shown that it is likely that this system will not 
violate its timing constraints.  After establishing that there 
appeared to be no areas of concern in the shared train track 
example, further sensitivity test were performed on the 
example.  Trains may vary in the time they take to approach 
the bridge and the time they take to cross the bridge.  The 

times for eight different trains are listed in Table II (a). 
   

TABLE II 
TIMING VALUES AND PAIRING RESULTS FOR EIGHT TRAINS 

 
 
Each of these trains was paired with each other train and 
sensitivity analysis was performed on each system.  This 
allows us to determine if previous conclusions which were 
based on the first two trains listed in Table II (a) are correct or 
not.  Table II (b) lists eight pairings for each of the eight 
trains.  An `X' symbol indicates that a pairing is not possible 
since the paring of a particular pair of trains will cause the 
timing constraint to be violated.  These sensitivity tests 
confirmed that if the sum of the train bridge crossing times 
exceeds 20 seconds the system begins to reach a state of 
deadlock.  In addition to this, train bridge crossing times 
which exceed 10 seconds have been included and, if paired 
with a train that brings the combined sum of the bridge 
crossing times to less than 20 seconds, the system timing 
constraint will not be violated.  In this situation, sensitivity 
analysis shows that even though the combined sum of the 
bridge crossing times of two trains may not exceed 20 
seconds, the train which exceeds the maximum crossing time 
of 10 seconds will be identified as being likely to cause a 
violation of the system timing constraint.  Even though a 
system timing constraint has not been violated a possible area 
of concern has been identified.  As well as a possible area of 
timing concern, this identifies that additional system time is 
available since one train has exceeded the maximum crossing 
time without violating any system timing constraint.  This 
time could then be allocated elsewhere in the system.    
 

B. Embedded Control System 
The embedded control system example is taken from a 

paper by Muppala, Ciardo, and Trivedi [15].  It consists of an 
input processor which is connected to three sensors, an output 
processor which is connected to two actuators (one active 
actuator and one spare actuator), a main processor, and a 
communications bus.  The input processor takes readings from 
its three sensors, performs some computation on these 
readings and passes the result to the main processor.  The 
main processor takes this result and converts it into commands 
which are passed to the output processor which in turn passes 
these commands to an actuator.  This system could be used in 
a variety of environments including the chemical and avionics 
industries [15].  The real-time values in this example are: 

• The input processor takes a random time to check 
sensor values; with a maximum value of 5 seconds.  

• The main processor takes a random time to convert 
input sensor results into output sensor commands; 
with a     maximum value of 5 seconds. 
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• The output processor takes a random time to 
communicate commands to its actuator; with a 
maximum value of 5 seconds. 

These values are set as timing restrictions placed on the source 
code for the purpose of this case study; they are not 
restrictions placed on the models which are extracted for 
analysis.  The embedded control system is to be checked for 
the timing constraint: 
 

“during a complete system cycle the system must have 
performed each of the tasks listed above within 20 seconds.” 

 
The input and output processors each have timing constraints 
of 10 seconds while the main processor has a timing constraint 
of 20 seconds.  The mean time the input processor spent 
gathering sensor values was 4 seconds, the mean time the 
main processor spent converting sensor values into actuator 
commands was 3 seconds, and the mean time the output 
processor spent issuing the actuator commands was 4 seconds.      
      Results showed that when the MTTA was observed for the 
sample sensitivity analysis experiments it showed that the 
model appeared to reach a state of absorption when the input 
processor took 10 seconds or more to check the input sensors, 
even though the time that the main processor spent converting 
sensor values into actuator commands was 3 seconds and the 
time the output processor spent issuing the actuator commands 
was 4 seconds (less than 20 seconds in total).  At this point it 
was observed that the main processor looked sensitive to 
being the cause of absorption.  This was a consequence of the 
relationship between the input processor and the main 
processor.  From the results we can say that for a system to 
avoid causing a state of deadlock the timing values for either 
the input or output processors should be no greater than 10 
seconds.  It appears that the system begins to reach a state of 
deadlock at a time when either of the three system timing 
constraints have been violated.  Even though the main 
processor has a constraint value of 20 seconds, sensitivity 
analysis has shown how this can be effected by the links the 
main processor has with the input and output processors.  
Since the actual times were 4 seconds, 3 seconds, and 4 
seconds for the input processor, main processor, and output 
processor, respectively, they appear to be acceptable and will 
not cause the system to reach a state of absorption.  
Performance analysis has shown that this system will not 
violate its timing constraints.  

The CSPL models generated by PARTES use a notation so 
that the areas of timing concern can be related directly back to 
the original source code which has been annotated.  Since we 
are able to identify potential problem areas, we can then focus 
the attention of further analysis techniques on these areas and 
potentially guide the application of fault tolerant approaches.  

VI. DISCUSSION 
We have illustrated a framework which supports the 

mechanisation of the extraction of a test harness which allows 

existing technology to be utilised while extracting 
performance models which can be used to evaluate real-time 
correctness properties.  Once the source code has been 
annotated any minimal changes to future revisions will make 
the generation of a test harness relatively simple. 

By adopting an annotation-driven approach to abstraction, 
based at the level of the program source code, we minimize 
the amount of knowledge of formal techniques that an 
engineer requires while allowing them to benefit from using 
approaches such as model-checking and performance 
modelling.  If engineers at the levels of testing and 
verification employed a technique similar to that discussed in 
this paper, it may allow them to use verification technology to 
focus on potentially problematic areas of the software system 
under analysis.  
 

VII. CONCLUSION 
We have presented a framework which builds on an 

existing technique to help aid in the verification of real-time 
correctness properties of software systems.  This approach has 
been discussed via example case studies which highlight its 
flexibility and strength.  A discussion of the benefits of such 
an approach has been provided.  We aim to further investigate 
the range of performance modelling technologies and features 
which are available so that we can maximize their use and 
provide a varied range of options for use by the engineer.  A 
long-term aim will be to investigate other modelling 
technologies such as [9] and [16] along with their related 
specification languages to investigate whether a set of tools 
could be developed.  
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