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power was measured 300 times and the mean power was taken 
for the investigation. 
 

 

Fig. 2 The experimental setup of optical sensor for nano-vibration 
detection 

 

 

Fig. 3 The Krichman configuration for excitation of a SPP 

IV. THEORY 

In this section, the energy transfer from an optical fiber 
mode to the SPP mode is discussed. We consider the case 
when the radius of the fiber exceeds the light wavelength and 
the process of the wave propagation can be described by 
geometric optics. The incident wave propagates across the 
waveguide axis. If the opening angle of the cone is f , then 

the incident angles, m , are 

 

,,...3,2,1;)12(
2

 mm fm           (1) 

 

where 1m  corresponds to the first reflection, km 
corresponds to the krd reflection, etc. The planar SPP 
excitation by means of the Krichman configuration [7]-[9] is 
similar to the above situation. Fig. 3 shows the SPP excitation 
by the Krichman configuration scheme. When the bending 
radius is much greater than the wavelength, the wave vector of 
the SPP can be determined by the formula for the planar SPP 
[8], [9]: 
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where SPP ( 12SPPk  m-1) and  ( 530  nm) is the wave 

vector and the wavelength of the SPP, respectively. lln 2

and m is dielectric permittivity of the surrounding liquid and 

metal, respectively. 
Then, the incident angle for the excitation of the SPP is 

given by 
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where nl is the dielectric permittivity of the fiber core (fused 
quartz: 25.2ln ). A SPP will be excited when for some 

,...3,2,1m is satisfied and can be realized only under certain 

values of the opening angle of the cone, f  and the dielectric 

permittivity of the surrounding liquid, l . If resonant 

excitation of a SPP is to be obtained on a metal surface [10], a 
thin layer of transparent dielectric is typically added. In our 
case, excitation is realized through vibration of liquid layer. 

Let’s consider that the cone is a sequence of cylinders with 
a continuously decreasing diameter; i.e., the transition to 
conical structure is realized by using an adiabatic 
approximation because the apex angle of the cone is not too 
large. For the cylindrical waveguide wave vector, each mode 
can be determined as [11] 
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2
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where nf,l is the refractive index of the medium (index f and l 
corresponds to the fiber and the liquid, respectively),  is the 
cylindrical wave frequency ( 12   c ), c is the speed of 

light, and f,l is the parameter that determines by the transverse 
profile fields of the mode. From the general theory of the 
guided waves, it follows that f,l is inverse proportional to the 
size of the region of the wave localization: 
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Here af,l is the typical size of the localization regions for the 

internal and external channels and f,l is the constants which 
can be determined from the theory ( 1, lfa ). In the case of a 

conical structure (Fig. 1, 1, lf ), the dependence of af,l on 

the z coordinates must be za lflf ,,  . 

From the theory of coupled modes, the effective transfer of 
wave energy from one mode to the other is possible when their 
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wave vectors are equal (
lf   ) in the large region of the 

propagation [12]. In the considered case this is true if 
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The first condition in (6) can be realized by the proper 

choice of the liquid. In our experiment, as a liquid we used 
alcohol with nl = 1.47, whereas for the fiber core nl = 1.46. The 
second condition can be realized by changing the angle 

l . 

Angle 
f  decreases when the tip goes out from the liquid into 

the air. The conditions in (6) can be realized at the definite 
position of the tip relative to the liquid-air interface and then 
the strong enhancement of the output radiation is registered. 

V. RESULTS AND DISCUSSION 

Fig. 4 shows the changing behavior of the output optical 
signal during the tip movement along liquid-air interface. 
When the tip goes out from the liquid into the air, it bends the 
liquid surface and gradually a meniscus is formed around the 
sharpened tip. At some position of the tip, a strong 
enhancement of output radiation was registered which caused 
by the resonant transfer of the wave energy from the fiber to 
the liquid medium mode. 

 

 

Fig. 4 The detected optical signal when tip crossed the air-liquid 
interface 

 
The peak power of output radiation essentially depends on 

the thickness of a metal layer through which the light radiation 
passes. The experimentally measured power of peak radiation 
was about 50 W. This process can be realized at certain 
forms, thicknesses, and material characteristics (dielectric 

permittivity) of the liquid meniscus. 
The strong dependence of this effect on the form and 

dielectric permittivity of the external dielectric layer provides 
a basis for development of various types of sensor. Due to this 
dependence it is possible to register nanometric vibrations of 
the liquid surface which can have useful applications in 
detection and investigation of weak seismic vibrations. For 
example, if fix the tip at the certain position in the vicinity of 
the peak, even the weak vibrations of a liquid surface 
appreciably will change the output power. From the received 
dependence of output power on time, it is not difficult by 
numerical methods to define a spectrum of output radiation. 

Clearly, those characteristic frequencies of this spectrum 
will be frequencies of vibration of a liquid surface. It is 
possible to assume that the received resonant frequencies are 
frequencies of a building where the experiment is made. 
 

 

Fig. 5 The vibration spectra of four floor building detecting by optical 
sensor: cylindrical form cuvette filled with (a) half and (b) full 

alcohol 
 

The sample of building vibration frequencies spectra is 
shown in Fig. 5. The fixed peak at 15.1 Hz was correspond 
building vibration while each resonator (cuvette with half or 
full filled liquid) of the sensor has his own resonant behavior 
with highest peak at 16.2 Hz and at 22.1 Hz for half and full 
filled cuvette, respectively. The form of cuvette (cylindrical, 
spherical, rectangular) change the total vibration spectra of 
sensor (results not shown here) but the building characteristic 
vibration peak was clearly distinguished for each case. 

Note that they sensor Q-factor is almost same; up to 120 for 
both half and full filled cuvette cases. Even though the Q-
factor of the investigated cavity is modest, the ultra-small 
mode volume V can potentially lead to a significant 
enhancement of the measurements rate. The smallest 
detectable change in the vibration amplitude based on a 
criterion of measurements signal-to-noise ratio is about 50 nm. 
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VI. CONCLUSIONS 

We have described a novel concept for detecting nano 
vibrations at liquid-air interface which is based on the effect of 
light wave energy transfer from the fiber core mode into the 
external liquid layer mode in the metal-coated fiber tip 
surrounded with a liquid meniscus. 

The described method can be used for detection of week 
seismic vibrations. The investigation of weak vibrations at 
liquid-air interface can be applied in study of hydrodynamic 
processes such as the modeling of the processes occurring on 
the water surface of the Earth. 

Another application of this detection method can be the gas 
sensors if metallized fiber tip is covered with an external solid 
dielectric layer. Adsorbed gas molecules will change the 
effective refractive index of the external dielectric layer with 
further stimulation of the energy transfer between two 
waveguide modes and enhancement of the output signal. 
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