
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1574

Abstract— With the advent of emerging personal computing

paradigms such as ubiquitous and mobile computing, Web contents

are becoming accessible from a wide range of mobile devices. Since

these devices do not have the same rendering capabilities, Web

contents need to be adapted for transparent access from a variety of

client agents. Such content adaptation is exploited for either an

individual element or a set of consecutive elements in a Web

document and results in better rendering and faster delivery to the

client device. Nevertheless, Web content adaptation sets new

challenges for semantic markup. This paper presents an advanced

components platform, called SMC, enabling the development of

mobility applications and services according to a channel model

based on the principles of Services Oriented Architecture (SOA). It

then goes on to describe the potential for integration with the

Semantic Web through a novel framework of external semantic

annotation that prescribes a scheme for representing semantic

markup files and a way of associating Web documents with these

external annotations. The role of semantic annotation in this

framework is to describe the contents of individual documents

themselves, assuring the preservation of the semantics during the

process of adapting content rendering. Semantic Web content

adaptation is a way of adding value to Web contents and facilitates

repurposing of Web contents (enhanced browsing, Web Services

location and access, etc).

Keywords—Semantic Web, Ubiquitous and Mobile Computing,

Web Content Transcoding. Semantic Markup, Mobile Computing

Middleware and Services

I. INTRODUCTION

HE development experienced over the last few years by

mobile data communications has led to an increased

demand for mobile applications and advanced services in the

business world, especially in those business processes that

involve people traveling. A big effort is also going into

bringing the potential of this type of communications and

applications on to the market for the general public, setting up

ubiquitous and mobile computing as an emerging personal

computing paradigm. The objective is to connect mobile

Manuscript received February 25, 2006. This work is being supported in

part by the CAM Education Council and the European Social Fund under their

Research Personnel Training program, and by the Spanish Ministry of

Industry, Tourism and Commerce under its National Program of Service

Technologies for the Information Society (contract FIT-350110-2005-73).

José. M. Cantera is with Telefónica Research & Development, Spain (e-

mail: jmcf@tid.es).

Genoveva López, Javier Soriano and Miguel Jiménez are with Department

of Computer Science, Technical University of Madrid (UPM), Spain. (e-mail:

{glopez, jsoriano}@fi.upm.es, mjimenez@pegaso.ls.fi.upm.es,).

people to the information and applications they need —

anytime, anywhere, on demand; move the workplace to any

space, using wireless middleware both on the server and on

the client side to support the broadest spectrum of mobile

networks and a wide array of devices on the client side; and to

enable users of telephones and small, handheld, wireless

computing devices to conduct business transactions or access

information and services.

Despite the huge effort that is being invested in promoting

such advanced services, uptake by users on a massive scale

has not yet come about. In the coming years, the overall

success of mobility technologies will largely depend on their

level of penetration in the setting of professional and

entrepreneurial applications and among the general public as a

whole, as mobile-computing products and information

services delivering business value to the enterprise [1].

The development of mobility solutions in ubiquitous

computing environments is conditioned by a variety of

factors, including the wireless nature of ubiquitous computing

devices, device-inherent capacity restrictions, the range of

features offered by the different mobile networks there are and

the wide variety of available terminals and development

technologies, with a range of configuration, functionality and

rendering options, placing heavy demands on interoperability.

Additionally, provision of mobile access to an application

should ideally not lead to a modification of either the

architecture or the business services published by this

application. Hence, network architectures and software

platforms are needed to support automatic, ad hoc

configuration, service discovery and utilization by automated

systems without human guidance or intervention, and

capability description [2], as well as content adaptation for a

wide range of mobile devices with different rendering

capabilities [3], also called Web content transcoding [4].

Additionally, as pointed out by Ora Lassila in his keynote

talk at IASW 2005 [5], the Semantic Web represents a means

to improve the interoperability between systems, applications,

and information sources. Emerging personal computing

paradigms such as ubiquitous and mobile computing will

benefit from better interoperability, as this is an enabler for a

higher degree of automation of many tasks that would

otherwise require the end-users' attention. Specific application

areas of Semantic Web technologies with direct ramifications

to these new paradigms include Web Services, context-

awareness and policy modeling, as well as the inclusion of

semantics (semantic markup) in the information rendered for

Semantic Mobility Channel (SMC): Ubiquitous

and mobile computing meets the Semantic Web

José M. Cantera, Miguel Jiménez, Genoveva López, and Javier Soriano

T

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1575

users through the mobility platforms and in the actual Web

content transcoding process.

Considering the advances achieved in the Semantic Web

research area by the international research community, the

strategy followed for building the existing mobile computing

middleware solutions should be reconsidered and the

possibility of including Semantic Web technologies and

techniques should be examined, as should the benefits of such

a decision. In particular, this paper addresses the role of

semantic annotation in mobile computing software platforms

in order to provide explicit semantics that can be understood

by a content adaptation engine, enabling the semantic markup

of the adapted Web content. Although Web content annotation

(or metadata) has a variety of potential applications [6], they

can be categorized into three types: discovery, qualification,

and adaptation of Web content. The primary focus of this

paper is on the Web content qualification and adaptation.

In this paper we describe a Reference Architecture for

applications incorporating mobility, which is being developed

in the context of the Morfeo Opensource Software

Community [7], led by Telefónica Research & Development,

and which is concerned with the challenges described above.

The availability of these components is a step forward towards

bringing mobile data communications and advanced services

to the public at large.

The remainder of the paper is organized as follows. Section

II describes the Mobility Channel, an advanced components

platform, which is the key component of the proposed

architecture, and which will be able to be used to build low-

cost mobility solutions in record time, with distinguishing

features such as channel adapter-based multidevice access, the

combination of pull and push communication paradigms, the

possibility of automatically switching between online and

offline operating modes, minimization of traffic and server

connections. Then section III describes the Mobility

Channel’s potential for integration with the Semantic Web

through the incorporation of semantic markup of the content

in mobile applications developed based on this channel. This,

it is stressed, enables a mobile device to be able to recognize

and interpret the information contained in the application’s

renderings, and can therefore influence the navigation of the

user handling the device and take actions on the information

that the user receives, either by accessing other services, in

applications within the same device, or as befits the nature of

this information. Section IV briefly exemplifies the use of

SMC to give such a widespread application as TPI’s Yellow

Pages mobility. Finally, Section V presents other related work.

II. MOBILITY CHANNEL ARCHITECTURE

The Mobility Channel [8] (MC) is a vertical component-

based platform for rapidly developing applications and

services that can be used to create comprehensive and

integrated mobility solutions while concealing the complexity

involved in managing multiple devices.

This platform allows the development of applications and

services according to a channel model supported by the

principles of Service Oriented Architectures (SOA). This

means that the services that implement the business logic and

are run on the back-end should not be duplicated when

another access channel (mobile devices) is added. A new

software component, the channel adapter, has been conceived

to achieve this goal. It is run on the front-end and conceals the

peculiarities of a new more restricted means of access from

developers and back-end services.

Mobile applications are written according to the “develop

once, use many” paradigm. Therefore, renderings are defined

in a single, XML-based language that can specify the visual

controls making up each of the renderings, as well as the flow

associated with the renderings, which contains the response to

the different events fired by the visual controls.

The MC supports both navigation-based thin clients and

Java code-based smart clients, communication being subject

to http or WAP protocols in both cases. For smart clients, it

also offers the possibility of sending push asynchronous

notifications by sending messages to the mobile device. The

rendering layer is organized around the Rendering Operations

(RO), which define all the rendering flow and calls to

Applications Operations (AO) needed to implement the

application. The AOs are contact points with the application’s

business logic or back-end and are, therefore, the nexus

between the MC and the application’s business services.

Code-generating tools (mark-up, validation and behavior

specification) are a key component of the MC. They generate,

at development time, the pages that will cater for thin clients

organized by the families and mark-up languages that the MC

supports, i.e. XHTML-MP, WML, etc., or the code that the

smart clients will execute. The generated ROs are customized

for each specific device, taking into account each device’s

specific capabilities, such as the functions its navigator

supports, screen size and organization or interface capabilities.

The pages that cater for thin devices isolate the programmer

from the tasks associated with multidevice programming:

device recognition, paginating control, URL rewriting to

maintain sessions, validation management, etc. This solution

differs from other approaches to services provision for mobile

devices that focus on transcoding the application HTML or

XHTML pages at run time. The Fig. 1 illustrates the Mobility

Channel architecture and shows its key server-side

components.

A key component of the Mobility Channel is the rendering

definition language (RDL) [9]. RDL was developed to isolate

developers from the details of the different mobile

technologies rendering languages and serve as a basis for the

unified definition of renderings handled by the MC, whatever

technology is ultimately used to display them. RDL is based

on XML and is composed of a set of high-level visual

controls, which will then be converted into rendering language

items for each device family. Some of the visual controls are

similar to HTML tags, like head, body, title, hr, etc. Others are

also akin to HTML tags, but their behavior depends on the

capabilities of the markup language to which they will be

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1576

translated. Representative examples of these are submit and

action for performing actions, menu and select for offering

different options, list and table for displaying structured data,

or label, textarea for offering all the necessary text fields

functionality. There are also controls aimed at organizing the

rendering, like panel, style and p. For a full list and detailed

explanation of visual controls, see [9]. The visual controls can

be defined with all the data necessary for their representation,

that is, can be self-contained, or can be defined to import

certain data from the application context at rendering time.

Sentences written in Expression Language (EL) embedded in

rendering definition language attributes are used to import

data from the context. EL is an access method to data stored in

Java Beans included in the JSP 2.0 specification. Appearance

is controlled by means of extended W-CSS [10] layout and

style sheets, conserving attribute inheritance and overwriting.

Data

adapter

Transcoding
and content

adapter

Thin clients

rendering engine

Workflow
navigation

engine

Pagingation

apapterPull
requests
handler

Context
Device

manager

Application

operations

Push
architecture

Device
database

Mobility Channel

Business

services

Business

logic core

Backend

WAP/iMode

devices

PCs/Laptops/PDAs

J2ME

devices

Content
manager

HTTP (Pull)

Push

Data

adapter

Transcoding
and content

adapter

Thin clients

rendering engine

Workflow
navigation

engine

Pagingation

apapterPull
requests
handler

Context
Device

manager

Application

operations

Push
architecture

Device
database

Mobility Channel

Business

services

Business

logic core

Backend

WAP/iMode

devices

PCs/Laptops/PDAs

J2ME

devices

Content
manager

HTTP (Pull)

Push

Fig. 1 Mobility Channel architecture

An example of visual control is given below. The control

defines a table that will show the brand, model and price of

vehicles that are in the object referenced by ${lcars} present

in the server context. The context (see Fig. 1) is a hierarchical

data warehouse that contains the data handled by the mobile

application at any one time. The visual controls always take

their data from the context warehouse.

<table id=“mytable” optionsbind=“${lcars}” keymember=“id”>
 <th> <td>Brand</td>
 <td>Model</td>
 <td>Price</td> </th>
 <tr> <td member=“brand”></td>
 <td member=“model”></td>
 <td member=“price”></td> </tr>
</table>

The requests are first received by the pull requests handler,

which is responsible for recognizing the device by calling up

the device manager and storing the data from the mobile client

(control used, event generated and event data) in the context.

Then the pull requests handler has the flow engine start up the

actions required to deal with the event triggered by the user in

the mobile terminal. Generally, the actions will involve

making a call to one or more AOs, which will leave new data

in the context, to finally transform a navigation, in the case of

thin clients, to a rendering served by the rendering engine.

Before returning a page to the client, the contents are adapted

to its capabilities and features, and these contents are

paginated if necessary. In the case of smart clients, the process

ends with a call to the data adapter that will serialize the data

that the smart mobile client will receive.

The Mobility Channel is also equipped with an architecture

for accessing offline operations, based on a micro web server

that is hosted by mobile devices, enabling a later application-

driven synchronization.

To be able to integrate data in a Content Management

System into applications generated by the MC, the MC has

been equipped with the capability of accessing content

repositories compatible with JSR-170 (Java contents

repositories access API). In this way, the same data as found

in a CMS that is, for example, serving an enterprise’s pages

can be integrated into mobile applications or a Content

Management System can be used to manage the data that will

be displayed in the MC.

III. INCORPORATION OF SEMANTICS INTO MOBILE

APPLICATIONS

Just as a mobile device accessing an application or service

receives data about the ROs that it will have to display to the

user —text to be represented, concepts lists, page content

organization, etc.—, the client device can also receive

semantic information about the data that the rendering

contains. Therefore, the mobile application targets not only

the user who reads those data, but the actual device is capable

of recognizing information contained in the application

renderings, and it can be party to navigation of user the

handling the device and undertake actions with the

information that the user receives, either by accessing other

services in applications within the actual device or as befits

the nature of this information.

Like the actual data that the rendering will show to the user,

there are two possible types of semantic information that we

intend to attach to a rendering: On the one hand, the semantic

information can be defined extensively during rendering, and

be therefore statically associated with the rendering. In this

way, when a delivery deadline is expressed, for example, it

can also be expressed semantically that this delivery carries a

given date as a value of the property that indicates the

deadline. On the other hand, the semantic information to be

sent to the client can come from structured data sources, in

which case, like the information dynamically included in the

renderings, they are referenced from the rendering using ELs,

which reference variables and data sets. Therefore, the

concepts displayed in tables, lists and other visual controls

generated at run time will also be able to have associated

semantic information.

Irrespective of how the semantic information is specified,

two alternative mechanisms have been defined to describe it in

conjunction with the renderings definition.

1) The developer specifies semantic bindings associated

with the visual controls that render information. To

associate semantic information with data that are shown

in the rendering, the rendering definition language for the

list, table, label, textarea, select and menu visual controls

has been extended to semantically describe the concepts

that they display by means of additional attributes with

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1577

which EL can be associated. There will also be implicit

semantic information (e.g. dc:title). The semantic

bindings will be expressed according to a set of imported

ontologies. The mobility platform will be responsible for

automatically generating RDF triplets associated with the

bindings specified by the developer. Using the Mobility

Channel tools, it will be possible to generate all the

semantic information associated with an application. This

mechanism’s drawback is that any non-visualized

knowledge will not be able to be marked semantically.

2) The developer specifies the semantics associated with the

concepts in RDF/XML. It will be possible to specify

semantic information about any type of information

within a metadata tag at the end of a Mobility Channel

rendering or associated with any visual control, even if

this information is not part of the rendering and is not

visualized in the device. This means that information

present dispersedly in the display, in unstructured text,

information related to what is displayed or additional

information apart from what is displayed can be described

semantically. Although this information should not be

shown to the user for reasons of simplicity or shortage of

space, it is useful for the device to undertake other actions

—see for example information about the length/width of a

given establishment—. It will be possible to associate EL

with the semantic definition.

In either case, before returning a RO to the client, all the

respective semantic information in the shape of RDF triplets

will be included so that the client receives it together with the

specific rendering data. Semantic annotations are sent to the

mobile device within an external file, in order to avoid the

mixture of content and metadata, as the W3C recommends.

XPath [11] and XPointer [12] are used to associate annotating

descriptions with annotated portions of a document [13].

A. Semantic Bindings

The extension of the rendering definition language is the

result of adding another five attributes, aimed at specifying the

semantic information that will be generated together with the

visual control with which they are associated:

about-resid: specifies what identifier one or more

resources will take (by means of EL).

about-class: refers to the identifier of the RDF-S class

to which a concept belongs.

about-prop: refers to the identifier of an RDF-S

property, whose value is the datum represented in the

visual control.

about-obj-datatype: defines the data type of an RDF

literal, making use of XML-Schema types. It makes

sense when the object is a literal.

about-link-prop: useful for the table visual control, it

references the identifier of a property with a link to the

class that contains the datum to be displayed in a

column.

B. Process of semantic annotation of visual controls

The following describes the process of semantic annotation

of the different visual controls offered by RDL.

1) Table control

The about-class attribute will be used to indicate the RDF-S

class for mapping the items displayed in the table. The about-

resid will be used to indicate how to generate the identifiers of

resources associated with the table content, if there is no

specification, they will be generated according to the default

URL + keymember sequence. The table columns will have an

“about-prop” attribute that will indicate the RDF property for

mapping, if no about-class is specified at column level, the

property will be understood to apply to resources of the type

indicated by the about-class at table level. If a column

contains information about a resource that is not of the type

specified in about-class at table level, the about-link-prop

attribute should also be specified at column level. This

attribute indicates which property the table-type and column-

type resources are linked to. As this specification, if

necessary, will also generate resources identifiers, it will also

be possible to generate an about-resid attribute at column

level, if this attribute is not specified, blank RDF nodes may

be generated.

Below we show the same example as proposed earlier, now

including semantic information and the set of RDF triplets that

will be generated.

<table id=“mytable” optionsbind=“${lcars}” keymember=“id”
about-class=“cars:car” about-resid=“myapp:cars:${lcars.id}”>
<th>
 <td about-prop=“cars:brand”>Brand</td>
 <td about-prop=“cars:model”>model</td>
 <td about-prop=“cars:price” about-obj-
datatype=“xsd:float”>Price</td>
 <td about-prop=“terms:name” about-class=“myorg:person”
 about-link-prop=“terms:owner”
 about-resid=“myapp:staff:${cars.owner.id}”>Owner</td>
 </th>
 <tr> <td member=“brand”></td>
 <td member=“model”></td>
 <td member=“price”></td> </tr>
</table>

As the example shows, the notation can concatenate context

data specified by means of EL with the URIs. (e.g. about-

resid=”myapp:cars:${lcars.id}). The above specification

automatically generates the following RDF triplets:

(http://www.myapp.net/cars/Id1,rdf:type,cars:car)
(http://www.myapp.net/cars/Id1,cars:brand,’Seat’)
(http://www.myapp.net/cars/Id1,cars:model,’Leon’)
(http://www.myapp.net/cars/Id1,cars:price,
 ’22456’^^xsd:float)
(http://www.myapp.net/cars/Id1,terms:owner,myapp:staff:12772
139D)
(http://www.myapp.net/staff/12772139D,rdf:type,myorg:person)
(http://www.myapp.net/staff/12772139D,terms:name,
 ”Tim Berners-Lee”)
(http://www.myapp.net/cars/Id1,xpath_ont:reference,”...table
[n]/tr[m]”)

The example uses prefixes for the resources identifiers and

for the imported ontologies that have been declared using

import sentences:

<cmt:import prefix="cars" uri=http://www.cars.net#
 file=“cars-ontology.rdf” />

The language can also indicate a default prefix for

generating resources identifiers as in:

<cmt:import prefix=“myapp" uri=http://www.myapp.net
 default=“true” />

2) List control

The about-class attribute will be used to indicate which

RDF-S class the displayed list belongs to. The about-prop

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1578

attribute will be used to indicate which RDF-S property the

information displayed in the list corresponds to. The about-

res-id attribute (optional) will be used to indicate the

identifiers of the RDF resources associated with the table

content, if this attribute is not specified, default or blank RDF

nodes identifiers will be generated. The about-obj-datatype

attribute (optional) will be used to indicate the XSD type

associated with the different objects of the property

(predicate) represented by the list. An example of a list is

shown below.

<list about-class=“travel:hotel” about-prop=“terms:name”>

3) Label control

A label displays a datum. This datum will usually match a

RDF literal (object). The about-obj-datatype attribute will

type the RDF literal, if necessary. A specification of what

property of what resource (or resource type) is being

visualized is needed. about-class, about-resid and about-prop

attributes as in the above elements. An example of label is

given below.

<label about-class=“travel:hotel” about-
resid=“myapp:hotels:${hotel_id}’ about-prop=“terms:name”>

4) Select and Menu controls

What the select/menu content represents should be

indicated in both cases. The about-class, about-prop, about-

resid, about-obj-datatype attributes are used for this purpose.

An example of the semantic annotation of these controls is

shown below.

<select id=“s_country” optionsbind=“${countriesl}”
keymember=“iso” textmember=“name”
 about-class=“terms:country”
 about-res-id=“myapp:country:${countriesl.iso}”
 about-prop=“terms:name” />
<menu id=“m_payment” optionsbind=“${means}”
 about-class=“business:paymodes”
 about-res-id=“myapp:payments:${means.kind}”
 about-prop=“terms:name” />

5) Image control

The meaning of the image will be annotated externally by

means of the metadata tag (databinding will be enabled). An

example is given below.



6) TextArea control

Two alternatives are provided for the semantic annotation of

this control type. Annotation by means of an RDF/XML

metadata block associated with the textarea (databinding is

enabled) and “inline” annotation of terms within the textarea
<textarea>Deadline of papers submission
 <aterm about-class=“science:congress"
 about-resid=“myapp:congress:ICOT2006"
 about-prop=“science:deadlinedate“
 about-obj-datatype=“xsd:date”>25-01-2006</aterm>
</textarea>

Apart from the semantic information associated with the

different controls of a Mobility Channel rendering, other RDF

triplets will also be automatically generated containing general

information, based, for example, on Dublin Core.

7) Semantic digest

The renderings will be able to incorporate associated

“summary” semantic information. This information will be

able to be automatically downloaded (without the need for

user intervention) by a navigator when there is a link from

another rendering pointing to this information. This

information will be able to be defined by means of a metadata

block associated with the rendering definition head block.

<cmt:head>
 <cmt:title style="noinclude">Validation</cmt:title>
 <cmt:style href="example1.css"></cmt:style>
 <metadata>RDF/XML Block</metadata>
</cmt:head>

8) Semantic information

The Mobility Channel renderings will be able to incorporate

a metadata tag containing semantic information in RDF/XML

format at the end. Data binding will be applicable to such tags.

<metadata>
 <rdf:RDF xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-
 syntax-ns#" xmlns:rdfs = "http://www.w3.org/2000/01/rdf-
 schema#" xmlns:dc = "http://purl.org/dc/elements/1.1/">
 <rdf:Description about="http://www.myapp.net/pres1"
 dc:title=“Cars" dc:description=“Cars list"
 dc:publisher=“Telefónica I+D"
 dc:date="2000-04-11" dc:language="en">
 <dc:creator> <rdf:Bag>
 <rdf:li>Tim Berners-Lee</rdf:li>
 <rdf:li>Deborah L. McGuinness</rdf:li>
 </rdf:Bag></dc:creator>
 </rdf:Description>
 </rdf:RDF>
</metadata>

C. Semantic Mobility Channel architecture

As a data source the SMC will use a Content Management

System with semantic capabilities, which will store structured

contents as well as semantic information about these contents.

Searches and queries of data not available in the SMC context

will be run on the content management to output semantic

information that is included in the ROs sent to clients.

Semantic

Mobility

Channel

B
a
c
k
e
n
d

Content

Manager Knowledge
base

Ontologies

Semantic

Mobility

Channel

B
a
c
k
e
n
d

Content

Manager Knowledge
base

Ontologies

Fig. 2. Semantic Mobility Channel Architecture.

The content management is also used to enter and edit

contents, including semantic annotations of contents. These

are stored in conjunction with the data that they annotate. In

this way, the knowledge base with which the content manager

is associated contains all the application data, irrespective of

whether they are structured content or semantic information.

To enter and edit semantic contents, the content manager

makes use of ontologies of the domains handled and thus

customizes the interface, adapting it to the knowledge entered

at any time.

These ontologies can likewise be used by mobile devices in

conjunction with the information that they receive from the

SMC to make inferences on data.

IV. APPLICATION EXAMPLE

The SMC is being used to give such a widespread

application as TPI’s Yellow Pages [21] mobility, as well as

aiming to offer search results with semantic information based

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1579

on location, services and products ontologies. The objective is

twofold. On the one hand, the aim is to extend service

accessibility to the whole range of mobile devices, which is in

line with the philosophy of any yellow pages service, where

mobility services and activities search can account for a large

proportion of accesses to this application. On the other hand,

it aims to take this service further, by sending the results with

associated semantic information. In this way, the user is not

the only consumer of this information, but his or her device is

able to interpret it, integrate this knowledge with other

applications accessible in the device, thereby maximizing the

potential for TPI use, or be proactive and suggest different

actions in relation to the concepts handled in navigation be

taken. On this point, it is worth highlighting the potential

offered by Semantic Web Services in conjunction with the

semantic information obtained from navigation, integrating

access to the SWS in actual navigation.

V. RELATED WORK

As regards software platforms, a range of advanced

development platforms have been proposed in response to

some of the challenges raised by mobile environments.

Proposals like IBM’s WebSphere EveryPlace Access [14]

based on WebSphere Transcoding Publisher technology [15]

and on ideas developed in [16] on visual XPath expressions

for external metadata authoring composition, MobileAware’s

Mobile Interaction Server and Mobile Content Proxy products

[17] or Microsoft’s MS Mobile Controls [18] are leading

examples. These platform technologies will improve the

design of advanced mobile applications that are tailored for

every mobile device. To our knowledge, however, none of

them include mechanisms for incorporating semantics in the

generated renderings, which is a key element for their

integration with the Semantic Web and the exploitation of all

its potential.

Although overlooked by existing mobility platforms,

several approaches have been developed that consider the

possibility of including Semantic Web technologies and

techniques for building the next generation of semantic-aware

mobile computing middleware solutions. For example, [19]

presents a discussion of how Semantic Web technologies can

be used in the context of ubiquitous computing to enrich the

capabilities of service discovery mechanisms and to enable the

device coalitions that opportunistically exploit a dynamically

changing ubiquitous computing environment.

Along the lines of this paper, [3] introduces a RDF-based

framework of external annotation applicable to transcoding

for Web-enabled mobile devices and explains a high-level

overview of RDF annotation-based transcoding. The proposal

contemplates the idea of authoring-time transcoding. The

work has grown out of two previous papers [19] and [13], and

it focuses on the use of RDF in supporting the transcoding

process. However, the role of annotation in this work is to

characterize ways of adapting content rather than to describe

the contents of individual documents themselves.

[20] shows how when HTML documents are translated into

multiple target languages by means of a machine translation

engine (i.e. a transcoder), linguistic annotations would be

helpful for improving the translation accuracy. Once again,

the approach does not address the semantic annotation of the

content.

Unlike the above work, all based on run-time transcoding

mechanisms, the Mobility Channel tools generate the pages

that will cater for requests from each family of mobile

devices, i.e. XHTML-MP, WML, etc., at development time.

Additionally, none of the above papers addresses the

generation of semantics associated with the information that is

sent to mobile clients in different ROs, which is the primary

original contribution of this paper.

REFERENCES

[1] S. Chughtai and L. M. Patterson, “Robust mobile-computing products

delivering business value to your enterprise.” Whitepaper G224-9130-

00, IBM Pervasive Computing, October 2004.

[2] O. Lassila and M. Adler, “Semantic Gadgets:Ubiquitous Computing

Meets the Semantic Web,” In D. Fensel, et al. Eds. Spinning the

Semantic Web, The MIT Press, Cambridge, Ma., pp. 363-376, 2003.

[3] M. Hori, G. Kondoh, K. Ono, S. Hirose, and S. Singhal, “Annotation-

based Web Content Transcoding”, Proc of the 9th Int World Wide Web

Conference (WWW9), Amsterdam, 2000. Available: http://www9.org/.

[4] K. H. Britton, et al., “Transcoding: Extending E-Business to New

Environments,” IBM Systems Journal, 40(1), pp. 153-178, 2001.

[5] O. Lassila, “Using the Semantic Web in Ubiquitous and Mobile

Computing,” Keynote, IASW05, Jyväskylä, Finland, 25-27 Aug. 2005.

[6] O. Lassila, “Web Metadata: A Matter of Semantics,” IEEE Internet

Computing, no. 2, vol. 4, pp. 30-37, 1998.

[7] Morfeo Project: Open Source Community for Software Platforms and

Services Development. http://www.morfeo-project.org.

[8] J. Cantera “Enterprise Mobility Solutions: Technologies, Components

and Applications,” Communications of TID, 36, June 2005.

[9] TIDMobile: Presentation Definition Language Reference Guide

(Revision 1.2.1). Available: http://www.morfeo-project.org/files/

/TIDMobile_LanguageReference.pdf, September 2005.

[10] Open Mobile Alliance, WAP CSS Specification, WAP-239-WCSS-

20011026-a, 2001.

[11] World Wide Web Consortium, XML Path Language (XPath), 1999.

Available: http://www.w3.org/TR/xpath.

[12] Workd Wide Web Consortium. XML Pointer Language (XPointer),

2002. Available: http://www.w3.org/TR/xptr.

[13] M. Hori, “Semantic Annotation for Web content Adaptation. In D.

Fensel, et al. Eds. Spinning the Semantic Web, The MIT Press,

Cambridge, Massachusetts, pp. 403-429, 2003.

[14] WebSphere EveryPlace Access. Available: http://www-306.ibm.com/

/software/pervasive/ws_everyplace_access/.

[15] IBM Corporation, WebSphere Transcoding Publisher, 2001. Available

from http://www.ibm.com/software/webservers/transcoding/.

[16] M. Abe and M. Hori, Visual Composition of XPath Expressions for

External Metadata Authoring,” RT-0406, IBM Research, Tokyo, 2001.

[17] MobileAware Mobile Interaction Server and Mobile Content Proxy.

Available: http://www.mobileaware.com.

[18] Microsoft Mobile controls. Available: http://msdn.microsoft.com/

/mobility/othertech/asp.netmc/default.aspx

[19] M. Hori, K.Ono, G. Kondoh, and S. Singhal, “Authoring Tool for Web

Content Transcoding,” Markup Languages: Theory and Practice, 2(1),

pp. 81-106, 2000.

[20] K. Nagao, Y. Shirai, and S. Kevin, “Semantic Annotation and

Transcoding: Making Web Content More Accessible,” IEEE

Multimedia, no. 8 vol. 2, pp. 69-81, 2001.

[21] TPI Yellow Pages service, Telefónica. Available: http://www.tpi.es/

