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Abstract—We present a non standard Euclidean vehicle 

routing problem adding a level of clustering, and we revisit the use 
of self-organizing maps as a tool which naturally handles such 
problems. We present how they can be used as a main operator 
into an evolutionary algorithm to address two conflicting 
objectives of route length and distance from customers to bus stops 
minimization and to deal with capacity constraints. We apply the 
approach to a real-life case of combined clustering and vehicle 
routing for the transportation of the 780 employees of an 
enterprise. Basing upon a geographic information system we 
discuss the influence of road infrastructures on the solutions 
generated. 
 

Keyworks—Evolutionary algorithm, self-organizing map, 
clustering and vehicle routing. 
 

I. INTRODUCTION 
OLLOWING works that were carried out for 
dimensioning radio-cellular networks with the help of 

meshing techniques as in [9], we are proposing to extend 
and adapt the concept to terrestrial transport. Vehicle 
interconnected lines are seen as a transport mesh which 
adapts its shape to the underlying distribution of demands. 
Here, the problem consists in positioning bus stops and 
finding vehicle routes among them, minimizing at the same 
time both route length and walking distances from customer 
locations to bus stops, called distortion measure, taking care 
of capacity constraints. We call it the Euclidean vehicle 
clustering and routing problem. It can be seen as a 
combination of the Euclidean k-median problem [3] with 
the classical vehicle routing problem (VRP) [7]. 

From our knowledge, the problem has never been studied 
previously. In Clustered TSP [24], clusters are given as an 
input. The closest problem encountered, called median-
cycle problem (MCP), has been investigated recently 
[22][23]. It is defined on graphs. It consists of finding a 
subset of vertices to visit within a single tour minimizing a 
combination of routing cost and assignment cost. In our 
case, cluster centers are located anywhere in the plane,  
many vehicle routes are used and capacity constraints have 
to be satisfied. Related problems looking at a cycle, path or 
tree on a subset of vertices use specific function costs or 
constraints on assignment cost [4][20][21][39]. Hierarchical 
combinations of clustering and routing are possibly 
manifold as in location-routing problems (LRP) [29]. But in 
our case, the hierarchical order of clustering and routing is 
different since here routes visit cluster centers, whereas in 
LRP routes are built on separate clusters. Thus, no 
benchmark and results are available specifically for our new 

problem. It is why we will perform experiments on a real 
life case for which the existing bus routes will serve as a 
basis for comparison. 

Such problems of clustering and vehicle routing are NP-
Hard. Then, the use of metaheuristics is encouraged to get 
satisfactory results for large instances. Here, what we will 
focus on is on "natural" metaheuristics, because often 
inspired by metaphors of natural evolution and living 
systems, such as evolutionary algorithms [14][33] and self-
organizing neural networks [17]. A common characteristic 
lies in their biological models having crude and blind 
mechanisms depicted through selection theories [10][26]. 
They are naturally parallel and are often recognized as easy 
to implement. 

In practice, hybridization of methods is often compelling. 
It is a common and promising practice using a population 
based metaheuristic incorporating a neighborhood search. 
While neighborhood search quickly finds solutions in a 
small region of the search space, the embedding strategy 
determines interesting regions to visit. Examples of such 
methods are memetic algorithms [28][31] or genetic local 
search [32]. Memetic algorithms are special case of 
evolutionary algorithms, combining advantage of heuristics 
within a population based search. They take their 
denomination from cultural evolution, where "memes" are 
unit of information that evolve during life and replicate thru 
knowledge transmission. 

We present the memetic SOM, a population based search 
embedding self-organizing maps (SOM) as internal 
operators. Using neural networks to solve the traveling 
salesman problem (TSP) was done using the Hopfield 
model [37], the elastic nets [11][36] and the self-organizing 
maps (SOM) [1][2][8][17][25][38], the latter being the most 
efficient approach on large size problems. Many papers on 
SOM application to the TSP have been published since two 
decades as mentioned by [8], which is one of the most 
complete review on this subject. Their extension to more 
complex and abstract problems remains an important task. 
For example, SOM have been extended to vehicle routing 
problems [13][30] but, as far as we know,  not to combined 
clustering and vehicle routing problems. We argue that the 
SOM naturally integrates clustering and routing within a 
context of stochastic demands. For this reason, we present 
vehicle routing from the more general viewpoint of adaptive 
meshing, solutions being interconnected routes adapted to 
the demands. Furthermore, by using the evolutionary 
embedding strategy, we extend the potentiality for the 
approach to address capacity constraints and a scalar 
combination of the two objectives of both length and 
distortion minimization. 

The paper is organized as follows. Section 2 is a short 
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discussion about classical self-organizing map applications 
and its relation to clustering and routing. Section 3 presents 
the clustering and routing problem. Objectives and 
constraints are given. Section 4 presents the standard SOM 
operator. Section 5 describes the population based approach. 
Section 6 presents experiments carried out on an artificial 
test case and on a real life case of urban transportation. The 
last section is devoted to the conclusion and further 
research. 

II.  FROM  PATTERN ANALYSIS TO CLUSTERING AND 
ROUTING 

As it is known in pattern analysis field, the goal when 
achieving data compression, density estimation or 
regression is to extract from learning data their main 
characteristics in order to favor generalization. Two 
drawbacks have to be avoided during regression: over-
fitting and under-fitting [6]. In the former case, noise in data 
is over-estimated. In the latter case, main characteristics are 
loose from data. Finding the right balance between these 
two aspects is an essential challenge that, for example, 
Kohonen’s self organizing maps [17][18] can address.  

Kohonen's algorithm is a nonparametric regression, 
related to kernel smoothing and curve fitting [34], based on 
"code-books" which are spatially distributed vectors 
representing data. It can be understood as a center based 
clustering algorithm, adding topological relationships 
between cluster centers. Thus, related optimization 
problems it can address, are clustering k-median, k-center or 
k-mean problems [16][27]. Advantage of the SOM is to 
maintain topological relationships between cluster centers, 
and this property allows to integrate routing between them 
in a unified approach. 

As already known, SOM provides an interesting solution 
for the Euclidean TSP, but it seems natural also to address a 
wider class of problems adding a level of clustering on 
vehicle routing problems. By incorporating SOM into an 
evolutionary algorithm the aim is to address such harder 
problems with capacity constraints and improve 
performances as well. 

III.  PROBLEM STATEMENT 

We denote by { }nrrV ,...,1= , the finite set of customer 
demands, called requests. Each request ri ∈ V has a location 
in the plane. It has a non-negative quantity demand qi. Let 

{ }knnB  ..., ,1=  being a finite set of cluster centers, also 
called transport points or bus-stops, localized by their 
coordinates in the plane. A transport mesh, or set of 
interconnected routes, is a collection { }mRRR  ..., ,1=  of 
m routes where each route is a 
sequence ( )i

k
i
j

i
i i

nnnR  ..., , ..., ,0= , Bni
j ∈ , of ki+1 

successive cluster centers. In our approach, the main 
difference with classical vehicle routing modeling is that 
routes are defined by an ordering of cluster centers, rather 
than by an ordering of customer requests. Thus, each 
request r must be assigned to a single cluster center, denoted 
nr, in one of the m routes and several requests are possibly 
assigned to a same cluster center. To each route is 
associated a single vehicle. We then denote and identify a 
vehicle with its route Ri. The vehicle assigned requests are 

the requests assigned to its transport points. Each vehicle 
has a load iL  defined as the sum of its assigned request 
quantities. Vehicles have capacity C. Let d(p, p’) denotes 
the Euclidean distance between two points p and p’ of the 
plane. 

Euclidean vehicle clustering and routing problem 
(VCRP). The problem input is given by a set of n requests 

{ }nrrV ,...,1= , and a set of m routes { }mRRR  ..., ,1= . 
The problem output consists of finding cluster center 
locations in the plane, except for some fixed transport points 
at a depot location, and an assignment of the requests to 
cluster centers in routes, in order to minimize the two 
following objectives: 

( )1
1, ,  0,..., 1i

i i
j j

i .. m, j k
length d n ,n +

= = −
= ∑ ∑ ,   (1) 

( )
1,...,

,
ii r

i n
distortion d r n

=
= ∑ ,    (2) 

subject to the capacity constraint: 
L Ci ≤ , { }mi ,...,1∈ .    (3) 

Since the problem has two conflicting objectives of both 
length (1) and distortion (2), we have to take care of what is 
called an optimal solution. We say that a first (admissible) 
solution dominates an other (admissible) solution if the two 
objectives of the former are inferior to those of the latter, 
one of them being strictly inferior. Then, an optimal solution 
is a solution which is dominated by no other solution. The 
set of such non comparable optimal solutions are called 
Pareto optimal solutions or optimal non dominated 
solutions. 

The set of Pareto optimal solutions are possibly 
numerous. Solutions with distortion = 0 and minimum 
length are solutions of an Euclidean VRP. Solutions with 
minimum distortion (discarding length) are solutions of the 
well-known Euclidean k-median problem. Whereas, 
considering the two objectives simultaneously yields to non 
comparable solutions which are possibly not a VRP nor a k-
median optimal solution. These intermediate solutions are 
the compromises that are useful for combined clustering and 
routing.  

IV. KOHONEN’S SELF-ORGANIZING MAPS 
A. The Standard Self-Organizing Map Algorithm 
The self organizing map is a non supervised learning 

procedure performing a non parametric regression that 
reflect topological information of the input data [17]. The 
algorithm has batch versions [34] where all data are 
supposed to be known in advance. The SOM is sometimes 
presented as an optimization problem minimizing an explicit 
cost function [15]. Here, we present the standard on-line 
algorithm used within a two-dimensional context, using the 
request set as the input data set. It can be seen as a 
stochastic approximation algorithm, tackling input points 
one by one. 

The topological map is a non directed graph G = (N, E) in 
which each vertex n ∈ N is a neuron having a synaptic 
weight vector wn = (x, y) ∈ ℜ2, where ℜ2 is the two-
dimensional Euclidean space. Synaptic weight vector 
corresponds to the vertex position in the plane. The set of 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 
Fig. 1 A single iteration of  SOM algorithm with different radius r and learning rate α, on interconnected routes. (a)(c)(e) Initial 
configurations. (b)(d) r = 4, α = 0.75. (f) r = 4, α = 0.9. (g) r = 1, α = 0.9. (h) With asymmetric neighborhood r = 5;3, α = 0.5 

 

neurons N is provided with the dG induced canonical metric: 
dG(n, n') = 1 if and only if (n, n') ∈ E, and with the usual 
Euclidean distance d(n, n'). The Fn influence field of a 
neuron n ∈ N is defined by its Voronoï region within the 
Euclidian space: 

( ) ( ){ }2
'/ ' , ' , , ,n n nF w n N n n d w w d w w= ∈ℜ ∀ ∈ ≠ < . (4) 

The training procedure follows three basic steps. At each 
iteration t, a point p(t)∈ℜ2 is extracted from the set of 
learning data (extraction step). Then, a competition between 

neurons against the input point p is performed in order to 
select a winner neuron (competition). Usually, it is the 
neuron n* for which p ∈ Fn, i.e. the closest neuron to p. 
Finally, the learning rule (triggering step) 

( ) ( ) ( ) ( ) ( ) ( )( )1 . *, .n n t nw t w t t h n n p t w tα+ = + −  (5) 

is applied, with learning rate α(t) and function profile ht, to 
n* and to all neurons into a finite neighborhood of n* of 
radius σ(t) in the sense of the topological distance dG.  

Function profile ht has the shape of a "bell curve”. That 
function models the biological lateral interactions between 
neurons relative to the ( )*,Gd n n distance. Both α(t) and 
ht coefficients are time decreasing functions which play a 
similar role as the "gains" used in stochastic approximation 
[19], resembling to temperature. It is usual to consider the 
process as a succession of two phases: an exploratory or 
ordering phase followed by an asymptotic smooth gradient 
descent phase to stable states. Here, we used geometrically 
decreasing learning rate α(t) and radius σ(t), multiplying 
coefficient at each iteration by 

( )( )maxexp ln final initx x t  applied with αinit, αfinal, 

σinit, σfinal, respectively the values at starting and final 
iteration tmax. The activation profile is given by the Gaussian 

( ) ( )( )2 2*, exp *,t G th n n d n n σ= − . (6) 

Application of SOM to a set of interconnected routes 
{ }1,  ...,  mR R R=  is straightforward. The data 

distribution is the request set. The standard SOM algorithm 
is applied to the induced undirected graph GR = (N, E) from 
R, where the vertex set N is the set of cluster centers, 
whereas E is the set of edges composed of any two 
successive centers from routes. Examples of a basic 

iterations performed on various mesh configurations with 
different intensities and neighborhood sizes are shown in 
Fig. 1. We can see in (a)-(d) how neighborhood influence is 
subdivided along the interconnected paths, and in (e)-(h) 
standard iterations on a single path. 

A SOM simulation is denoted by its running parameters 

( )max, , , ,init final init final tα α σ σ . It becomes an 

operator into the population based algorithm. 

B. Self-Organizing Maps Properties 
Self-organizing maps have two main properties. The first 

expresses preservation of the data density distribution: the 
peaks of the grid are the most dense where data are also the 
most dense. The second one expresses preservation of 
topological distances: two peaks on the grid that are beside 
each other using distance dG, are also closest one to each 
other using Euclidean distance. However, SOM analysis in 
statistical mechanics remains a difficult task and main 
results presented by [35] show that density of vertices will 
not reflect proportionally the underlying data density. It is 
admitted that Kohonen’s algorithm tends to under-sample 
high probability regions and over-sample low probability 
ones. Generating a topological map can also be viewed as 
an optimizing problem minimizing an explicit cost function. 
The cost function is given by 

( ) 21 .
2 ix i n

i n
E h n , n x  - w= ∑∑ ,          (7) 

where xi denotes an input point, 
ixn is the closest vertex to 

xi, h denotes the activation profile and where weights wn are 
the parameters to be determined. It has been shown that 
SOM algorithm performs a gradient descent on E when 
applied to a discrete input data set, whereas it only 
minimizes the function cost approximately in the continuous 
case [12]. It is admitted that minimizing the cost function E 
is a hard task because of numerous local minima that should 
be bypassed throughout the optimization process. 

V. THE MEMETIC SOM 
The first improvement one could introduce using SOM is 

multi-start or re-start runs from random initializations. 
Furthermore, one can follow metaphor of biological 
selection applied to a population of solutions. Here, we use 
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(a) (b) (c) (d) 

 
Fig. 3 Meshing of a territory. (a) Sampling of the demand (1000 dots) on a territory with 40 specific places (triangles) and a juxtapose 

transport mesh result. (b) Transport mesh obtained considering only the demand. (c)(d) Transport mesh derived considering the 40 places 

the standard SOM algorithm as a local search process 
embedded into an evolutionary algorithm having fitness 
evaluation and selection operators. Large learning rates and 
neighborhood sizes will help exit from local minima and 
generate diversity, whereas smoothly decreasing parameters 
will fix the runs toward stable states representing a 
compromise of route length and distortion minimization. 
Fitness and selection operators will address specific problem 
goals. 

 
Initialize population with Pop randomly generated 
individuals. 
Do while not Gen generations are performed. 
  For each individual. 
    Apply self-organizing map operators SOM. 
    Apply request assignment and fitness evaluation operator 
FITNESS. 
    Apply selection operator SELECT. 
  End for. 
End do. 
Report best individual encountered. 

Fig. 2 The memetic loop embedding SOM 
 

The memetic loop is presented in Fig. 2. As usual, one 
individual represents exactly one solution, that is, a single 
transport mesh. The loop consists of applying at each 
iteration, called a generation, a set of operators to a 
population of solutions. Each operator can be a self-
organizing map, denoted SOM, a fitness evaluation and 
requests assignment, denoted FITNESS, or a selection 
operator SELECT. Each operator has a probability of 
application prob. Details of operators are the followings: 

• Self-organizing map operator SOM. It is the standard 
SOM applied to the graph network. It is characterized 
by its internal parameters presented in section 0 and 
its name, as 

( )max, , , ,init final init finalSOM tα α σ σ . It is 

applied running niter basic iterations by individual at 
each generation. Parameters are fixed before each run. 
One or more instances of the operator can be 
combined with their own parameters. Parameter tmax is 
the total amount of iterations applied to all 
individuals. Once tmax are performed, the operator 
resets to its initial parameters and starts again.  

• Fitness/assignment operator FITNESS. It greedily 
assigns requests to their closest cluster center into a 
route, vehicle capacity constraint being satisfied. 
Then, it evaluates a scalar fitness value that has to be 
maximized and which is used by the selection 
operator. The capacity constraint (3) is greedily 
tackled thru the requests assignment. Other objectives 
(1) and (2) are traduced and combined into the scalar 
fitness value fitness = - α × length - β × distortion, 
where α and β are weighting coefficients. 

• Selection operator SELECT. Based on fitness 
maximization, the operator denoted SELECT replaces 
replace worst individuals, which have the lowest 
fitness values in the population, by the same number 
of bests individuals, which have the highest fitness 
values in the population. 

With capacity constraint, as a bin packing problem, 
requests assignments to vehicles is by itself a NP-hard 
problem. Here, we choose to systematically perform a 
greedy assignment to the closest transport point encountered 
for which vehicle capacity constraint is satisfied. To 
perform n closest point findings in expected O(n) time for 
uniform distributions, we have implemented the spiral 
search algorithm of Bentley, Weide and Yao [5] based on a 
cell partitioning of the area. Therefore, since the number of 
transport points is set proportional to the number of requests 
n, and assuming that the initial neighborhood size is set to a 
constant value, the memetic algorithm performs in expected 
O(n) time for uniform distributions, and O(n) space 
complexity. Worst case computation time is O(n2) as usual 
with SOM. 

VI. EXPERIMENTAL RESULTS 

A. Transport Mesh Adaptation to Stochastic Demands 
Here, we illustrate the visual specificity of SOM 

discarding other operators. The simulator was made up with 
Java and it incorporates a graphical interface to allow user 
interactive control and visual feedback. Using visual 
patterns as intermediate structures that adapt and distort 
according to demands have several advantages. It takes into 
account the geometric nature of transportation routing and 
lets the user quickly and visually evaluate solutions as they 
evolve. In turn, the designer adjusts optimization parameters 
to direct the search toward useful compromises. 

The Fig. 3 illustrates the meshing of a geographic 
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TABLE I
MEMETIC SOM TYPICAL OPERATOR PARAMETERS 

Pop = 10; Gen = 100 
Operators Internal SOM parameters Evolutionary parameters

no name initα  finalα  initσ  finalσ  maxt  prob niter 
1 SOM 0.9 0.05 6 2 100000 1.0 1000 
2 SOM 0.9 0.9 4 4 - 0.1 10 
3 SOM 0.2 0.05 2 2 10000 1.0 1000 

territory obtained by executing SOM operators on the graph 
network of a set of interconnected routes. Dots in Fig. 3(a) 
represent a sample of the demand distribution. It is obtained 
by extraction of 1000 points from a density France map, 
with a roulette-wheel mechanism. The icons (triangles) 
represent 40 attractive places that should be driven through. 
The initial vertex coordinates of the transport mesh are 
generated  

randomly into a rectangle area delimiting the set of 
demands. The transport mesh is composed of few 
interconnected routes with a total of 118 cluster centers. Its 
graph network is represented after running a two phases 
simulation in Fig. 3(a)-(d). It is built taking as input only the 
demand distribution in (b), and considering the 40 specific 
places in (c)(d). This example shows that dense zones are 
more driven through and that the whole territory is globally 
covered by the mesh. 

Simulations are done in two phases, using the three 
operators of Table I into a memetic loop with 10 
individuals, running 100 generations. The first phase uses 
SOM no. 1 and SOM no. 2 operators with the 1000 demand 
points as input. Second phase uses SOM no. 3 and SOM no. 
2 operators adding the 40 specific places (triangles in Fig. 3) 
in the input. The places (triangles) are added by introducing 
small-size high density zones within the whole data 
distribution. Second phase starts from solutions obtained by 
the first phase, as the one shown in Fig. 3(b), and makes the 
mesh slowly deform and adapt according to places, as in 
Fig. 3(c)(d). Operator SOM no. 2 punctually introduces 
large moves to help exit from possibly undesirable states, 
whereas SOM no. 1 and SOM no. 3 address length and 
distortion minimization, generating compromises between 
the two objectives. Note that SOM no. 1 has an initial large 
neighborhood in order to first deploy the initial random 
transport mesh. It can be imagined that the demand is more 
or less fluctuating and that the network is constantly 
adapting to such variations and fluctuations. 

B. Clustering and Routing for the Customers of a Great 
Enterprise 

From our knowledge, the vehicle clustering and routing 
problem has never been studied previously considering both 
length (1) and distortion (2) objectives simultaneously. 
Thus, to present a detailed study using a benchmark of 
reasonable size, we apply the approach to a real life case 
problem with 780 requests dispatched all over a geographic 
area around the towns of Belfort and Montbéliard in the 
East of France. We don’t know the optimal value, but have 
the actual real-life case solution as a best-known value. The 

simulator incorporates a Geographic Information System 
(GIS) in order to geo-localize requests and to take into 
account the underlying road infrastructures. The area is 
defined by the geodesic Lambert II two-points coordinates 
(897.870, 2324.270) and (972.220, 2272.290). It 
corresponds to an area of 74 km by 51 km. The goal of the 
following experiments will be to generate solutions with 
less vehicles than the actual bus system and having lowest 

length (1) and distortion (2). Furthermore, we will evaluate 
influence of the fitness function choice and show that route 
projection on road infrastructures globally preserves 
optimality. 

 

(a) 

 

 
(b) 

 

(c) 
Fig. 4 (a) Distribution of requests on the geographic area. (b) The 
23 bus routes of the actual enterprise bus system. (c) The same 23 

routes projected on roads 
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TABLE II 
MEMETIC SOM LOOP FOR THE VEHICLE CLUSTERING AND ROUTING PROBLEM 

Pop = 10; Gen = 1000 
Operators Internal SOM parameters Evolutionary parameters 

 Name initα  finalα  initσ  finalσ  maxt  prob niter replace 
1 SOM 0.9 0.1 6 1 100000 1.0 100 - 
2 FITNESS - - - - - 1.0 1 - 
3 SELECT - - - - - 0.1 1 1 

The data consist in 780 workers of a great enterprise that 
are customers of the enterprise bus system. Their locations 
are illustrated by dots in Fig. 4(a). Fig. 4(b-c) presents the 
actual bus routes, showing routes as an ordering of bus-
stops in (b) and showing the same routes projected on the 
underlying roads (thin lines on the figure) in (c). All the 
routes converge to a (fixed) depot point at the enterprise 
location. The projection on roads is done projecting cluster 
centers to their closest points in roads, followed by 
expanding intermediate 2-point paths with a Dijsktra 
algorithm. The actual solution has 23 vehicles with a 
capacity of 45 customers each. Here, the memetic SOM is 
applied to a transport mesh having 20 vehicles with the 
same capacity of 45 customers each, hence for a total 
capacity of 900 customers. 

 

 
(a) 

(b) 
Fig. 5 Two examples of projected solutions with 20 lines 

 
The transport mesh used in simulations has 20 routes with 

20 cluster centers each. Routes are connected at a common 
center (the depot) fixed at the enterprise location, which 
participates to the neighborhood propagation. The initial 
vertex coordinates of the transport mesh are generated 
randomly into a rectangle area delimiting the request set. 
We fixed the operators and their parameters as in Table II. 
Two results projected on roads are shown in Fig. 5. They  

 
illustrate how diversity takes place in the generated 
population. 
 

 
(a) 

(b) 
Fig. 6 (a) Viewing routes as an ordering of cluster centers. (b) 

Viewing the projected routes on roads 

The projection process is illustrated in Fig. 6(a-b) 
applying a zoom on the right part of the Fig. 5(b). The 
solution obtained by the algorithm, where routes are 
modeled by an ordering of cluster centers, is shown in Fig. 
6(a). The same part of the solution is shown after projection 
on roads in Fig. 6(b).  

To quantitatively evaluate the influence of the fitness 
function choice and the impact of road projections, we used 
three fitness functions f1, f2, and f3 using different weighting 
coefficients for the two objective values of routes length (1), 
abbreviated by l, and distortion (2), denoted d. Function f1 is 
an additive aggregation of the two objectives, it is given by 
f1 = -l - d. Function f2 is the length value (f2 = -l), whereas f3 
is the distortion value (f3 = -d). We performed 10 runs with 
each fitness function. Each run took approximately 10 mn 
on a AMD Athlon 2 GHz computer. Results are reported in 
Table III. Rows present values for the “hand made” actual 
bus system followed by the results for each fitness function 
case, respectively for the solutions once obtained and after 
projection on roads. For each test case, we report the mean 
and standard deviation within parenthesis and the best result 
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TABLE III 
SOLUTION COMPROMISES OBTAINED WITH 20 VEHICLES 

Fitness – nb. of 
vehicles 

Bus stops 
number 

Total length 
(km) 

Average 
length 
(km) 

Max length 
(km) 

Total distance 
request-vehicle 

(km) 

Average 
distance 
request-
vehicle 
(km) 

Maximum 
distance 
request-

vehicle (km)

Hand made bus 
system – 23 vehicles 

(not projected on 
roads) 

251 750.33 32.62 47.87 509.79 0.654 13.08

Avg. 283(6.4) 570.25(10.7) 28.51(0.5) 50.39(4.9) 437.57(31.1) 0.561(0.04) 14.75(4.8)f1 - 20 
vehicles (not 
projected) Best 292 559.57 27.98 44.45 407.61 0.523 19.89

Avg. 205.5(14.1) 444.67(7.2) 22.24(0.4) 38.50(1.8) 1345.85(168.5) 1.725(0.2) 23.11 (1.9))f2 - 20 
vehicles (not 
projected) Best 184 433.65 21.68 36.4 1483.4 1.902 22.28

Avg. 281.8(4.3) 591.90(34.5) 29.6(1.7) 51.35(6.5) 446.38(50.6) 0.572(0.06) 15.54(6.4)f3 - 20 
vehicles (not 
projected) Best 282 634.19 31.71 67.92 376.30 0.482 11.02

Hand made bus 
system – 23 vehicles 
(projected on roads) 

268 910.62 39.59 57.99 445.16 0.571 11.28

Avg. 260.7(5.5) 824.05(19.7) 41.20(1.0) 76.75(7.9) 637.11(91.1) 0.817(0.12) 19.45(1.5)f1 – 20 
vehicles 
(projected) 

Best 271 818.85 40.94 70.48 456.95 0.586 17.69

Avg. 213.6(13.3) 703.07(31.5) 35.15(1.6) 73.39(15.8
) 1276.25(178.7) 1.636(0.22) 23.77(2.5)f2 - 20 

vehicles 
(projected) Best 198 651.74 32.59 60.06 1512.74 1.939 24.98

Avg. 258.3(7.8) 866.63(54.2) 43.33(2.7) 85.11(17.1
) 661.31(138.9) 0.848(0.18) 21.15(3.8)f3 - 20 

vehicles 
(projected) Best 265 831.99 41.6 70.90 382.17 0.490 19.70

found over 10 runs. The first column of Table III indicates 
the type of network and/or fitness. Second column reports 
the number of bus stops obtained, that is, the number of non 
empty clusters. The three following columns report the total 
length, average length by route and maximum length of a 
route. The last 3 columns present the total distortion, which 
is the total distance from request locations to their assigned 
bus stops, the average distortion by customer, which has a 
more natural meaning as a average walking distance by 
customer, and the maximum walking distance of a customer. 
Numerical values in Table III let us compare new solutions 
with the “by-hand made” actual bus-system. The formers 
have only 20 vehicles whereas the latter has 23 vehicles for 
similar objective values. 

To help evaluate spread present into the results and 
impact of road projections, values for the 30 runs before and 
after projection are drawn in plots of Fig. 7(a-c). We can 
observe that the projection process yields to a substantial 
increase of the route lengths but globally preserves lengths 
variation. Conversely, it slightly alters the distortion values 
but introduces a greater variation between them. 
Nevertheless, all solutions generated are non dominated by 
the actual hand made bus system, whereas the solution no. 3 
with the f3 fitness function, shown in Fig. 7(b-c), clearly 
dominates the actual bus system on both the two objectives 
of length and distortion. This indicates that the approach has 
the potential to yield a set of competitive new solutions for 
the enterprise bus system with less vehicles. 
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(c) 
Fig. 7 (a) Correlation between average distance from customers to 

bus-stops (avg. distortion) and total routes length. (b) Lengths 
before and after projection for each run and each fitness function 
choice. (c) Distortion before and after projection for each run and 

each fitness function choice 
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VII.  CONCLUSION 
We have presented a new combined Euclidean clustering 

and vehicle routing problem with capacity constraints. To 
solve the problem, we used the self-organizing map 
embedded into an evolutionary loop. The approach 
considers deformable templates of interconnected routes, 
where cluster centers defining routes are possibly fixed or 
mobile, or shared between routes. Solutions are visual 
patterns moving and adapting to the demand distribution. 
Considering a real life case application with 780 customers, 
the algorithm generates competitive solutions for the 
capacitated vehicle clustering and routing problem having 
less vehicles than the actual real solution. The following 
steps will consist of applying the approach to other vehicle 
routing problems. Dynamic and stochastic versions of such 
routing problems seem to be good candidates for further 
research, since visual patterns have by their own a potential 
to address adaptability to a fluctuating demand. 
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