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Abstract—A self-evolution algorithm for optimizing neural 

networks using a combination of PSO and JPSO is proposed. The 
algorithm optimizes both the network topology and parameters 
simultaneously with the aim of achieving desired accuracy with less 
complicated networks. The performance of the proposed approach is 
compared with conventional back-propagation networks using 
several synthetic functions, with better results in the case of the 
former. The proposed algorithm is also implemented on slope 
stability problem to estimate the critical factor of safety. Based on 
the results obtained, the proposed self evolving network produced a 
better estimate of critical safety factor in comparison to conventional 
BPN network.  
 

Keywords—Neural networks, Topology evolution, Particle 
swarm optimization.  

I. INTRODUCTION 
EVELOPING neural networks involves not only optimizing 
synaptic weights but also choosing a suitable processing 

function as well as optimizing the network architecture. 
However, considering the combination of discrete and 
continuous parameters involved, it is such an extremely 
challenging task to optimize the network topology and the 
network parameters at the same time [1].  

Classical topology optimization methods such as 
incremental learning algorithm and pruning technique are 
likely to lead to a convergence at a sub-optimal network 
configuration due to the manner in which the network size is 
increased in the case of incremental learning and the way in 
which the complexity of the network is reduced the case of the 
pruning [2].  To overcome the problem associated with 
aforementioned approaches, a variety of bio-inspired 
evolutionary concepts of have been employed to 
simultaneously optimize network topology and parameters. 
These include the genetic algorithm (GA) based algorithms 
such as EPNet [3] and NEAT [4]. In EPNet, a population of 
networks with randomly generated topology and synaptic 
weights are subjected to a series of mutation cycles. Each 
mutation cycle involves parametric mutation, where the 
networks’ synaptic weights are updated and structural 
mutation in which the nodes or connections are added or 
removed.  

The mutations are carried out repeatedly until a satisfactory 
network is obtained. The NEAT algorithm, on the other hand, 
seeks to avoid the inefficient cross over operation associated 
with EPNet by starting with a population of smallest possible 
networks, then gradually increasing their complexity as 
learning goes on. The downside of NEAT, however, is the 
intricate cross-over procedure involved while updating the 
network topology.  
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Particle swarm optimization (PSO), another type of bio-

inspired technique, has also been successfully used in 
evolving neural networks [5,6,7]. Although PSO is 
computationally simpler than GA-based algorithms, the key 
disadvantage of the self evolution algorithms developed based 
PSO is the random generation of network topology, which 
tends to compromise the computational efficiency of the 
optimization process.   

This paper presents an approach to network topology 
evolution in which Jumping particle swarm optimization 
technique (JPSO) is used to optimize the topology and 
activation function while using a combination of back-
propagation and PSO techniques to optimize the network 
continuous parameters. Another important feature of the 
proposed technique is that, like NEAT, the complexity of the 
network is gradually increased, beginning with simple 
architecture. A number of synthetic functions are used to 
compare the performance of the proposed optimization 
technique with conventional BPN with various activation 
functions. A slope stability problem is also used to further 
assess the prediction quality and the complexity of the 
network developed using the proposed algorithm.  

II. JUMPING PARTICLE SWARM OPTIMIZATION (JPSO) 
JPSO algorithm is a combinatorial optimization algorithm 

proposed by developed by Martınez-Garcıa and Moreno-
Pe´rez [8] that bears some resemblance with the discrete 
version of particle optimization (DPSO) developed by 
Kennedy and Eberhart [9] with regards to the gravitation of 
particles towards better positions, but differs from DPSO in 
that the change in particle position in the case of the former is 
not based on the concept of particle velocity. A particle in 
JPSO updates its position by jumping from its current position 
to a new position under the influence of particle’s experience, 
global best position as well as its `explorative tendency. The 
possible trajectories of particle jumping are shown graphically 
in Figure 1. The particle’s position is updated using the 
following equation: 

1 1 2 3t tλ λ λ
+

= ⊗ ⊕ ⊗ ⊕ ⊗x x b g
       

(1)  

where tx and 1t +x  are the vectors of current and future 
particle positions in the discrete search space. The parameters 
λ1, λ2 and λ3 are probabilities of jumping randomly, towards 
the best particle position and to the best swarm position 
respectively. b and g are, respectively, the particle best and 
global best positions. The particle position updating is carried 
out as follows: 
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Fig. 1 Graphical representation of jumping particle in topology space 

  
in which ρ is a random binary number. The * operator is 
implemented by stochastically modifying the features of the 
current particle with some features of its attractor. The 
updated position determined using equation (2) could be 
worse than the current one, therefore a random local search is 
carried out around the updated position to find a better 
solution. Due to the mixed nature of optimization problem in 
this work, the local search is carried out using few steps of 
back-propagation algorithm. Also, the parameter 
corresponding to random jump, λ1 is reduced to zero but 
compensated by resetting the positions of a portion of particle 
swarm at certain intervals. Thus the values of λ2 and λ3 sum up 
to 1 in the present work. The proposed JPSO algorithm is 
represented by the flowchart in Figure 2.  

III. SELF-EVOLVING NETWORK 
The proposed self evolution process begins by generating a 

population of neural nets, each having a random synaptic 
connections and synaptic parameters. The connection 
parameters are binary, assuming a value of 1 if there is a 
connection between two nodes and 0 if otherwise (Figure 3). 
They are updated using a jumping particle swarm optimization 
(JPSO) procedure described briefly in section 2. The synaptic 
weights of individual networks in the population are updated 
using a combination of PSO and BP algorithm. The advantage 
of putting together the two techniques is to take the advantage 
of global search capability of the former and the ability of the 
later to perform local search. The algorithm involves updating 
the synaptic weights using PSO for a number of iterations, and 
then further updating the weights of best performing particles 
in the swarm BP algorithm for few steps. This alternative use 
of PSO and BP is repeated until a sufficiently accurate result 
is obtained. In order to guard against the tendency of particles 
convergence at suboptimal co-ordinate, duplicate particles 
have their positions reset randomly at the end of each cycle of 
PSO iterations. The positions of least performing particles in 
the swarm population are also randomly reset in order to 
improve the topology search capability, having removed the 
random jumping aspect of JPSO.   
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Fig. 2 Flowchart describing JPSO algorithm 

 
When the accuracy doesn’t improve with further training 

and there is a desire to further improve it, the complexity of 
the network is up scaled by adding more nodes, one node at a 
time. At this point, the so far acquired information is 
preserved by retaining the current particles best positions 
(both topology and synaptic weights) while the topology of 
the swarm members is modified. The rationale here is to 
facilitate the development of simpler networks and to achieve 
the desired accuracy while minimizing the computational 
burden of having to deal with unnecessary large network size 
as the case is with some models available in the literature [15, 
16, and 17]. The algorithm of self-evolving network is 
summarised in the following steps: 
1.     Initialize a particle swarm population of N size, with 

each particle representing neural networks with a single 
hidden node and randomly generated set of synaptic 
weights and connection parameters.  

2.     Evaluate the fitness of each particle and update the best 
particle and global positions. 

3.     Use PSO/JPSO to update particle co-ordinates for certain 
number of iterations in the following sub-steps:  
a.    Use PSO to update the weight vector  of each 

particle  
b.    Use JPSO to update the connection parameters of 

each particle.  
c.    Update the particle best position and the best swarm 

position  
4.     If convergence is sufficient then go to 9. Else continue 
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5.     Reset randomly the binary and continuous parameters of 
duplicate particles. Also, reset in the same manner, the 
binary parameters of certain fraction of the swarm with 
poor fitness.  

6.     Select best particles and update their continuous 
parameters using some steps of BP. If the training is 
satisfactory go to 9. Else continue. 

7.     If number of iterations is less than maximum number 
then go back to step3. Else continue 

8.     Generate N particles with one additional node over the 
current number of nodes.  Replace all current particles 
with newly generated particles while retaining the current 
particle best positions (topology and synaptic weight). 
Then go back to step 3.  

9.     Terminate algorithm and return result.  
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Fig. 3 Topology of self-evolving network 

 
To assist the swarm of partially connected networks in the 

search for best network, a parallel swarm of fully connected 
networks but with the same number of nodes is 
simultaneously optimized., with the former learning from the 
later whenever the best swarm position in later is more 
accurate.  
 
A. Activation function 

The choice of suitable activation function is crucial to a 
successful development of neural networks due to its strong 
influence on the complexity and accuracy of the later.  
Sticking to popular processing functions like sigmoid function 
as par the usual practice doesn’t guarantee optimality under all 
circumstances. [10,11]. in light of this argument, a 
combination of several functions is proposed as activation 
function. The proposed activation function is expressed as 
follows: 
 

( ) ( )
1

n

i i i
f k α ϕ= ∑x x            (3) 

where n is the number of sub-functions φi in the activation 
function. iα is an adaptive coefficient; ik is a binary number. x 
is the vector of inputs to the node. The function of the binary 
number is to let the associated sub-function be part of the 
activation function if by assuming a value of 1 and excluding 
the associated sub-function by assuming a value of zero.  

The coefficient iα throws some weight behind the sub-
functions making up the activation function in accordance 
with their relative importance to the output of the neuron. The 

iα coefficient is adjusted in the same manner as the synaptic 
weights are, while the binary parameter, ki, is optimized 
alongside the connectivity parameter ci. The sub-functions 
considered in this work are represented by the following 
equations: 
 
Linear:      ( )

1

T

bϕ = +x w x              (4a) 

Sinusoid:  ( ) ( )2
sin T bϕ = +x w x           (4b) 
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2

4
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+
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w x
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w represents the vector of synaptic weights of input signals, 
whereas a and b are the biases.  
 
B. Error function 

Mean square error (MSE), the most widely used error 
function in network training, is often criticized for its 
tendency to lead the network to over fitting. One of the 
methods of enhancing is the weight decay, where 
regularization term, a function of synaptic weights, is added to 
MSE error function. The weak point of the weight decay 
method is that it only reduces the values of synaptic weights to 
small values without reducing the network size [12]. A 
different approach was proposed by Jin et al [13], where the 
regularization term is based on the number of connections 
with the aim of effectively removing the redundant weights 
from the network.  The error term used in this paper is based 
on the Jin et al's approach due to its ability to deal more 
efficiently with the issue of network complexity. 

IV. EXPERIMENTAL RESULTS 
To demonstrate how a neural network evolves using the 

proposed algorithm, function approximation and system 
identification problems are considered. The nature of the 
problems is described and the results of network model 
simulations are discussed in the following sub-sections.  

A. Wavelet function  
A wavelet function of three variables, represented by 

equation 10, is used in this case to generate 225 datasets with 
input variables x1, x2 and x3 randomly generated and varied 
from -10 to +10. 150 sets were used to develop networks, 
while 75 sets of data were used for validation.  
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From the results summary in Table I, it can be seen that the 
optimized network based on the proposed algorithm returns 
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the best result. It can also be observed that despite having the 
smallest number of network parameters, it turns out to be the 
most accurate. Relatively less accurate results are obtained in 
the case of fully connected network with all functions 
switched on. The performance of the networks based on 
sinusoid and sigmoid activation is the lowest in the table. It 
can also be noted that their performance has not improved 
with increased number of neurons.  
 

TABLE I 
SUMMARY OF TRAINING AND TESTING RESULTS (WAVELET FUNCTION) 
 Type of 
Network 

 No of 
nodes  

Number of 
network 
parameters 

 N-RMSE 
(training) 

 N-RMSE 
(testing) 

Optimum 
Network 1 14 0.00109 0.00112 

Wave 14 84 0.013 0.03324 
Sinusoid 12 60 0.08933 0.17657 

  14 70 0.09038 0.22144 
Sigmoid 5 25 0.07284 0.08725 

  14 70 0.11123 0.14088 
All 
functions  3 52 0.08933 0.06149 

B. Narendra-Li system 
A non-linear system identification problem described by 

Narendra and Li [14] is used here to assess the relative 
accuracy of the proposed method. The non-linear system is 
represented by the following set of equations: 
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where u(k) and y(k) are, respectively, the input and output 
signals at time t. six inputs consisting of three past network 
inputs and three past network outputs are used in order to 
provide the network with enough memory to identify the 
system. A total of 800 data sets are generated for training, 
with u(k) as defined by the following equation: 
 

( )
2 2

sin sin , 1, 2.....
10 25

t t
u t t n

π π
 = +   =

         

(7) 

A uniformly distributed noise of ranging from -1 to +1 is 
added to the output in order to test the robustness of the 
model.  

A testing data set consists of 400 data points generated in 
the same manner as the training set, but with no noise added. 
From the training and testing results in Table II, It can be seen 
that despite the inferior accuracy of proposed model compared 
to the performance of the wavelet network, its topology is 
much simpler. The trade off by the self-evolving net between 
accuracy and simplicity seems a reasonable one.  

 
TABLE II 

SUMMARY OF TRAINING AND TESTING RESULTS (NARENDRA-LI SYSTEM) 
 Type of 
Network 

 No of 
nodes  

Number of 
network 
parameters 

 N-RMSE 
(training) 

 N-RMSE 
(testing) 

Self -
evolving 
Net 

1 24 0.08462 0.03383 

Wave 6 54 0.07563 0.02645 

Sinusoid 6 48 0.08119 0.03319 
Sigmoid 7 56 0.08001 0.03133 
All 
functions  4 107 0.07692 0.03322 

C. Slope stability problem 
Stability of slopes is one of the key geotechnical 

engineering design problems that has been extensively studied 
for decades. The slope stability is commonly assessed by 
evaluating the factor of safety against failure. The factor of 
safety of a slope is defined as the ratio between the forces that 
resist and forces that overcome the resistance to slope failure 
along a possible slip surface. The widely used method of 
estimating the safety factor is the limit equilibrium method of 
slices, in which the sliding tendency of a mass of soil that 
exists within the envelope bounded by the slope and a 
potential failure surface investigated. A typical section 
through is shown in figure 4. Some of the versions of limit 
equilibrium method include Bishop’s simplified method [15], 
Janbu’s method [16] and Morgenstern and Price[17]. One of 
the challenges associated with this method is how to locate the 
slip surface corresponding to the worst factor of safety. The 
conventional practice is based on trial and error, where 
analysis is repeated for number of trial slip surfaces, out of 
which the surface giving rise to minimum safety factor is 
selected. In the present work, a self –evolving neural network 
is used to directly estimate the critical factor of safety based 
on inputs such as the geometrical properties of the slope, soil 
shear strength parameters as well as the effects of seepage. 
The idea is to make slope stability check simpler, faster but 
accurate. 
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Fig. 4 Section through an earth slope (method of slices) 

 
1. Input parameters 
The stability of a slope in a homogeneous soil depends on 

the slope geometry (height and angle of slope), the soil 
properties (cohesion, angle of internal friction and unit 
weight) and. The factor of safety (F.S) as a function of various 
controlling variables mentioned above can be stated as 
follows: 

( ). tan , , , cot , w
Hc

F S f H
H

φ β
γ

=
           (8) 

where φ , c  and γ  are the friction angle, cohesion and unite 
weight of the slope material respectively. H is the slope 
height; β  the slope angle; and Hw the height of water behind 
the slope. The parameters on the right hand side of equation 8 
serve as inputs to the network, F.S being the output.  
 

2. Database 
The database used in the present work consists of 455 sets 

of data obtained from the results of slope stability analysis 
carried out on homogeneous slopes using Slope/W slope 
stability analysis software. A wide range of soil properties as 
well as slope geometrical parameters is represented in the 
database. Table III provides the summary of the database 
characteristics. 

 
TABLE III 

STATISTICAL PROPERTIES OF SLOPE DATABASE  

Parameter xmax xmin μ σ 

φ  60 0 28.2857 24.1377 

C 200 0 53.011 63.8241 

H 40 5 12.3517 8.3143 

cot β 2.4 1 1.1613 0.3017 

Hw 25 0 2.2813 4.5598 

F.S 15.595 0.102 3.0923 3.2773 

 

3. Networks Training and validation 
The database was split into training and testing sets. A total 

of 303 data sets were used for training, while the remaining 
152 sets were earmarked for testing. To facilitate 
generalization, the data is divided in such a way that both the 
training and testing data statistically belong to the same 
population.  For the sake of comparison, the conventional 
BPN networks were also trained, alongside the proposed self-
evolving network.  

Results of the optimized network predictions are plotted 
against the training and testing data in the scattergrams shown 
in Figures 5(a) and 5(b) respectively. It can be seen from the 
figures that the network gives a good correlation with both 
training and testing data (R2 =0.9935 for training and R2= 
0.9918 for testing).  The performance of the optimized 
network is compared BPN networks with various types of 
activation functions in Table IV. It is evident from the results 
that the proposed model outperforms the other networks not 
only because it returns minimum error in both training and 
testing, but also due to its relatively few parameters.  
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Fig. 5(a) Comparison of Actual safety factor versus self-evolving model 

predictions (training data) 
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Fig. 5(b) Comparison of of Actual safety factor versus self-evolving model 

predictions (testing data) 
 

TABLE IV 
SUMMARY OF TRAINING AND TESTING RESULTS FOR VARIOUS TYPES OF 

NETWORK (SLOPE STABILITY PROBLEM) 
 Type of 
Network 

 No of 
nodes  

Number of 
network 
parameters 

 N-RMSE 
(training) 

 N-RMSE 
(testing) 

Self-
evolving 
Network 

2 26 0.01775 0.01866 

Wave 5 40 0.03315 0.10842 
Sinusoid 7 49 0.07921 0.97808 
Sigmoid 7 49 0.04359 0.11247 
All 
functions  3 72 0.01432 0.03694 

 
Further comparison was also made between self evolving 

network based on equation (4) and a simpler activation 
function represented by the following equation: 

( ) ( ) 2

1 2 1 1 2

1

i
n

wT

i
f k k xα α= + ∏x w x           (9) 

where n is the number of inputs. Other parameters are defined 
in section 2. The training and testing results of the two 
networks are put together in Table V. It can be noticed from 
the table that although the more complicated network is more 
accurate, the accuracy of the network based on a combination 
of linear and product unit processing functions is  reasonable. 
The ability of the latter to achieve such a precision with much 
simpler topology is particularly impressive.  
 

TABLE V 
PERFORMANCE COMPARISON OF TWO SELF-EVOLVING MODELS (SLOPE 

STABILITY PROBLEM) 
 Activation 
functuion 

 No of 
nodes  

Number of 
network 
parameters 

 N-RMSE 
(training) 

 N-RMSE 
(testing) 

Equation (4) 2 26 0.01775 0.01866 

Equation (8) 2 9 0.02349 0.0257 

 
V. CONCLUSION 

The task of simultaneous optimization of the topology and 
synaptic weights of neural networks is desirable but highly 
challenging. This paper proposes an algorithm to optimize 
both the architecture and synaptic weights of a neural network 
at the same time. The key features, which make the proposed 
algorithm distinct from other methods available in the 
literature, are the ability to grow from a very small network to 
a complex without a loss of information while maintaining the 
capability of exploring the search space. A data generated 
from a wavelet function and Narendra-Li system and slope 
stability analysis were used to compare the prediction 
capability of networks based on the proposed self –evolution 
algorithm and conventional BPN networks. The results 
showed that self evolution algorithm produces much smaller 
network sizes without compromising accuracy. With regards 
to slope stability problem, the predictions of self evolving 
network based on a combination of linear and product unit 
processing functions gives are remarkably accurate, 
considering the few parameters associated with the network.  
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