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Selection of Designs in Ordinal Regression Models
under Linear Predictor Misspecification

Ishapathik Das

Abstract—The purpose of this article is to find a method
of comparing designs for ordinal regression models using
quantile dispersion graphs in the presence of linear predictor
misspecification. The true relationship between response variable
and the corresponding control variables are usually unknown.
Experimenter assumes certain form of the linear predictor of the
ordinal regression models. The assumed form of the linear predictor
may not be correct always. Thus, the maximum likelihood estimates
(MLE) of the unknown parameters of the model may be biased due to
misspecification of the linear predictor. In this article, the uncertainty
in the linear predictor is represented by an unknown function. An
algorithm is provided to estimate the unknown function at the
design points where observations are available. The unknown function
is estimated at all points in the design region using multivariate
parametric kriging. The comparison of the designs are based on
a scalar valued function of the mean squared error of prediction
(MSEP) matrix, which incorporates both variance and bias of the
prediction caused by the misspecification in the linear predictor. The
designs are compared using quantile dispersion graphs approach.
The graphs also visually depict the robustness of the designs on the
changes in the parameter values. Numerical examples are presented
to illustrate the proposed methodology.

Keywords—Model misspecification, multivariate kriging,
multivariate logistic link, ordinal response models, quantile
dispersion graphs.

I. INTRODUCTION

THIS article presents a method of selecting robust
designs for ordinal response models under model

misspecification. Several authors discussed about the model
misspecification and its effect on design selection for linear
and generalized linear models (with a single response) till
date; however, there is a lack in works for the situation
where the responses are ordinal. In case of generalized linear
models (GLMs), model misspecification may occur when the
assumptions regarding the form of the linear predictor and/or
the link function is wrong. For addressing the uncertainty
in the linear predictor, we assume an unknown function and
an iterative method is provided for estimating the unknown
function at the design points of the model. Then, the
multivariate kriging method is used to estimate the function
at all points of the design region using the estimates at design
points as a training data sets. The designs are compared
using the quantile dispersion graphs approach on the basis
of a scalar valued function of the mean squared error of
prediction. These graphs allow design comparison over the
entire experimental region. Also they provide assessment of
the designs’ sensitivity to changes in the parameter values.

I. Das is with the Department of Statistics, Kumaun University,
SSJ Campus, Almora, 263601, India (phone: +919634590436; e-mail:
ishapathik@gmail.com).

Some of the references for selecting optimal designs in
multivariate GLMs are [1]–[3]. Reference [1] provides optimal
designs for bivariate logistic models while [3] discussed
designs for multinomial responses. However, neither of these
papers investigate the effect of model misspecification on
design selection for ordinal responses or multivariate GLMs.

Here, we provide a method of comparing designs in ordinal
response models using QDGs under model misspecification.
The comparison criterion is the mean squared error of
prediction (MSEP) of the designs which takes into account the
variance and the bias in the parameter estimates due to model
misspecification. The QDGs technique allows a comparison
of the designs on the entire experimental designs and not just
at a single point like A, D or G optimal designs. QDGs also
allow one to study the robustness of the designs to parameter
changes.

The rest of the article is organised as follows: Section
II discusses the multivariate generalized models and ordinal
regression models. In Section III, the problem of model
misspecification in ordinal response models and the expression
for the MSEP under misspecification are given. The
comparison criterion and the QDGs approach is explained in
Section IV. In Section V, numerical examples illustrating the
proposed, methodology are discussed followed by concluding
remarks in Section VI.

II. MULTIVARIATE GENERALIZED LINEAR MODELS

In multivariate GLMs (generalized linear models), we
assume that y1, y2, . . . , yn are independent q dimensional
response variables such that each yi belongs to an exponential
family, which has the form

s(yi|θi, φ, ωi) =

exp

{
[y′

iθi − b(θi)]

φ
ωi + c(yi, φ, ωi)

}
. (1)

where b(.) and c(.) are known function and φ is dispersion
parameter possibly unknown. Here, mean response μi =
μ(θi) = E(yi|θi) = [μi1, μi2, . . . , μiq]

T and linear predictor
ηi = [ηi1, ηi2, . . . , ηiq]

T are q dimensional vectors. The mean
response μi is related to the linear predictor ηi = Ziβ by link
function g as

ηi = g(μi), (2)

where

Zi =

⎡⎢⎢⎣
f1(xi) O1×p2 . . . O1×pq

O1×p1 f2(xi) . . . O1×pq

...
...

. . .
...

O1×p1 O1×p2 . . . fq(xi)

⎤⎥⎥⎦ , (3)
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fj(x) is known vector function of x, O1×pj
is matrix of order

1 × pj with all elements zero, β = [βT
1 ,β

T
2 , . . . ,β

T
q ]

T is
p × 1 vector of unknown parameters such that each βj =
[βj1, βj2, . . . , βjpj

]T is pj × 1 vector of unknown parameters
for jth response with p =

∑q
j=1 pj . For simplicity we denote

β = [β1, β2, . . . , βp]
T such that first p1 elements of β come

from β1, next p2 elements of β come from β2 and so on. It
is usually assumed that inverse of g exists and it is denoted
as h. For natural link function we have θi = ηi. In general,
we can relate θi to linear predictor ηi using μi = μ(θi) by
function u which is defined as

θi = u(ηi) = u(Ziβ) = μ−1(h(Ziβ))

[4, pp. 347] (4)

For example, if y1, y2, . . . , yn are independent random
variables such that each yi is multinomial distributed having
(q + 1) categories with parameter (πi, ni) with the density
given by

P (yi = (yi1, yi2, . . . , yiq)) =

ni!

yi1!yi2! . . . yiq!(ni − yi1 − yi2 − . . .− yiq)!

×πyi1

i1 πyi2

i2 . . . π
yiq

iq

×(1− πi1 − πi2 . . .− πiq)
(ni−yi1−yi2−...−yiq)

Then the density of ȳi = yi/ni has the form

s(ȳi|θi, φ, ωi) =

exp

{
[ȳ′

iθi − b(θi)]

φ
ωi + c(yi, φ, ωi)

}
, (5)

where θi =[
log( πi1

1−πi1−πi2−...−πiq
), . . . , log(

πiq

1−πi1−πi2−...−πiq
)
]T

, b(θi) =

− log(1 − πi1 − πi2 − . . . − πiq), c(yi, φ, ωi) =

log
(

ni!
yi1!yi2!...yiq !(ni−yi1−yi2−...−yiq)!

)
, ωi = ni and φ = 1.

Here μi = E(ȳi) = πi for i = 1, 2, . . . , n.

The logistic link function is given by

ηi = g(πi) = θi

Here, θi = ηi and hence u is identity function.

A. Ordinal Response Models

Suppose y1, y2, . . . , yn are independent q dimensional
ordinal responses so that each yi is multinomial distributed
having (q+1) ordered categories with parameter (πi, ni). The
simple cumulative model [5, pp. 243] for ordinal responses is
given by

γij =

j∑
r=1

πir = P (yi ≤ j) = F (θ0j + xT
i θ)

for j = 1, 2, . . . , q , (6)

where F−1 is link function, θ01, θ02, . . . , θ0q,θ are parameters
and xi is design vector. The general form of the multivariate
GLMs for the categorical responses is given by g(μi) =
g(πi) = Ziβ or μi = πi = h(Ziβ) [5, pp. 261]. The

equivalent form for the ordinal responses is given by

μi = πi =

⎛
⎜⎜⎜⎝
πi1

πi2

...
πiq

⎞
⎟⎟⎟⎠

= h

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎝
1 . . . 0 xT

i
...

. . .
...

...
0 . . . 1 xT

i

⎞
⎟⎠

⎛
⎜⎜⎜⎝
θ01

...
θ0q
θ

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= h(Ziβ), (7)

where

Zi =

⎛
⎜⎝
1 . . . 0 xT

i
...

. . .
...

...
0 . . . 1 xT

i

⎞
⎟⎠, β =

⎛
⎜⎜⎜⎝
θ01

...
θ0q
θ

⎞
⎟⎟⎟⎠ and h =

⎛
⎜⎜⎜⎝
h1

h2

...
hq

⎞
⎟⎟⎟⎠

which is given by

hj(ηi1, . . . , ηiq) = F (ηij)− F (ηij−1),

where ηij = θ0j + xT
i θ, for j = 1, 2, . . . , q. (8)

From (7), and (8), we should have ηi1 ≤ ηi2 . . . ≤ ηiq and
hence θ01 ≤ θ02 ≤ . . . ≤ θ0q .

III. MODEL MISSPECIFICATION

Experimenter usually assumes the linear predictor of the
form

η(x) = Z(x)β, (9)

Hence, the estimated mean response is

μ(x) = π(x) = h(η(x)), (10)

However, the correct form the linear predictor may be
different. Suppose, the correct form of the linear predictor is

ηT (x) = Z(x)β + f(x) (11)

Then, the estimated mean response using the correct form of
linear predictor is

μT (x) = πT (x) = h(ηT (x)) = h(Z(x)β + f(x)), (12)

Reference [6] provides an approximate bias and variance
of β̂ for univariate generalized linear models when the linear
predictor is misspecified. We generalize it for ordinal response
models.

Let μ = [μ1, μ2, . . . , μn]
T and μT =

[μT,1, μT,2, . . . , μT,n]
T with μi = h(Ziβ0) and

μT,i = h(Ziβ + f(xi)), where β0 is the model parameter
vector. Let us denote Wi(β) = Di(β)Σ

−1
i DT

i (β)
and WT,i(β) = Di(β)Σ

−1
i ΣT,iΣ

−1
i DT

i (β), where
Di(β) = dh(ηi)

dη is the derivative of h(η) evaluated at
ηi = Ziβ, Σi and ΣT,i are the variance of yi under assumed
model and true model respectively. Finally, let P be the
nq × nq diagonal matrix having each diagonal element 1

n ,
D = diag(Di(β0)), Σ = diag(Σi), W = diag(Wi(β0)),
WT = diag(WT,i(β0)) and X = [ZT

1 ,ZT
2 , . . . ,ZT

n ]
T . Then
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the approximate bias and variance of β̂ are given by

Bias(β̂) = H−1
n b, (13)

V ar(β̂) =
1

n
H−1

n H̃nH−1
n , (14)

where b = XT PDΣ−1(μT −μ), H̃n = XT PWT X and Hn =
XT PWX − R with

R =
1

n

n∑
i=1

q∑
r=1

ZT
i Uir(β0)Zi(yir − μir(β0)),

where Uir(β0) =
d2ur(Ziβ0)

dηdηT .
Now, using the above expressions of bias and variance of

β̂, the mean squared error (MSE) of μ̂(x) is given by

MSE(μ̂(x)) =[
dh(η(x))
dη(x)

]
ηT

Z(x)V ar(β̂)×

ZT (x)
[
dh(η(x))
dη(x)

]T
ηT

+

[
dh(η(x))
dη(x)

]
ηT

[Z(x)Bias(β̂)− f(x)]×

[Z(x)Bias(β̂)− f(x)]T
[
dh(η(x))
dη(x)

]T
ηT

(15)

The derivation of the above expressions for Bias(β̂),
V ar(β̂) and MSE(μ̂(x)) are given in Appendix A and B.

IV. COMPARISON CRITERIA FOR DESIGNS

Here, we want to compare designs in ordinal regression
models under linear predictor misspecification. The MLEs
of the unknown parameters are biased due to model
misspecification. So, we compare designs on the basis of
MSEP of the estimated mean response as it takes into account
both the variance and bias of the parameter estimates. In the
univariate response case MSEP is a scaler. So, in univariate
case, if MSEP of a design D1 is smaller than that of design D2,
then we say that design D1 has better prediction capabilities
than design D2. However, for multivariate case, MSEP is
a matrix. So, we have to consider a scaler valued function
of MSEP matrix for such comparison. Several scaler valued
functions of a matrix such as determinant, largest eigen value,
etc exist in literature. For our numerical example, we consider
the largest eigen value of MSEP, denoted as EMSEP, for
comparing the designs.

From (15), it is observed that, MSEP at a point x depends
on unknown parameter vector β, and unknown function f .
Hence, EMSEP is a function of β, f , and x. For, evaluating
EMSEP at a point x, we need to have values of β, and f(x).
We use the MLE β̂ of β for evaluating EMSEP at x. In the
next section, we describe an algorithm for estimating f(x).

A. Algorithm for Estimating f

We first generalize the estimation technique of [7] for the
multinomial response model case. This method can be used if
an initial data set is available.

Let d(x) be the difference between the estimated and the
true response at a design point x,

d(x) = πT (x)− π(x) = h[η(x) + f(x)]− h[η(x)]. (16)

Using first order Taylor series expansion around η(x), we have

d(x) =

[
∂h{η(x)}
∂η(x)

]
f(x). (17)

Thus, the estimate of f is given by,

f̂(x) =
[
∂h{η(x)}
∂η(x)

]−1

η̂(x)
d̂(x), (18)

where d̂(x) = ȳ(x)− π̂(x) = ȳ(x)−h[Z(x)β̂], and β̂ is the
MLEs of β using assumed form of linear predictor η(x) =
Z(x)β.

By estimating f by the above method, we expect to have
better fit using true form of linear predictor over assumed
form of linear predictor. That means the deviance using true
form of linear predictor should be less than that of the fitted
model using assumed form of linear predictor. However, it is
observed that, as f is estimated using first order Taylor series
approximation, the deviance is increased or not decreased
significantly using true form of linear predictor for some data
sets. So, when the approximation is not close enough then
we don’t get desired results. Here, we propose an algorithm
which ensure that we will get better fit using true form of
linear predictor over assumed form of linear predictor of
the model. In this algorithm, the function f(x) is estimated
using an iterative method. Let us denote for l ≥ 1, η(l)(x),
d(l)(x), and f (l)(x) for the estimates of η(x), d(x), and f(x)
respectively at lth iteration. Also, let Dev(l) be the deviance of
the fitted model using η(l)(x). For l = 1, η(1)(x) = Z(x)β̂,
where β̂ is the MLEs of β using assumed form of linear
predictor η(x) = Z(x)β, d(1)(x) = ȳ(x) − h[η(l)(x)],

and f(1)(x) =
[
∂h{η(x)}
∂η(x)

]−1

η(1)(x)
d(1)(x). Now for l ≥ 1, the

algorithm goes as follows

η(l+1)(x) = η(l)(x) + rf (l)(x), (19)
d(l+1)(x) = ȳ(x)− h[η(l+1)(x)], and

f (l+1)(x) =

[
∂h{η(x)}
∂η(x)

]−1

η(l+1)(x)
d(l+1)(x).

The above iteration is continued till Dev(l) is close to zero,
i.e., Dev(l) < ε for some chosen ε > 0. Here, r ∈ (0, 1]
is a correction factor suitably chosen so that the iteration
is conversed. In several example, it is observed that smaller
values of r ensure the convergence of the algorithm. However,
it increases the number of iteration. So, we have to choose r
suitably so that, the iteration is conversed as well as it reduces
the computation time.

Note the above described method can be used to estimate
f only at the design points. However, we need to compute
EMSEP at any point in the region R, thus an estimate of f at
any point in the design region is necessary. Using multivariate
kriging ( [8], [9]) details in Appendix C, we estimate f at any
point in the design region. The estimates of f at the design
points obtained by the above algorithm act as a training data
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set for kriging.

B. Quantile Dispersion Graphs for Comparing Designs
As we mentioned in Section IV, it is observed that the

EMSEP values are functions of f(x), β and x. So, we may
denote the EMSEP values corresponding to design D as a
function τD[x,β, f(x)]. By using the method described in
Section IV-A, we can get the estimates f̂(x) of f(x), and the
dependence on f can be removed by using the estimates f̂(x).
Here, it is assumed that β lies in the parameter space C. If an
initial data set is available, we use the 100(1−α)% confidence
region of β ( [10]),

C = {γ : (β̂ − γ)′[V̂ar(β̂)]−1(β̂ − γ) ≤ χ2
α,p}. (20)

as the parameter space C. To compare over the entire
experimental region R, we partition R into several concentric
regions Rν by reducing its boundary by a shrinkage factor
ν. The values of ν are so chosen that the concentric regions
cover the entire region R. For a design D and a fixed β ∈ C
the quantiles of τD(x,β) are computed for x ∈ Rν . The pth
quantile of design D is denoted by QD(p,β, ν).

To address the dependency on β, a subset of values of β
is selected from C and denoted by C, QD(p,β, ν) values are
then found for β ∈ C. For a fixed p and ν the minimum and
maximum quantiles,

Qmin
D (p, ν) = minβ∈C{QD(p,β, ν)}, p ∈ [0, 1], (21)

Qmax
D (p, ν) = maxβ∈C{QD(p,β, ν)}, p ∈ [0, 1]. (22)

are computed over the values of β in C. By plotting
Qmin

D (p, ν) and Qmax
D (p, ν) against the probabilities p ∈ [0, 1],

we get the quantile dispersion graphs (QDGs) for design D
over the region Rν .

Small and close values of Qmin
D (p, ν) and Qmax

D (p, ν)
are desirable. Small values of the minimum and maximum
quantiles indicate that the design D has good prediction
capability in the presence of linear predictor misspecification.
While, close values of Qmin

D (p, ν) and Qmax
D (p, ν) imply that

the design is robust to changes in the parameter values β.

V. EXAMPLES

The examples is based on simulated data where q = 3
(four categories) and there are two covariates x1 and x2. For
generating the data set, the true linear predictor is

ηT,1(x) = −4.2 + 2.5x1 − 3.7x2 + fT,1(x),

ηT,2(x) = −3.1 + 2.5x1 − 3.7x2 + fT,2(x),

ηT,3(x) = −1.5 + 2.5x1 − 3.7x2 + fT,3(x),

where the function fT = [fT,1, fT,2, fT,3]
′ is defined by

fT,1(x) = −|5π sin(2πx1) cos(x2)|,
fT,2(x) = |π sin(2πx1) cos(x2)|,
fT,3(x) = 6|π sin(2πx1) cos(x2)|,

and the true link function is the multivariate logistic link
function. The responses are taken at the design points of design
D1, a 5×7 factorial design and there are ni = 6 experimental
units at each run. Designs and the corresponding responses
are given in Table I.

Suppose the experimenter assumed the following model,

η1(x) = θ01 + θ1x1 + θ2x2,

η2(x) = θ02 + θ1x1 + θ2x2

η3(x) = θ03 + θ1x1 + θ2x2 (23)

and the multivariate logistic link function. The parameter
estimates are shown in Table II. The resultant deviance is
77.1884 with 30 degrees of freedom (p value< 0.0001),
indicating a lack of fit. A possible cause of the large deviance
may be due to a misspecified linear predictor. Suppose we
misspecified the linear function by a function f which is
unknown, then the true η can be written as,

η1(x) = θ01 + θ1x1 + θ2x2 + f1(x),

η2(x) = θ02 + θ1x1 + θ2x2 + f2(x),

η3(x) = θ03 + θ1x1 + θ2x2 + f3(x), (24)

where f(x) = [f1(x), f2(x), f3(x)]
′ .

Our interest here is to study the effect of the misspecification
in the linear predictor on design selection. Suppose we
compare the performance of design D1 under misspecification
with two other designs D2 (uniform shell design) and D3

(central composite design). Using QDGs we will study the
effect of model misspecification on the prediction capabilities
of the three designs and choose the one which is most robust
under the current misspecification. The design points of D2

and D3 are listed in Table I, note they have the same number
of experimental runs as the original design D1.

The prediction capabilities of the three designs are
compared on the basis of their EMSEP values. Note that
EMSEP depends on the unknown function f(x), the parameter
vector β and the design points x.

To compare the designs on the entire experimental region,
R is divided into several concentric regions, Rν , given by

Rν = {x : lb1 ≤ x1 ≤ ub1, lb2 ≤ x2 ≤ ub2},
0.5 < ν ≤ 1, (25)

with lbi = ai+(1−ν)(bi−ai) and ubi = bi−(1−ν)(bi−ai).
Here, ai and bi are the upper and lower bounds of xi for
i = 1, 2. For this example we choose a1 = −1, a2 = −1,
b1 = 1 and b2 = 1. From the boundary of each region Rν ,
1000 points are selected.

For estimation of f(x) at the selected points in R we
proceed in the following way. First we use the method
described in Section IV-A to compute f̂(x) at the design points
of D1. Then, using f̂(x) at the design points as a training data,
multivariate kriging is applied to find f̂(x) at all points in the
experimental region R, where, R = {x : −1 ≤ x1 ≤ 1,−1 ≤
x2 ≤ 1}.

For kriging, we fit the intercept only model with unknown
parameter vector �0,

f(x) = �0 +Π(x), (26)

where Π(x) is a stationary Gaussian process with zero
mean, unknown variance and correlation function. The form
of the correlation function is assumed to be the generalized
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TABLE I
DESIGNS D1 (5× 7 FACTORIAL), D2 (UNIFORM SHELL DESIGN) AND
D3 (CENTRAL COMPOSITE DESIGN) AND THE RESPONSES FOR THE

EXAMPLE; THERE ARE ni = 6 EXPERIMENTAL UNITS AT EACH RUN

D1 D2 D3 Responses

x1 x2 x1 x2 x1 x2 yi1 yi2 yi3 yi4

-1.0 -1.00 -1.0 0.00 -1 -1 0 0 4 2
-1.0 -0.67 -1.0 0.00 -1 -1 0 1 1 4
-1.0 -0.33 -1.0 0.00 -1 -1 0 0 0 6
-1.0 0.00 -1.0 0.00 -1 -1 0 0 1 5
-1.0 0.33 -1.0 0.00 1 -1 0 0 0 6
-1.0 0.67 -0.5 -0.87 1 -1 0 0 0 6
-1.0 1.00 -0.5 -0.87 1 -1 0 0 0 6
-0.5 -1.00 -0.5 -0.87 1 -1 2 2 1 1
-0.5 -0.67 -0.5 -0.87 -1 1 1 1 3 1
-0.5 -0.33 -0.5 -0.87 -1 1 1 0 3 2
-0.5 0.00 -0.5 0.87 -1 1 2 0 2 2
-0.5 0.33 -0.5 0.87 -1 1 0 0 0 6
-0.5 0.67 -0.5 0.87 1 1 0 0 0 6
-0.5 1.00 -0.5 0.87 1 1 0 0 0 6
0.0 -1.00 -0.5 0.87 1 1 2 2 1 1
0.0 -0.67 0.0 0.00 1 1 0 1 3 2
0.0 -0.33 0.0 0.00 1 0 3 2 1 0
0.0 0.00 0.0 0.00 1 0 1 1 1 3
0.0 0.33 0.0 0.00 1 0 1 3 0 2
0.0 0.67 0.0 0.00 1 0 0 0 1 5
0.0 1.00 0.5 -0.87 -1 0 0 0 0 6
0.5 -1.00 0.5 -0.87 -1 0 5 1 0 0
0.5 -0.67 0.5 -0.87 -1 0 4 2 0 0
0.5 -0.33 0.5 -0.87 -1 0 2 3 0 1
0.5 0.00 0.5 -0.87 0 1 1 1 3 1
0.5 0.33 0.5 0.87 0 1 2 1 2 1
0.5 0.67 0.5 0.87 0 1 0 0 3 3
0.5 1.00 0.5 0.87 0 1 0 0 1 5
1.0 -1.00 0.5 0.87 0 -1 6 0 0 0
1.0 -0.67 0.5 0.87 0 -1 6 0 0 0
1.0 -0.33 1.0 0.00 0 -1 5 1 0 0
1.0 0.00 1.0 0.00 0 -1 4 2 0 0
1.0 0.33 1.0 0.00 0 0 3 1 1 1
1.0 0.67 1.0 0.00 0 0 0 1 2 3
1.0 1.00 1.0 0.00 0 0 0 0 0 6

exponential correlation function given in [8] with unknown
parameter vector Θ. The value of the log likelihood function
is used for selecting the appropriate model (26). The MLEs
of the parameters in the kriging model are given in Table III.

For investigating the dependency of τD on the unknown
parameter vector β, 1000 values of β are randomly selected
from the 100(1−α)% confidence region of β (20) to form C.
For a fixed β ∈ C, x ∈ Rν , ν ∈ (0.5, 1] and corresponding
f̂(x), the quantiles of τD (QD) are computed for design D.
For each value of β ∈ C the procedure of calculating QD

is repeated and finally the minimum and maximum quantiles,
Qmin

D (p, ν) and Qmax
D (p, ν) for p = 0(0.5)1 are found. By

plotting Qmin
D and Qmax

D against p, we get the QDGs for design
D. The QDGs for designs D1, D2, and D3 are given in Fig.
1 for ν = 0.7, 0.8, 0.9, 1.0.

From Fig. 1, we observe that minimum quantiles of all the
three designs are very close to each other for all values of
p and ν. For ν = 0.8, 0.9, 1.0, the maximum quantiles of
designs D1 and D2 are smaller than those of design D3 for
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Fig. 1 Quantile dispersion graphs for designs D1, D2, and D3

p > 0.5. Hence, away from the center of the region, designs
D1 and D2 have better prediction capabilities than the design
D3 under the misspecification of the linear predictor. However,
the maximum quantiles of designs D1 and D2 are close to
each other implying that designs D1 and D2 has comparable
prediction capabilities near the boundary of the region. As we
move towards the center of the region, the maximum quantiles
of designs D2 and D3 move close to each other, while the
maximum quantiles of the design D1 are smaller than those of
designs D2 and D3. Hence, near the center of the experimental
region, designs D2 and D3 have comparable performances and
the design D1 has better prediction capabilities than designs
D2 and D3. Another point to note is that the differences
between Qmin

D and Qmax
D values of design D1 are smaller

than those of designs D2 and D3, implying that design D1 is
more robust to the changes in the regression parameter vector
β as compared to D2 and D3 throughout the experimental
region.

TABLE II
MAXIMUM LIKELIHOOD ESTIMATES OF THE PARAMETERS IN THE

MODEL (23) FOR THE EXAMPLE
Parameter Estimate

θ01 -3.7481
θ02 -2.5556
θ03 -1.1148
θ1 2.5332
θ2 -3.3203

Deviance=77.1884, DF=30.

VI. CONCLUDING REMARKS

In this article, we use the QDGs approach to compare
designs for ordinal response models when the form of the
linear predictor is uncertain. The QDGs approach compares
the designs over the entire experimental region not just at a
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TABLE III
MAXIMUM LIKELIHOOD ESTIMATES OF THE PARAMETERS IN THE

MODEL (26) FOR EXAMPLE 1
Parameter Estimate

	01 -0.1816
	02 -0.1926
	03 0.4125
σ2
1 0.2672

σ2
2 0.3341

σ2
3 0.3731

Θ1 1.4359
Θ2 1.8946
Θ3 0.4125

log likelihood -44.0035

point like a single value criterion, such as D efficiency. We
use an unknown function f for addressing the misspecification
of linear predictor. Multivariate parametric kriging is used to
estimate f at any point in the design region. The proposed
method assesses how the prediction capability of the designs
change as points are selected from various locations in the
experimental region and the robustness of the designs to the
changes in the unknown model parameters.

APPENDIX A
DERIVATION OF FORMULA 13 AND 14

The log likelihood function of the responses for multivariate
GLMs [4, pp. 105] is given by

l(β) =

n∑
i=1

li(μi), (27)

where li(μi) =
y′iθi−b(θi)

φ ωi for i = 1, 2, . . . , n. Using the
link μi = h(Ziβ), we have

dl(β)

dβ
=

n∑
i=1

ZT
i Di(β)Σ

−1
i [yi − μi(β)] (28)

[4, pp. 105]

and

− d2l(β)

dβdβT
=

n∑
i=1

ZT
i Wi(β)Zi −

n∑
i=1

q∑
r=1

ZT
i Uir(β)Zi(yir − μir(β)), (29)

[4, pp. 348]

where Uir(β) =
d2ur(Ziβ)
dηdηT . Now,

E(
1√
n

dl(β0)

dβ
) =

1√
n
E

(
n∑

i=1

ZT
i Di(β0)Σ

−1
i [yi − μi(β0)]

)

=
1√
n

n∑
i=1

ZT
i Di(β0)Σ

−1
i (μT,i − μi)

=
√
n

n∑
i=1

1

n
ZT

i Di(β0)Σ
−1
i (μT,i − μi)

=
√
nXT PDΣ−1(μT − μ) =

√
nb (30)

and

V ar(
1√
n

dl(β0)

dβ
)

=

n∑
i=1

1

n
ZT

i Di(β0)Σ
−1
i ΣT,iΣ

−1
i DT

i (β0)Zi

= XT PWT X (31)

By central limit theorem for independent not identical
distributed random variables we get 1√

n

dl(β0)
dβ has a

multivariate normal distribution with mean
√
nb and variance

XT PWT X = H̃n. Also, from (29) we have

− 1

n

d2l(β0)

dβdβT
=

n∑
i=1

1

n
ZT
i Wi(β0)Zi −

1

n

n∑
i=1

q∑
r=1

ZT
i Uir(β0)Zi(yir − μir(β0))

= XT PWX − R (32)

Now, expanding dl(β)
dβj

around β0, we get

dl(β)

dβj
=

dl(β0)

dβj
+

p∑
k=1

(βk − β0,k)
d2l(β0)

dβjdβk

+
1

2

p∑
k=1

p∑
l=1

(βk − β0,k)(βl − β0,l)
d3l(β∗)

dβjdβkdβl
. (33)

Here, βj and β0,j are denoted for the jth term of the vector
β and β0 respectively and β∗ is the point lying on the line
segment joining by β and β0. Now, putting β̂ (MLE of β) in
(33) and using dl(β̂)

dβ = 0 we get,

0 =
dl(β0)

dβj
+

p∑
k=1

(β̂k − β0,k)
d2l(β0)

dβjdβk

+
1

2

p∑
k=1

p∑
l=1

(β̂k − β0,k)(β̂l − β0,l)
d3l(β∗)

dβjdβkdβl

⇒ −dl(β0)

dβj
=

p∑
k=1

(β̂k − β0,k)
d2l(β0)

dβjdβk

+
1

2

p∑
k=1

p∑
l=1

(β̂k − β0,k)(β̂l − β0,l)
d3l(β∗)

dβjdβkdβl

⇒ −dl(β0)

dβj
=

p∑
k=1

(β̂k − β0,k)

[
d2l(β0)

dβjdβk

+
1

2

p∑
l=1

(β̂l − β0,l)
d3l(β∗)
dβjβkdβl

]

⇒ − 1√
n

dl(β0)

dβj
=

√
n

p∑
k=1

(β̂k − β0,k)

[
1

n

d2l(β0)

dβjdβk

+
1

2n

p∑
l=1

(β̂l − β0,l)
d3l(β∗)

dβjdβkdβl

]
(34)

Now, d3l(β∗)
dβjdβkdβl

is bounded when the distribution of response
variables follow multinomial distribution. Also, by consistency
of β̂, we have (β̂−β0) → 0 as n → ∞. Hence, 1

2n

∑p
l=1(β̂l−
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β0,l)
d3l(β∗)

dβjdβkdβl
→ 0 as n → ∞. So,[

1

n

d2l(β0)

dβjdβk
+

1

2n

p∑
l=1

(β̂l − β0,l)
d3l(β∗)

dβjdβkdβl

]

→ 1

n

d2l(β0)

dβjdβk
= −Hjk (35)

Where Hjk is the element of the matrix Hn = − 1
n

d2l(β0)

dβdβT =

XT PWX − R (by (32)). So, the limit distribution of
√
n(β̂ −

β0) is the solution of
p∑

k=1

Hjk

√
n(β̂k − β0,k) =

1√
n

dl(β0)

dβj
(36)

This gives the limit distribution of
√
n(β̂ − β0) is the limit

distribution of H−1
n

1√
n

dl(βo)
dβ . We have shown that 1√

n

dl(βo)
dβ

follows asymptotically multivariate normal distribution with
mean

√
nb and variance XT PWT X = H̃n. Hence

√
n(β̂−β0)

has multivariate normal distribution with mean
√
nH−1

n b
and variance H−1

n H̃nH−1
n . Hence Bias(β̂) = H−1

n b and
V ar(β̂) = 1

nH−1
n H̃nH−1

n .

APPENDIX B
DERIVATION OF FORMULA 15

The mean squared error of μ̂(x) is given by

MSE(μ̂(x)) = V ar(μ̂(x)) +Bias(μ̂(x)(Biasμ̂(x))T (37)

Since μ̂(x) = h(η̂(x)), expanding μ̂(x) = h(η̂(x)) around
ηT (x) and approximating up to first order derivative of the
Taylor series, we have,

μ̂(x) = h(η̂(x)) = h(ηT (x)) +[
dh(η(x))
dη(x)

]
ηT

(η̂(x)− ηT (x)), (38)

Now, taking expectation on both side of (38), we get

E(μ̂(x)) = E[h(ηT (x)]

+

[
dh(η(x))
dη(x)

]
ηT

(E(η̂(x))− ηT (x))

⇒ E(μ̂(x)) = h(ηT (x))

+

[
dh(η(x))
dη(x)

]
ηT

Bias[η̂(x)] (39)

From (38), we get

V ar(μ̂(x)) = V ar(h(η̂(x)))

=

[
dh(η(x))
dη(x)

]
ηT

V ar(η̂(x))
[
dh(η(x))
dη(x)

]T

ηT

=

[
dh(η(x))
dη(x)

]
ηT

Z(x)V ar(β̂)ZT (x)
[
dh(η(x))
dη(x)

]T

ηT

(Since η̂(x) = Z(x)β̂)
(40)

Now,

Bias(μ̂(x)) = E[μ̂(x)]− μT (x)
= E[μ̂(x)]− h(ηT (x))

=

[
dh(η(x))
dη(x)

]
ηT

Bias[η̂(x)] (by (39))

=

[
dh(η(x))
dη(x)

]
ηT

[E(η̂(x))− ηT (x)]

=

[
dh(η(x))
dη(x)

]
ηT

[Z(x)E(β̂)− Z(x)β − f(x)]

=

[
dh(η(x))
dη(x)

]
ηT

[Z(x)Bias(β̂)− f(x)] (41)

Hence, from (37), (40) and (41) we have,

MSE(μ̂(x))

=

[
dh(η(x))
dη(x)

]
ηT

Z(x)V ar(β̂)ZT (x)
[
dh(η(x))
dη(x)

]T

ηT

+

[
dh(η(x))
dη(x)

]
ηT

[Z(x)Bias(β̂)− f(x)]×

[Z(x)Bias(β̂)− f(x)]T
[
dh(η(x))
dη(x)

]T

ηT

(42)

APPENDIX C
PARAMETRICAL EMPIRICAL KRIGING FOR MULTIPLE

OUTPUTS

Let us consider the regression model where for x ∈ S ⊂
R

d, we have multiple outputs Υ1(.),Υ2(.), . . . ,Υm(.) and the
model is given by [9] (page 102, equation (4.2.1))

Υi(x) = Λ′
i(x)δi +Gi(x), (43)

where for each i = 1, 2, . . . ,m, the Gi(.) has multivariate
normal distribution having mean zero, unknown variance
and unknown correlation function. Here, Λi(.) is a pi × 1
known vector function and δi is a pi × 1 vector of unknown
parameters. For simplicity let us denote δ = [δ′1, δ

′
2, . . . , δ

′
m]′

as the p× 1 unknown parameters with p =
∑m

i=1 pi. For the
above model we assume that the covariance between Gi(x1)
and Gi(x2) depends only on (x1 − x2) and it is given by
Cov{Gi(x1), Gi(x2)} = σ2

i ρi(x1 − x2), where ρi(x1 − x2)
is the correlation between {Gi(x1)} and {Gi(x2)}. Also, we
assume joint covariance structure of the {Gi(.)} given by
Cov{Gi(x1), Gj(x2)} = σiσjρij(x1 − x2), where ρij(.) is
the cross correlation function of Zi(.) and Zj(.) for i 
= j.
Reference [9] discusses various types of correlation functions
for ρi(.) and ρij(.). In our numerical example we use the
Generalized exponential correlation function for ρi and ρij
given below. Suppose we need to find ρi(x1 − x2) and
ρij(x1 − x2), where x1 and x2 are two realization of x and
let ε = x1 − x2 ∈ R

d. Then ρi(ε) and ρij(ε) have the form
ζ(ε|Θ), where ζ(ε|Θ) is given by

ζ(ε|Θ) =
d∏

k=1

exp(−Θk|εk|Θd+1), 0 < Θd+1 ≤ 2.

Suppose, we want to predict Υ1(.) at new design point x0.
Then the estimate of Υ1(x0), Υ̂1(x0) is given by [9, pp. 107,
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equation (4.2.12)]

Υ̂1(x0) = Λ′
0δ̂ + r′0Σ

−1(ΥN − Fδ̂), (44)

where δ̂ is the generalized least square estimate
of δ using N =

∑m
i=1 ni observations ΥN =

[(Υn1
1 )′, (Υn2

2 )′, . . . , (Υnm
m )′]′ with ni observations for the ith

response variable given by Υni
i = [Υi(xi

1), . . . ,Υi(xi
ni
)]′ at

the design points xi
1, xi

2, . . . , xi
ni

. Here

F =

⎛
⎜⎜⎜⎝
ΛT

1 (x0) . . . O1×pm

F1 . . . On1×pm

...
. . .

...
Onm×p1 . . . Fm

⎞
⎟⎟⎟⎠ , (45)

Σ =

⎛
⎜⎝

R1 τ2R12 . . . τmR1m

...
...

. . .
...

τmRT
1m τmRT

2m . . . τ2mRm

⎞
⎟⎠ , (46)

Λ′
0 = [Λ′

1(x0),O1×(p−p1)], and r′0 = [r′11, τ2r′12, . . . , τmr′1m],
where

• τi = σi/σ1, 2 ≤ i ≤ m,
• Λ1(x0) is the vector of regressor at the design point x0

for Υ1(.),
• Fi = (Λ′

i(xil)) is the ni × pi matrix of regressor for ith
response,

• Ri is the matrix of order ni × ni for the correlations
between the elements of Υni

i ,
• r1i is the ni × 1 vector of correlations between Υ1(x0)

and Υni
i , and

• Rij is the matrix of order ni × nj for the correlations
between Υni

i and Υ
nj

j .
The unknown parameter vector Θ for the correlation function
is estimated using maximum likelihood estimation.
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