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Abstract—Proteomics is one of the largest areas of research for 

bioinformatics and medical science. An ambitious goal of proteomics 
is to elucidate the structure, interactions and functions of all proteins 
within cells and organisms. Predicting Protein-Protein Interaction 
(PPI) is one of the crucial and decisive problems in current research. 
Genomic data offer a great opportunity and at the same time a lot of 
challenges for the identification of these interactions. Many methods 
have already been proposed in this regard. In case of in-silico 
identification, most of the methods require both positive and negative 
examples of protein interaction and the perfection of these examples 
are very much crucial for the final prediction accuracy. Positive 
examples are relatively easy to obtain from well known databases. But 
the generation of negative examples is not a trivial task. Current PPI 
identification methods generate negative examples based on some 
assumptions, which are likely to affect their prediction accuracy. 
Hence, if more reliable negative examples are used, the PPI prediction 
methods may achieve even more accuracy. Focusing on this issue, a 
graph based negative example generation method is proposed, which 
is simple and more accurate than the existing approaches. An 
interaction graph of the protein sequences is created. The basic 
assumption is that the longer the shortest path between two 
protein-sequences in the interaction graph, the less is the possibility of 
their interaction. A well established PPI detection algorithm is 
employed with our negative examples and in most cases it increases 
the accuracy more than 10% in comparison with the negative pair 
selection method in that paper.  
 

Keywords—Interaction graph, Negative training data, 
Protein-Protein interaction, Support vector machine.  

I. INTRODUCTION 
ROTEIN-Protein Interaction (PPI) plays vital roles for 
many fundamental biological processes of living cells. 

Thus identifying these interactions are very much important for 
understanding the functions and physiological phenomenon of 
proteins for the discovery of novel medicines and protein based 
products with medical and industrial applications. Despite the 
high importance of recognizing the PPI, very little has been 
known so far, as the experimental approaches for PPI 
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identification are very expensive and laborious. To address this 
tedious, labor-intensive and costly technique, researches are 
recently seeking for efficient computational methods to predict 
whether two proteins will interact or not. A better 
computational approach may easily substitute unnecessary 
experimental procedures, and thus save cost and increase the 
confidence of the experimental results.  

In recent years, a number of computational methods for 
predicting Protein- Protein interaction based on different 
criteria for instance, amino acid sequence, structure etc., has 
been proposed [1-10, 32]. Most of these methods are composed 
of two phases: a training phase — to train the system/classifier 
with some known interacting as well as non-interacting protein 
pairs; and the testing phase – when given a pair of proteins, the 
system will predict whether they will interact or not. In the 
training phase, only positive examples (interactive protein pairs 
only) [15-17], or both positive and negative examples 
(Non-interactive protein pairs) [1-10, 32] may be used. Xiao et 
al. [8] argue that the usage of only positive examples for 
training phase may derive many false positive domain pairs, 
because these domain pairs may occur in the (unavailable) 
negative set with high frequency. High quality positive dataset 
and good algorithms may compensate here and achieve better 
results. 

In the cases, where both positive and negative examples are 
used in training, there are two potential challenges. One is the 
generation of good positive examples – information about this 
may be gathered from the available renowned databases. The 
second one is the generation of negative examples, which is 
more difficult and also crucial for reliable prediction of PPI as 
negative examples are not available in general. There is also no 
benchmark of selecting dataset of non-interacting protein 
sequences. Moreover, most of the available well known 
databases do not give any information on non-interacting 
proteins. To validate the PPI prediction algorithms, researchers 
usually adopt their own techniques in generating negative 
examples based on some assumptions. However, these negative 
data are likely to affects their results greatly. 

A good set of negative examples may increase the accuracy, 
even for the currently available methods for predicting PPI. In 
this paper, this issue is addressed and a general solution is 
proposed in this regard. A graph based solution for finding 
non-interacting protein sequences is proposed, which can be 
used for more successful training of the available techniques 
and significantly increase the accuracies of these methods. 

Selecting Negative Examples for Protein-Protein 
Interaction 
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II. LITERATURE REVIEW 
Most of the successful computational methods use both 

positive and negative examples for PPI prediction. For these 
methods, the collection of interacting protein pairs is relatively 
easier as because several well known and reliable databases are 
already published that are dedicated for PPI and they try to 
maintain high quality of interaction information. For instance., 
the Munich Information Center for Protein Sequence (MIPS) 
[19], the Database of Interacting Proteins (DIP)[20], the 
Biomolecular Interaction Network Database (BIND)[21], the 
Human Protein Reference Database (HPRD)[22], the 
Molecular Interaction database (MINT)[23], the Biological 
General Repository for Interaction Datasets (BioGRID) [24] 
etc.  In spite of their best effort, information related to PPI is 
often incomplete and contradictory [25-27]. Further, [28] also 
mentions five challenging properties of genomic/proteomic 
data related to PPI and they are: (i) no reliable reference set, (ii) 
little overlap between different data sets, (iii) rarity of 
protein–protein interactions, (iv) missing data in protein 
annotations and experimental measurements and (v) noisy data. 
Despite of the aforementioned problems, good quality positive 
data is still achievable for the computational approach of PPI 
detection.  

For Gold Standard Positives (GSP) data three criteria are 
mentioned in [29] and they are: A GSP should be as unbiased as 
possible, sampling all, or at least most, parts and processes of 
the cell [30], and a GSP must be of the highest reliability and 
reproducibility [31]. They [29] also give a nice demonstration 
for collecting good set of positive data.  

The generation of Gold Standard Negatives (GSN) is more 
difficult, because the pairs tested and found not to interact are 
almost never reported [29]. But this is very much essential for 
successful training. The current methods for this can be divided 
into two broad categories. First, random pairing of protein to 
generate negative examples [5, 32-38] and the second, 
synthesizing negatives from proteins that are not co-localized 
i.e., proteins which are localized at different sub-cellular 
components [3, 8-12, 30] . 

Ben-Hur et al.  [32] advocate for a simple uniform random 
choice of non-interacting protein pairs from the set of all 
protein pairs, which are not known to interact. They state that 
this will yield an unbiased estimate of the true distribution. 
They also demonstrate that restricting negative examples to 
non-colocalized protein pairs leads to a biased estimate of the 
accuracy of a predictor of protein-protein interactions. Chen et 
al. [5] and Zaki et al. [6] also follow the same procedure for non 
– interacting protein pairs.  

In the aforementioned cases, random pairs are selected from 
the set of all proteins but Shen et al. [1] consider those protein 
that appear in the positive data set only and a negative 
candidate pair is chosen in an exclusive way.  

In [7], a slightly different procedure is found. They create 
negative controls by randomizing amino acids sequences 
sampled from DIP [20]  and while doing so, they ensure the 
preservation of the following two things (1) amino acid 
composition and (2) di- and tri-peptide ‘k-let’ frequencies 
[13-14], where k > 1. 

Unlike the random pairing to generate non-interacting 
protein pairs as negative training data, Xiao et al. [8] generate 
biologically meaningful negative examples based on the 
proteins’ biological information, namely, proteins from 
different cellular locations and functional activity.  Further they 
argue that randomly generated negative dataset may contain 
unknown interacting protein pairs. Thus it may contaminate the 
training dataset and results may degrade. [3] and [10] also use 
negative examples from a list of proteins that are in separate 
sub cellular compartments. Similar approach is also followed 
by Rhodes et al. [9]. They identified GSN interaction set for 
HPRD [22] data set. Here GSN is a set of all protein pairs in 
which one protein is assigned the plasma membrane cellular 
component (1,426 proteins) and the other in nuclear cellular 
component (2,253 proteins).  

GRIP [18] is a web based tool for generating gold standard 
dataset. It offers the both options (random or different 
localization of protein) to the user for the generation of 
negatives in case of MIPS [19] data source. That is, user can 
either choose a negative case consisting of a list of proteins 
obtained from different sub-cellular locations and complexes or 
can get a list of proteins randomly selected from sub-cellular 
locations and complexes. For the BioGRID [24] data source, 
GRIP defines 'negative' cases by the random selection of 
protein pairs only. 

From the above discussion, it is observed that so far most of 
the PPI detection methods use either of the two methods for 
negatives. However, these methods may generate erroneous or 
biased estimate. To solve the problem, a graph based method is 
proposed which may hold good criteria of both while reducing 
the contamination and biasing tendency. 

III. PROPOSED METHOD FOR SELECTING NON-INTERACTING 
PROTEIN PAIR 

To describe the interactions among the proteins, let us first 
have a look at few related terminologies that are used in this 
paper. 

Interaction Graph(IG): A graph G(V,E) is called an 
Interaction Graph, where V denotes the set of protein 
sequences and E denotes the set of edges denoting the pair of 
protein sequences that interact. 

Let A, B, C, and D be four protein sequences, where the pair 
of interacting protein sequences are (A, C), (A, D), (B, D), (C, 
D). Let us also assume that no information is available about 
interaction between A and B as well as B and C. The IG for this 
scenario looks like the graph in Fig. 1. 

 

 
Fig. 1 An example Interaction Graph 

A B 

D C 
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Interaction Path: An Interaction Path is the shortest path 
between any two vertices in an IG. For example, the interaction 
path between A and B is (A, D, B). 

Interaction Distance: Interaction distance d(x, y) between 
two vertices x and y in an IG is defined as the length of an 
interaction path between them. In fact, d(x, y) equals to the 
minimum number of edges need to traverse to move from x to y, 
or vice versa. For example, in Figure 1, d(A,B) = 2 and d(A,C) 
=1. 

 
As mentioned earlier, one widely used approach for selecting 

negative examples is to pick necessary number of pair of 
protein sequences randomly from all pair of sequences, for 
which no interaction data is currently at hand. This process of 
selection has a risk of selecting some unknown positive pair. To 
reduce such contamination in negative examples, a graph based 
approach is used. It can be said that the likelihood of interaction 
of two protein sequences decreases as the Interaction Distance 
between them increases in the corresponding IG.  Hence, two 
protein sequences x and y can be considered as totally 
non-interacting if d(x,y)=∞, i.e., they have no path in IG. Such 
pair of vertices can serve as negative dataset in the training 
data. In such cases, there is a high chance that many pair will 
represent non-colocalized proteins, similar to the method 
presented in [3, 8-12, 30]. However, such extreme set of 
non-interacting examples may demonstrate some biasness as 
because it does not include the non-interacting sequences that 
are co-localized. Hence, considering two protein sequences as 
non-interacting, when Interaction Distance between them is 
sufficiently large, may be a better approach.  

 
Algorithm 1 Finding interaction paths. 
Input parameters 
M : Adjacency matrix of the IG 
Output parameters 
Mη : Final matrix  
Auxiliary parameters 
MNow and MPrev : Intermediate matrices. 
  
Procedure 

1. Initialize MPrev to M; 
              /*Find the paths*/ 

2. for l = 1 to η - 1 do 
3.       if (l mod 2) = 1 then 
4.            FindLongerPaths(MNow, MPrev, M); 
5.      else 
6.           FindLongerPaths(MPrev, MNow, M); 
7.      end if 
8. end for 

              /*Now copy the resulting matrix*/ 
9. if (η mod 2) = 1 then 
10.      Copy MPrev to Mη ; 
11. else 
12.      Copy MNow to Mη ; 
13. end if 

 
 

The protein sequences that are present in the positive dataset 
are first picked up and an IG is generated using them. 
Algorithm 1 then finds all pair (x, y) of protein sequences, 
where d(x,y) ≤ η. This information actually provides us all 
possible the non-interacting pair (x, y) of protein sequences, 
where d(x,y) > η. Necessary training pairs are then randomly 
picked from this set of all possible pairs.  

The adjacency matrix M has true values at the entries for the 
pairs (x, y) of protein sequences, where d(x,y) = 1 (i.e., the 
interacting pairs). Then, every iteration of the for-loop in 
Algorithm 1 marks entries for all pair (x, y) of protein 
sequences, where d(x,y)=l+1. The function 
FindLongerPaths(MNow, MPrev, M) actually performs these 
operations. It finds the paths in the IG having length l+1 with 
the help of all the paths with length less than or equal to l, which 
are already retrieved in previous steps. The algorithm for this 
function is presented in Algorithm 2. 

 
Algorithm 2 Finding paths of length l+1. 
Input parameters 
M : Adjacency matrix of the IG. 
MPrev : The matrix holding the interaction paths whose lengths 

are less than or equal to l. 
m : Total number of vertices in an IG. 
Output parameters 
MNow : The matrix holding the interaction paths whose lengths 

are less than or equal to l+1. 
 
Procedure 

1. for i = 0 to m-1 do 
2.       for j = i+1 to m-1 do 
3.             if MPrev(i, j) = true then 

/*a path exists with length ≤ l*/ 
4.                 MNow (i, j) = true; 
5.                 MNow (j, i) = true; 
6.                 Continue with the next j; 
7.            end if 

/* assume no path exists*/ 
8.            MNow (i, j) = false;  
9.            MNow (j, i) = false; 
10.            for k = 0 to m-1 do 
11.                  if MPrev(i, k) = true  

and MPrev(k, j) = true then   
/*a path exists with length ≤ l+1*/ 

12.                      MNow (i, j) = true; 
13.                      MNow (j, i) = true; 
14.                      Continue with the next j; 
15.                  end if 
16.             end for 
17.       end for 
18. end for   

 
After the execution of Algorithm 1, a false entry Mη(i, j) 

represents that the corresponding nodes are more than η 
interaction distance apart, i.e., d(i, j) > η. Such pair of nodes are 
good candidates for non-interacting protein pairs. Selecting 
necessary number of pairs from them randomly also maintains 
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the uniformity in the set. Thus this method is capable of picking 
some unbiased and meaningful negative pairs for the training of 
the PPI prediction methods.   

In our proposed methodology, PPI data is represented as 
interaction graph. As in [40], it is also considered that edge 
between two nodes represents evidence that they might share 
the same function. Now if the interaction distance (number of 
edges in the shortest path) between two nodes is increased, then 
the possibility of sharing same function between these two 
nodes will go down, and hence the possibility of interaction 
will also go down, which implies that the potential of taking 
these nodes as negative example will increase. By defining η, 
those pairs are taken that have a limited possibility of having 
same functions in them. This allows picking good 
non-interacting examples from similar sub-cellular locations. 
On the other hand, this way of choosing negatives also have a 
tendency of giving pair from different sub-cellular locations, 
i.e., the method does not ignore non-colocalized pair as well.  

Ben-Hur et al.[32] advocate for random pairing for 
non-interacting proteins. However, they also agree that this 
simpler method has potential pitfalls as they may contaminate 
the negatives with positive examples. Our proposed method 
can avoid such contamination by filtering them out using 
Algorithm 1 before taking random pairs. 

Thus the proposed approach is able to retrieve meaningful 
and useful negative examples. It generates negative examples 
that inherit good characteristics from both the random selection 
methods and the approaches of selecting non-colocalized 
proteins, while omitting the biases and ensuring better 
classification performance of PPI identifications. The 
experimental results also support this. 

IV. COMPARATIVE ANALYSIS AND DISCUSSION 
A number of good algorithms are available for the 

computation of PPI as mentioned earlier. Among them, a well 
accepted methodology proposed by Shawn Martin et al. [2] is 
picked to show the strength of our negative examples. Before 
presenting the experimental results, the data sources and 
evaluation criteria used to explain the comparative performance 
analysis are described first. 

A. Data Sources 
Interacting protein sequence data are collected from DIP 

[20] which contains interaction information of different 
species. Thus interacting protein sequences of E. coli, C. 
elegans, H. sapiens (Human), M. musculus (house mouse) are 
collected from DIP. H. polori data provided by Shawn Martin 
et al. [2] are also used. For negative examples, our proposed 
method as well as the method of random generation of protein 
pairs among all possible pair that does not appear in the positive 
set is used. Each species data (both negative and positive) is 
divided into two disjoint sets for training and testing. 90% of 
data is used in training and the rest 10% is used for testing 
purpose.  

B. Evaluation Criteria 
There are several standard performance measures to evaluate 

the classification results. Classification Rate (CR) — 
percentage of interaction and non-interaction correctly 

classified as a whole, Recall (R) and Precision (P) are used, 
which are defined by Eq. 1, Eq. 2 and Eq. 3. 

TP TNCR
TP TN FP FN

+
=

+ + +
                 (1) 

         TPR
TP FN

=
+

 (2) 

          TPP
TP FP

=
+

 (3) 

C. Discussion 
The algorithm proposed by Shawn Martin et al. [2] is 

employed for PPI identification. The programs that are 
provided by the authors on the web are used. In the case of 
negative data selection, negative examples are randomly picked 
as mentioned in [2]. Negative examples are also generated 
using the proposed approach. The results of the overall 
accuracy, Precision and Recall for all the species are presented 
in Table I and Table II. 

 
TABLE I 

CR (%) FOR DIFFERENT SPECIES 

Species 

CR using 
proposed  
negative 
examples 

CR using 
random 
negative 
examples 

H. sapiens  83.33 73.04 
D. melanogaster  97.26 70.67 
E. coli 88.91 81.82 
S. cerevisiae 97.68 74.44 
C. elegans, 88.81 73.64 
h. pilori 93.84 82.19 
M. musculus  68.00 57.89 

 
TABLE II 

PRECISION AND RECALL FOR DIFFERENT SPECIES 

Species 
Proposed 
negative 
examples 

Random negative 
examples 

 Precision
(%) 

Recall 
(%) 

Precision 
(%) 

Recall 
(%) 

H. sapiens  83.33 63.73 80.52 60.78 
D.melanogaster 97.59 96.91 72.29 67.03 
E. coli 92.98 84.17 86.41 75.52 
S. cerevisiae 97.68 98.44 76.26 70.98 
C. elegans, 95.65 81.32 80.45 62.45 
h. pilori 97.73 89.58 83.82 79.17 
M. musculus  73.68 56.00 57.89  44.00 

 
The tables given above show better result in every case, 

which demonstrates the enhanced performance of the proposed 
negative examples generation methodology over the approach 
of randomly choosing negative examples. It can also be shown 
that the proposed approach works better than selecting 
non-colocalized pair too. In this connection, authors claim that 
our negative examples will increase accuracy and reliability for 
any good algorithm. 
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V. CONCLUSION 
In this paper, a new method is introduced for negative data 

selection which helps to predict PPIs efficiently. Major 
advantage of this method is the logical selection of negative 
data set. The system is capable of utilizing all the possible 
interactions. The results reported here demonstrate that this 
method can reliably enhance the accuracy in predicting 
protein-protein interaction. Hence, it can be expected that, the 
promising results based on the proposed method for negative 
example generation will improve the performance of protein 
interaction prediction and thus protein interaction network also.  
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