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Abstract—Building code-related literature provides 

recommendations on normalizing approaches to the calculation of 
the dynamic properties of structures. Most building codes make a 
distinction among types of structural systems, construction material, 
and configuration through a numerical coefficient in the 
expression for the fundamental period. The period is then used in 
normalized response spectra to compute base shear. The typical 
parameter used in simplified code formulas for the fundamental 
period is overall building height raised to a power determined from 
analytical and experimental results. However, reinforced concrete 
buildings which constitute the majority of built space in less 
developed countries pose additional challenges to the ones built with 
homogeneous material such as steel, or with concrete under stricter 
quality control. In the present paper, the particularities of reinforced 
concrete buildings are explored and related to current methods of 
equivalent static analysis. A comparative study is presented between 
the Uniform Building Code, commonly used for buildings within 
and outside the USA, and data from the Middle East used to model 
151 reinforced concrete buildings of varying number of bays, number 
of floors, overall building height, and individual story height. The 
fundamental period was calculated using eigenvalue matrix 
computation. The results were also used in a separate regression 
analysis where the computed period serves as dependent variable, 
while five building properties serve as independent variables. The 
statistical analysis shed light on important parameters that simplified 
code formulas need to account for including individual story height, 
overall building height, floor plan, number of bays, and concrete 
properties. Such inclusions are important for reinforced concrete 
buildings of special conditions due to the level of concrete damage, 
aging, or materials quality control during construction. 

Overall results of the present analysis show that simplified code 
formulas for fundamental period and base shear may be applied but 
they require revisions to account for multiple parameters. The 
conclusion above is confirmed by the analytical model where 
fundamental periods were computed using numerical techniques and 
eigenvalue solutions.  This recommendation is particularly relevant 
to code upgrades in less developed countries where it is customary to 
adopt, and mildly adapt international codes. 

We also note the necessity of further research using empirical data 
from buildings in Lebanon that were subjected to severe damage due 
to impulse loading or accelerated aging. However, we excluded this 
study from the present paper and left it for future research as it has its 
own peculiarities and requires a different type of analysis. 
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I. INTRODUCTION 
ARTHQUAKE response of buildings is affected by their 
fundamental period more so than higher order modes due 

to the nature and frequency range of ground motion [1], [2]. 
On that basis, most codes and design guidelines provide 
simplified formulas that help estimate the fundamental period 
of a building as long as its structure meets regularity 
conditions [3], [4]. Structures with complex geometries, 
irregularities, or discontinuities whether in mass distribution 
or stiffness along their heights, are prescribed a dynamic 
analysis and are excluded from the use of simplified period 
formulas [3], [5]. 

Our series of analyses on models that simulate reinforced 
concrete buildings of various properties showed that there is a 
need for improvement over commonly used simplified code 
formulas. Most currently used simplified formulas condense 
the fundamental period expression to a constant that multiplies 
total building height raised to a certain power determined from 
mathematical derivations and experimental results [6]. Such 
expressions, however, do not capture other important features 
of the building that pertain to their layout and architectural 
configuration such as number of bays, story height, and plan 
dimensions. 

Research in literature addressed the stiffness of reinforced 
concrete elements, which is especially important for moment 
resisting frames where columns are expected to resist both 
vertical and lateral forces [7], [8]. Serviceability and story drift 
requirements need to be investigated as well to distinguish 
between sway and non-sway conditions in column design [9]. 
Other research focused on interior partitioning and the effect 
of masonry infill panels. Although infill panels are not 
assigned structural loads during the design phase, it was found 
that they have a net effect on building period, and therefore on 
its seismic response [10]. Recent research explored the 
inclusion of devices within the structural system to enhance 
damping rather than relying on hysteresis behavior that often 
entails excessive deformations in the main structural system 
[11], [12]. 

II. THEORETICAL MODEL 

A. Development and Assumptions 
This paper uses a mathematical derivation while 

emphasizing direct practical applications rather than focusing 
on the details of the derivation. Consider the most basic 
structural configuration of a single bay in a single story. 
Denote by ms the concrete slab contribution to the story mass 
and m’c the column contribution. Denote by kc the lateral 
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stiffness provided by one typical column in the structural 
system. Assume that the portal acts as a shear frame whereby 
column end nodes do not rotate significantly in the portal’s 
deformed shape. We are interested in the ratio m*/k* where 
m* and k* represent the generalized mass and stiffness, 
respectively. For the simplest case, we have: 

 
௠כ

௞כ  ൌ  ௠ೞାଶ ௠ᇱ೎
ଶ ௞೎

           (1) 
 
Denote by N the total number of bays in the structure. If we 

consider the general case where N can take the value of any 
positive integer, we can write: 

 
௠כ
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           (2) 

 
Expression (2) uses the assumptions of a lumped mass 

model at slab level only, a degree of freedom (DOF) 
condensation to one horizontal DOF at each floor according to 
a rigid diaphragm action. Column mass contribution in middle 
stories away from first floor and roof is mc = 2m’c, but is much 
smaller than slab contribution as will be discussed in the 
following sections. This is often referred to as a simple shear 
building model. 

B. Proposed Simplified Formulas 
In typical design cases we investigate an empirical 

relationship between mc and ms that we denote by the ratio r = 
mc/ms. Introducing r in (2) and rearranging, we can express the 
generalized period of the system, T*, in terms of N, r, and a 
basic period that we define as the fundamental period of a 
simple structural unit that represents the mass of one slab 
panel in a typical tributary area, and the stiffness of one 
column, To = 2π (ms / kc)

½ that represent the basic properties 
of the building at hand. This leads to: 

 

כܶ  ൌ  ቂ ே
ேାଵ 

 ൅  ௥
ଶ
ቃ

ଵ/ଶ
 ௢ܶ        (3) 

 
In most practical cases, and particularly for reinforced 

concrete buildings, mc is small compared to ms. Empirical data 
that we collected from a sample of 151 reinforced concrete 
buildings in Lebanon show that r ranges between 0.1 and 0. 2. 
This can be readily shown by referring, for example, to a 
typical residential building that uses a 20cm thick slab 
supported by 30cm x 60cm rectangular section columns laid 
out at a typical spacing of 4.5m x 5m with a 3m story height. 
The spacing represents the tributary area supported by a 
column. The ratio r = mc/ms in this numerical example is less 
than 0.14. 

Further simplification to (3) could be performed by 
comparing the value of the generalized period for a range of 
number of bays, N. The error in neglecting the term r/2 in (3) 
diminishes as N increases. For one bay or N = 1 neglecting r/2 
corresponds to a 7% error while for a 6 bay building, for 
example, the error is less than 3%. On that basis, we could 
adopt a relationship between the generalized period of the 

building and the basic unit period as follows: 
 

כܶ  ൌ  ቂ ே
ேାଵ 
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 ௢ܶ          (4) 
 
Equation (4) can be applied to n stories by taking a unit 

displacement at the top of the building which would mobilize 
a tributary mass of n.ms and an equivalent stiffness of kc / n. 
Substituting in (4), an expression for the generalized period 
for a building that has n floors can be written as: 

 

ሺܶ௡ሻ
כ  ൌ  ቂ௡మ ே

ேାଵ 
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 ௢ܶ         (5) 

 
Expression (5) slightly overestimates the period obtained 

from modal analysis because it takes the mass contribution 
from all floors in a uniform distribution. In modal analysis, the 
contribution of higher floors is larger than lower floors based 
on the predominance of the first mode shape in the 
displacement response [13]. Nevertheless, as will be shown in 
subsequent sections, (5) offers an improved estimate for 
preliminary design compared to code formulas that are widely 
used in literature. 

Regression analysis was performed on our data set of 151 
buildings to establish a detailed relationship between the 
fundamental period and properties of the structure. The 
relationship explicitly shows the effect of story plan 
dimensions, story and building height, number of bays, and 
concrete properties. Positive and statistically significant 
correlation was found between the fundamental period and 
story height, building height, and floor plan dimension and a 
statistically significant negative correlation was found with 
concrete properties and number of bays. The detailed 
statistical relationship was left outside the scope of this paper 
as we intend to focus here on the proposed simplified formula. 

III. CODE FORMULAS 

A. Code-Based Equivalent Static Analysis 
An equivalent static analysis allows the designer to perform 

a preliminary seismic design based on simplified formulas 
used to determine the fundamental period, building base shear, 
and story shear distribution applied statically. This approach is 
supposed to be equivalent to a dynamic analysis as long as the 
structure meets certain requirements [3]-[5]. The equivalent 
static analysis, which was initially developed for traditionally 
supported buildings, was extended in 1990 to base isolated 
buildings whereby the fundamental period is shifted upwards 
and away from the damaging frequency range of common 
ground motion records [14]. 

In this paper we consider the American Uniform Building 
Code (UBC) as the basis for comparison with (5) because its 
consecutive editions provide a thorough historic development 
of seismic requirements. In particular, we use UBC’88 for 
illustrative purposes [15]. The International Conference of 
Building Officials (ICBO) typically adopts the seismic section 
of the Blue Book developed by the Structural Engineers 
Association of California (SEAOC) into UBC. Most of the 
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existing concrete buildings that we surveyed were built over 
eight years ago, but the present comparison applies to new 
construction as well because IBC has adopted, to a large 
extent, provisions from UBC, especially in its seismic design 
sections. Within that scope, simplified code formulas in an 
equivalent static analysis are used in lieu of full dynamic 
analyses. They help during the preliminary design phases to 
avoid large discrepancies between the physical behavior of the 
building, once in operation, and the estimates computed prior 
to construction. 

B. Conditions for Simplified Formulas 
Most design codes require specific conditions for the use of 

simplified formulas, as they define a range for their 
applicability based on physical building properties. These are 
conditions of regularity and continuity. 

UBC’88 allows the equivalent static method for regular 
structures under 240 feet (73 m) in height with a lateral force 
resisting system described in UCB’88 Table 23-O. A structure 
that has a stiffness, weight, or geometric irregularity is 
prescribed a dynamic analysis rather than equivalent static 
analysis. According to UBC’88, there are five types of 
irregularities labeled A through E [15]. 

Type A corresponds to a soft story defined as having 70% 
less stiffness than the story above or less than 80% of the 
average of the three stories above. Practically, this may 
happen if there is a considerable difference in story height, as 
the stiffness of a vertical element is inversely proportional to 
the cube of its length. Buildings with large, high ceiling, 
lobbies or buildings with a ground floor parking characterized 
by large open spaces in between columns, fall in that category. 

Type B has to do with irregularity in weight (or mass) 
distribution. This applies to any story that has 1.5 times or 
more the mass of the adjacent story, i.e. either above it or 
below it. Practically, this may occur in stories where there is a 
significant change in dead load due to slab thickness, 
mezzanines, partitions, elevated gardens within the building 
and the like. 

Type C corresponds to geometric irregularity whereby a 
story has a lateral force resisting member that has a horizontal 
dimension that it 1.3 times or more than that on the adjacent 
story. A sudden change in the length of a shear wall for 
architectural reasons would be an example of such irregularity. 

Type D applies when there is an in-plane discontinuity in 
the vertical lateral force resisting element, where the 
discontinuity or offset is greater than the length of that 
element. A sudden interruption in an elevator shaft or an offset 
to a lesser number of shafts such as in buildings where lower 
stories are serviced by a larger number of elevators may fall in 
that category. 

Type E has to do with discontinuity in story capacity. This 
is typically described from a strength perspective; shear or 
combined shear and flexural strength of the lateral force 
resisting system. If the strength on a given story is 80 percent 
or less of that of adjacent stories in terms of resisting story 
shear, then we term it a Type E discontinuity. 

C. Code-Based Fundamental Period 
Consider the UBC ’88 formula commonly used for the 

computation of the fundamental period: 
 

ܶ ൌ  ௧ ሺ݄௡ሻଷ/ସ          (6)ܥ 
 
where Ct equals 0.03 for reinforced concrete moment-resisting 
frame buildings, 0.035 for steel moment-resisting frames, and 
0.02 for all other buildings, and hn is the building height in 
feet. 

Equation (6) represents the empirical formula for the 
fundamental vibration period of buildings as specified in 
several U.S. building codes such as UBC 1997, Applied 
Technology Council 3-06 (ATC 3-06) [16], Structural 
Engineers Association of California 1996 (SEAOC 1996) Blue 
Book, and the National Earthquake Hazards Reduction 
Program (NEHRP-94) [17], which consists of Technical 
Briefs published by the National Institute of Standards and 
Technology (NIST). An even simpler formula applicable to 
buildings of twelve stories or less in height was adopted by 
NEHRP-94 before (6): 

 
ܶ ൌ  ௡

ଵ଴
            (7) 

 
where n is the number of stories. Equation (7) over-simplifies 
the calculation of T as it does not require the substitution of 
any features related to the aspect ratio of the building, number 
of bays, or the basic properties related to a typical slab 
thickness or typical column dimensions. 

Based on the variety of simplified formulas, the following 
sections provide a comparison with the proposed simplified 
formula in this paper, and the eigenvalue solution. The 
designer may therefore find a balance between simplicity of 
calculations and accuracy of results. 

IV. COMPARATIVE PERIOD CALCULATION 

A. Proposed Formula vs. Code Formulas 
Both (5) and (7) have the number of stories n in their 

numerators indicating that total height is the main parameter 
as expressed in (6). However, the main difference between the 
two expressions is that the role of a typical slab and column, 
represented by the basic unit period To as explicitly shown in 
(5), and the role of the number of structural bays serve as 
correction factors over the code formula in (7). While (7) 
multiplies the number of stories n by 0.1, one would multiply 
n by the factor [N / (N+1)]1/2 To as computed by (5). 

Another comparison is made between (5) and (6) where the 
effect of basic system properties is missing. A comparison is 
provided in Fig. 1 for a range of buildings that belong to our 
sample of 151 buildings, as well as results from our 
mathematical model using an exact matrix eigenvalue 
solution. Note how the results from (5) have a relatively small 
error in reference to the eigenvalue solution, while (6) and (7) 
are closer to each other but show a large discrepancy with both 
(5) and the eigenvalue results. This discrepancy is clearly 
illustrated for reinforced concrete buildings up to eight stories. 
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Fig. 1 Comparative period values from Eigenvalue solution, (5), 

UBC ’88, and NEHRP 
 

 
Fig. 2 Period values from Eigenvalue solution and (5), versus N for 

building aspect ratios between 0.8 and 2.0 
 

Another comparison is made between (5) and the 
eigenvalue analysis results showing period as a function of the 
number of bays in the building. Although this graph on its 
own has no direct practical application because the number of 
bays by itself is not indicative of the structural configuration, 
it still shows that for buildings with aspect ratios between 0.8 
and 2.0, which was the case for most of our data sample, the 
two solutions yield close results (Fig. 2). 

A main advantage of including the basic unit period in the 
simplified formula is that it shows explicitly the mechanical 

properties of a typical column in a concrete moment-resisting 
frame. While code formulas account for the structural system 
through the constant Ct, the difference between the multiplier 
for a moment-resisting frame and all other buildings as stated 
in UBC ’88 is 50%. Therefore if the reinforced concrete 
building includes a shear wall, irrespective of its aspect ratio, 
the period computed by the code formula is expected to be 
significantly lower than the one of a moment-resisting frame. 
It is our view that such differences require a more accurate 
evaluation rather than simply assigning shear wall buildings to 
a general category. 

The differentiation between moment-resisting frames and 
shear wall configurations is essential as it greatly influences 
the design procedure of reinforced concrete elements. The 
American Concrete Institute provisions emphasize this point 
by distinguishing between sway and non-sway frames in terms 
of magnification factors for slender column design when the 
column is expected to contribute to lateral force resistance, 
which is certainly the case in moment-resisting frames [18]. 

B. Discussion of Simplified Code Formulas for the 
Fundamental Period 

As seen in previous sections, most simplified seismic code 
formulas express fundamental periods of buildings as a 
function of overall building height only, denoted by H in 
meters (m) or feet (ft) raised to a certain power and multiplied 
by a constant. It is our view that architectural codes need to be 
considered as well, side by side with engineering codes. 
Although the use of H as a single parameter is convenient and 
provides a simple determination of fundamental period, it 
would remain useful to include architectural features of the 
building to allow for revisions and coordination between the 
architect and the engineer. 

Buildings that have a uniform stiffness and mass 
distribution along their heights lend themselves to an 
equivalent static analysis. ATC3-06 uses (6) in a slightly 
different format, T = Ct H0.75 (H, ft) with Ct = 0.03 for 
reinforced concrete moment-resisting frames, and H equals 
total building height. This issue becomes even more critical 
when considering architectural and engineering code 
requirements side by side. Architectural codes address 
clearance and overhead requirements of a typical single story, 
which establishes a direct relationship between number of 
stories and overall building height. For instance, codes in 
several countries require apartment buildings to have a 
minimum floor to ceiling clearance of 2.7m. Designers may 
pack as many floors as the architectural code allows within the 
overall height limit, while other designers may favor a 
spacious 3.6m floor clearance, with a lesser number of stories, 
as it is the case in older buildings. The simplified Code 
formula would compute the same fundamental period for these 
two buildings because they would have the same total height, 
while in reality they have significantly different periods. 

Alternatively, suppose that you are within the overall 
building height (architectural) restriction for both buildings, 
and you wish to build nine stories with a 2.7 m and 3.6 m floor 
clearance, respectively. Further, consider a slab thickness that 
ranges between 20 cm for a flat plate and 36 cm for a hourdis 
system. A ten-story building could therefore have a total 
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height of 29 m; while another ten-story building could have a 
total height over 39 m. Expression (6) would then result in a 
period of 0.91 sec for the first building, and a period of 1.15 
sec for the second building. The difference between these two 
periods, of about 26%, results in discrepancies in design 
spectra acceleration ratios, while (7) would compute a period 
of 1 sec for both buildings. 

V. IMPLICATIONS ON RESPONSE SPECTRA ANALYSIS 

A. Normalized Response Spectra Curves 
The ratio of spectral acceleration to the effective peak 

ground acceleration is commonly referred to as a normalized 
response, also known as ratio of response spectra (RRS), and 
is given as a function of the fundamental period of the system 
under consideration [15], [16]. Spectral shapes for various soil 
conditions were developed following a statistical study of over 
one hundred records from twenty earthquakes most of which 
were in California [19], [20]. For all soil types, the shapes start 
at a single point of 1.0, which is the normalized acceleration 
for T = 0 sec. as those shapes are developed on the basis of a 
peak ground acceleration adopted from hazard maps for rock 
conditions. For longer periods, the curves are different with 
great dependence on soil conditions. Based on that logic, 
simplified spectral shapes were developed by the Applied 
Technology Council and adopted in the Uniform Building 
Code [15], [16]. Those shapes included at the time three soil 
types S1, S2, and S3, which represented a range starting from 
stiff soils and rock (S1), deep cohesionless or stiff clay soils 
(S2), to soft to medium clays and sands (S3). At a later stage, 
and following the experience of the Mexico City earthquake 
which exhibited very low frequency ground motion, an S4 soil 
was added to account for deep soft clayish local site 
conditions [21]. 

The signal processing of similar records showed that the 
three soil conditions can be expressed in a digitized form for 
the purpose of response spectrum analysis as shown in (8a), 
(8b), and (8c), where the dimensionless value Si-RRS 
corresponds to soil type Si for i=1, 2, and 3, respectively, and 
T is the system period in seconds [22]. 

 

S1- RRS = ൝
10 ܶ ൅ 1.0                           0 ൑ ܶ ൏ 0.15 
2.5                                      0.15 ൑ ܶ ൑ 0.4
1.0193  ܶିଵ.଴ଵଷ                  0.4 ൏ ܶ ൑ 3.0

     (8a) 

 

S2- RRS =  ൞
10 ܶ ൅ 1.0                        0 ൑ ܶ ൏ 0.15 
2.5                               0.15 ൑ ܶ ൑ 0.575
1.4494  ܶି଴.ଽ଺଻           0.575 ൏ ܶ ൑ 1.5
1.4302  ܶି଴.ଽଷ଺              1.5 ൏ ܶ ൑ 3.0

           (8b) 

 

S3- RRS =  ൝
7.5 ܶ ൅ 1.0                         0 ൑ ܶ ൏ 0.2 
2.5                                     0.2 ൑ ܶ ൑ 0.9
2.284  ܶି଴.ଽଽଶ               0.9 ൏ ܶ ൑ 3.0

           (8c) 

B. Application to Typical Buildings 
In our examples above, we make reference to older codes 

that were in effect at the time the existing buildings that we 
surveyed were designed to simulate the provisions that the 
designer had to meet ten to thirty years ago.  In UBC 1988, the 
design spectrum given in chapter 23, Fig. 3, distinguishes 

three types of soil, type 1 (S1) for rock and stiff soils, type 2 
(S2) for deep cohesionless or stiff clay soil, and type 3 (S3) for 
soft to medium clays [15]. 

To illustrate how the use of total height as the sole 
parameter for period calculation can throw off the design by a 
sizeable percentage, we considered two buildings from our 
data set that have practically equal heights. The first building 
is 13 m high with a clear floor space of 3m, and has a period 
of 0.56 sec from eigenvalue analysis. The second building is 
13.8 m high with clear floor space of 3.25 m, and has a period 
of 0.83 sec from eigenvalue analysis. Using these two 
fundamental periods, and for a site type S2 for example, the 
ratio of the spectral acceleration to effective peak ground 
acceleration is 2.5 for the first building, and 1.73 for the 
second. This difference in the acceleration ratio causes a 
difference in base shear, which would have a significant 
impact on the lateral force distribution, and therefore on 
member sizing. But if we were to apply (6) to these two 
buildings we would have periods of 0.5 sec and 0.52 sec 
respectively, yielding practically the same spectral 
acceleration ratio for any soil type and exhibiting no 
difference in the lateral load requirements, or in the design of 
structural members. Many similar examples exit in the data set 
whereby the computed periods have significant differences 
with periods computed using the simplified code formula in 
(6) or (7), and hence in the acceleration ratios. 

VI. COMMENTS ON REINFORCED CONCRETE 
PARTICULARITIES 

A. Effect of Bond and Changes in Member Stiffness 
Reinforced concrete has its own particularities as it is not an 

isotropic material and poses challenges in the calculation of 
flexural and shear strength and stiffness [23]-[25]. Combined 
beam-column theory applied to concrete design makes 
assumptions of strain compatibility and bond whereby the 
reinforcing steel and the surrounding concrete deform in the 
same rate [26], [27]. 

 The flexural stiffness of the concrete section changes 
significantly when bond is reduced due to cracking, aging, or 
fatigue. The ACI recommends a reduction coefficient applied 
to the stiffness of the gross concrete section of 0.35 and 0.70 
for the cracked and un-cracked section respectively [27]. 
Under these conditions, the effect of cracking on the 
fundamental period of the structure cannot be ignored and 
such considerations become very important in the retrofit of 
damaged concrete buildings [28], [29]. The basic unit period 
figuring in the proposed formula in (5) is affected by a factor 
of 1.19 for un-cracked sections and 1.6 for cracked sections 
[27]. 

 The reductions in gross area moment of inertia that we 
used were in accordance with ACI provisions. The modified 
properties were included in the eigenvalue analysis of each 
building surveyed depending on the shape of the building. 
Comparative results showed a reasonable concurrence 
between the shape of the building and the calculated 
fundamental period. 
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B. Effect of Concrete Aging and Long Term Volumetric 
Change 

Another set of challenges presented by reinforced concrete 
buildings is related to aging. Creep, shrinkage, and volumetric 
changes due to mixing and placement affect the performance 
of the concrete member and in particular its stiffness [30]. 

Buildings that exhibited excessive damage due to impulse 
loading, and that were part of our data collection, were left 
outside this present treatment because they pose a different set 
of challenges. For all other buildings in the data set, the effect 
of aging was taken into consideration per ACI requirements. 

VII. CONCLUSIONS 
Simplified code formulas for the determination of the 

fundamental period of reinforced concrete buildings offer a 
rapid way to estimate spectral response and seismic forces but 
require careful reconsideration because they lack important 
structural features. A theoretical model is developed to 
account for basic features of the building that translate into 
mass and stiffness parameters. It is found that individual story 
height, floor dimensions, and number of bays, when included 
in the period evaluation, yield results that are closer to the 
exact matrix eigenvalue solution than do simplified code 
formulas. The simplified code formulas, whether pertaining to 
total building height, or total number of stories, exhibited large 
discrepancies with the eigenvalue solution. 

Particularities of reinforced concrete were taken into 
account in our calculations according to ACI’s reduction 
factors applied to the moment of inertia of the gross section. 
However, more detailed treatment of the effects of loss of 
bond in damaged concrete structures requires further study on 
aging, excessive loading or impulse excitations, and was left 
for future research. 
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