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Abstract—This paper presents a methodology to develop fragility 
curves for shallow tunnels so as to describe a relationship between 
seismic hazard and tunnel vulnerability. Emphasis is given to the 
influence of surrounding soil material properties because the dynamic 
behaviour of the tunnel mostly depends on it. Four ground properties 
of soils ranging from stiff to soft soils are selected. A 3D nonlinear 
time history analysis is used to evaluate the seismic response of the 
tunnel when subjected to five real earthquake ground intensities. The 
derived curves show the future probabilistic performance of the 
tunnels based on the predicted level of damage states corresponding 
to the peak ground acceleration. A comparison of the obtained results 
with the previous literature is provided to validate the reliability of 
the proposed fragility curves. Results show the significant role of soil 
properties and input motions in evaluating the seismic performance 
and response of shallow tunnels. 

 
Keywords—Fragility analysis, seismic performance, tunnel 

lining, vulnerability. 

I. INTRODUCTION 

NDERGROUND structures are classified as complex 
engineered structures that require detailed analysis and 

design. Tunnels, for instance, are massively constructed as 
transportation infrastructures and utility network, especially in 
urban environments where space is very limited. Although the 
construction cost of underground structures is very expensive, 
such structures are as the less vulnerable structures during 
earthquakes compared to aboveground structures [1]. 
However, due to severe damage experienced on the several 
Dakai subway stations after being attacked by the Hyogoken-
Nambu earthquake on 17 January 1995, experience suggests 
that tunnels become vulnerable during an earthquake event. In 
fact, any instability of the structure will provide some level 
degree of damage that may highly detrimental the overall 
performance of the network (e.g. [2]–[4]). Considering their 
utmost importance to the public safety that cannot be 
compromised, engineering practitioners have become more 
aware of the safety of such structures during an event of an 
earthquake because if the structures are damaged, the repairing 
works are not only costly and time-consuming but it is also 
difficult to carry out the rescue works. However, a very 
limited amount of studies has been carried out to study and 
understanding the dynamic performance of tunnels under such 
unpredictable extreme hazards. In view of the importance to 
enhance the resilience of these structures, the overall aims of 
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the study are drawn in order to evaluate the probabilistic 
future performance of tunnels during an earthquake event. 
This can be done by constructing the fragility curves as a 
representation of a conditional probability of a structure to 
endure a specific damage level when subjected to a given 
hazard. Recently, [6] developed methodologies for the 
construction of numerically derived fragility curves for tunnels 
(circular and rectangular sections) in alluvial deposits. They 
investigated the seismic response of shallow tunnel under 
quasi-static 2D plane-strain conditions, where the induced 
seismic ground deformations calculated through 1D free field 
analysis are applied at the boundaries of the soil-tunnel 
system. They compared the numerically derived curves with 
the previous empirical curves and highlighted that the 
important role of soil conditions and typology of the tunnel in 
modifying the response of the tunnel lining. Along these lines, 
it is strongly suggested that the tunnels behave differently due 
to uncertainties of soil, structure and induced seismic hazard. 
Instead of performing 2D analysis, the 3D nonlinear time 
history analyses are considered to evaluate the seismic 
dynamic response of a circular shallow tunnel. Particular 
emphasis is given to the influence of surrounding soil material 
properties because the dynamic behaviour of the tunnel mostly 
depends on it. The tunnel models are assumed to be buried in 
four homogenous ground media (i.e. [7]) ranging from stiff to 
soft soils and are expected to experience a strong earthquake 
ground motion. 

This paper is intended to tackle several important 
shortcomings of the 2D analysis on evaluating the seismic 
response of tunnels and to highlight the effect of soil material 
properties of soil in describing the interaction.  

II.  METHODOLOGY 

The proposed procedure for the derivation of fragility 
curves of the 3D tunnel models subjected to strong ground 
shaking is depicted in Fig. 1. This procedure has been 
developed by neglecting the 1D equivalent linear analysis of 
the soil profiles which usually conducted to estimate the 
dynamic properties of layered soil as presented by the 
previous studies (see [6], [8]-[10]). Instead, in this study, the 
material properties of the homogeneous soil profiles were 
taken as suggested in [11]. The representative soil-tunnel 
models are developed to describe the specific geometry and 
characteristic of the proposed models, in which consideration 
has been made for the uncertainties of soil parameters. 

In this paper, the dynamic response of the tunnels was 
evaluated by performing 3D nonlinear time history analyses 
using the sophisticated finite element software, Midas GTS 
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it is noted that high level of PGA resulted to the higher value 
of seismic induced structural forces (i.e. axial force and 
bending moment). Although, this parameter was not been the 
only parameter that attributed to the failure of the lining [23] 
because the response and performance of the tunnels are 
depending on various uncertainties factors as suggested by 
[24], [25] (i.e. typology of tunnels, geological condition, and 
earthquake parameters).  

B. Derivation of Fragility Curves  

Prior to the derivation of fragility curves, two fragility 
functions: Smi and βtot were calculated for each type of soil. 
The example of evolution graph with the function of damage 
index and the PGA is illustrated in Figs. 7 (a) and (b). The 
relationship of damage index and the PGA is described by the 
solid trendline and the input dataset is fitted by an average 
linear regression analysis. The medium threshold value of the 
PGA (Smi) for minor, moderate and extensive damage state can 
be estimated using the equation of linear regression. The graph 
is constructed by considering the natural logarithm of the 
damage index (lnDI) as the dependent variable and PGA as 
the independent variable.  

 

 

 

Fig. 7 The example of the evolution of damages with PGA at the 
ground surface for circular tunnel model buried in (a) Dense Sand 

and (b) Loose Sand 
 
In particular, the set of fragility curves derived for dense 

sand, loose sand, stiff clay and soft clay are depicted in Figs. 
8-11. The derived seismic fragility curves describe the 
percentage probability of exceeding different damage states 
for a given value of ground shaking (i.e. PGA). The curves are 
estimated using the lognormal probability distribution function 
as provided in (1). A clear trend between percentage 

probability of damage and PGA was observed for all types of 
soil. The fragility curves are derived based on the 
extrapolation values of the computation results. As can be 
seen, the higher percentage of minor damage state is expected 
to occur in each type of soil compared to the moderate and 
extensive damage states. Similarly, the rate of damage 
increases with the increment of PGA, while the vulnerability 
of tunnel model is gradually increasing from soil type dense 
sand to soft clay. The results could be attributed from the 
different value of soil material properties such as modulus 
elasticity, Poisson's ratio, cohesion and friction angle [6], [26]. 
It is noted that soft clay soil will suffer high probability of 
damage compared to other types of soils.  

 

 

Fig. 8 Fragility curves of circular tunnel for dense sand 
 

 

Fig. 9 Fragility curves of circular tunnel for loose sand 
 
In comparison, the derived fragility curves are predicted to 

experience a higher percentage of minor damage compared to 
the previous fragility curves (Fig. 12). Overall, it can be seen 
that a good agreement is achieved in the for all comparative 
fragility analysis especially for the fragility curve of clay 
medium. This can be attributed to the input parameters of soil 
material properties such as stiffness and damping of the soils. 
The obtained results also revealed that better agreement in the 
seismic tunnel responses is recorded although a different type 
of analysed conditions was adopted by the researchers (3D 
nonlinear time history versus 2D quasi-static). In fact, the 
proposed 3D models provided a better representation for 
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analysing complex structure like tunnels, and not only 
accounted the effect of SSI, but it also produced acceptable 
results for nonlinear time history analysis [16]. In addition, the 
definition of damage index, damage states, and beta values 
also can alter the obtained results. These assumptions are 
made due to the complex nature of the seismic fragility 
problem.  

 

 

Fig. 10 Fragility curves of circular tunnel for stiff clay 
 

 

Fig. 11 Fragility curves of circular tunnel for soft clay 
 

 

Fig. 12 Comparison of analytical fragility curves for Minor Damage 
State 

V. CONCLUSION 

The comprehensive methodologies for the derived seismic 
fragility curves of the proposed shallow tunnel models 
embedded in four homogenous soil medium presented herein 
refer to the future probabilistic performance experienced by 
the structure when subjected to transversal seismic loading. In 
particular, the proposed methodology presented and applied to 
a representative soil-tunnel system. Tunnel dynamic response 
is evaluated through 3D nonlinear time history dynamic 
analyses, for increasing levels of seismic intensity in the 
transverse direction of tunnel axis. Critical analysis has been 
presented about the current methods of analysis, structural 
typology, ground motion characteristics, the effect of soil 
conditions and associated uncertainties on the tunnel integrity. 
The damage state thresholds are defined based on the 
exceedance of the lining capacity due to the development of 
lining forces. The fragility curves are estimated in terms of 
peak ground acceleration at the ground surface, based on the 
evolution of damage with increasing earthquake intensity. The 
results are compared and validated with available literature 
study. 

It was found that the surrounding soil plays an important 
role in evaluating the future performance of the tunnel. The 
curves modified due to different soil condition, where the 
tunnel that buried in high stiffness behaves better than the 
lower ones. The results show that there is a strong relation 
between the soil condition and the seismic response of the 
tunnels. The lowest percentage probability of tunnel damage 
occurs in well-constructed tunnels in good ground conditions, 
especially in stiff soil. Results denote the significant role of 
soil condition and input motions in evaluating the performance 
and response of the tunnel. It is interesting to remark that soil 
with high strength (stiffness) which is stiff soil perform better 
compared to the typical soft soil.  

It can be concluded that the 3D nonlinear time history 
analysis provides a better representation and acceptable result 
in evaluating the seismic behaviour and response of the 
complex structure like tunnels, with consideration of soil-
structure interaction. In fact, the derived fragility curves can 
be readily adopted as a guide for preliminary assessment of 
tunnel response against different seismic scenarios in typical 
soil profiles. However, critical analyses are required to ensure 
that the proposed fragility curve is reliable to cover a major 
aspect of the study and might be useful to provide new 
knowledge for risk assessment and loss estimation.  

ACKNOWLEDGMENT 

Siti Khadijah Che Osmi gratefully acknowledges the 
financial support of the Ministry of Education Malaysia 
(MOE) and National Defence University of Malaysia 
(NDUM) to conduct the research at the University of 
Manchester, UK.  

REFERENCES  
[1] Y. M. a. Hashash, J. J. Hook, B. Schmidt, and J. I-Chiang Yao, “Seismic 

design and analysis of underground structures,” Tunn. Undergr. Sp. 
Technol., vol. 16, no. 4, pp. 247–293, Oct. 2001. 

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

P
ro

ba
bi

li
ty

 o
f 

D
am

ag
e

PGA (g)

PROBABILITY OF DAMAGE
STIFF CLAY

Minor Damage
Moderate Damage
Extensive Damage

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

P
ro

ba
bi

li
ty

 o
f 

D
am

ag
e

PGA (g)

PROBABILITY OF DAMAGE
SOFT CLAY

Minor Damage
Moderate Damage
Extensive Damage

0,0

0,2

0,4

0,6

0,8

1,0

-0,2 0,3 0,8 1,3 1,8

P
ro

ba
bi

li
ty

 o
f 

D
am

ag
e

PGA (g)

MINOR DAMAGE STATE

Dense Sand
Loose Sand
Soft Clay
Stiff Clay
Soil type C_J.M. Mayoral et al.(2016)
Soil type D_J.M. Mayoral et al.(2016)
Soil type C_S.Argyroudis et al. (2012)
Soil type D_S.Argyroudis et al. (2012)



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:10, No:10, 2016

1357

 

 

[2] A. Brito and M. Lopes, “New methodology for the Seismic Design of 
Large Underground Structures,” in 15 WCEE LISBOA 2012, 2012. 

[3] J. H. Wood, “Earthquake Design of Rectangular Underground 
Structures,” Bull. New Zeal. Soc. Earthq. Eng., vol. 40, no. 1, pp. 1–6, 
2007. 

[4] H. Huo, A. Bobet, G. Fernández, and J. Ramírez, “Load Transfer 
Mechanisms between Underground Structure and Surrounding Ground: 
Evaluation of the Failure of the Daikai Station,” J. Geotech. 
Geoenvironmental Eng., vol. 131, no. 12, pp. 1522–1533, 2005. 

[5] Y. M. a. Hashash, J. J. Hook, B. Schmidt, and J. I-Chiang Yao, “Seismic 
design and analysis of underground structures,” Tunn. Undergr. Sp. 
Technol., vol. 16, no. 4, pp. 247–293, Oct. 2001. 

[6] S. A. Argyroudis and K. D. Pitilakis, “Seismic fragility curves of 
shallow tunnels in alluvial deposits,” Soil Dyn. Earthq. Eng., vol. 35, pp. 
1–12, 2012. 

[7] B. Maidl, M. Thewes, and U. Maidl, Handbook of Tunnel Engineering 
II: Basics and Additional Services for Design and Construction. Wiley, 
Ernst and Sohn, 2014, pp. 25–29. 

[8] S. Argyroudis, G. Tsinidis, F. Gatti, and K. Pitilakis, “Seismic fragility 
curves of shallow tunnels considering SSI and aging effects,” in 2nd 
Eastern European Tunnelling Conference “Tunnelling in a Challenging 
Environment,” 2014, pp. 1–10. 

[9] S. Argyroudis and A. M. Kaynia, “Fragility Functions of Highway and 
Railway Infrastructure,” in SYNER-G: Typology Definition and Fragility 
Functions for Physical Elements at Seismic Risk, vol. 27, S. Argyroudis 
and A. M. Kaynia, Eds. Dordrecht: Springer Netherlands, 2014, pp. 
299–326. 

[10] K. Pitilakis, S. Argyroudis, K. Kakderi, P. Gehl, N. Desramaut, B. 
Khazai, A. Yakut, A. M. Kaynia, J. Johansson, M. Fardis, F. Karantoni, 
P. Askouni, F. Lyrantzaki, A. Papailia, G. Tsionis, H. Crowley, M. 
Colombi, and R. Monteiro, “Guidelines for deriving seismic fragility 
functions of elements at risk: Buildings, lifelines, transportation 
networks and critical facilities (SYNER-G Reference Report 4),” 2013. 

[11] A. Amorosi and D. Boldini, “Numerical modelling of the transverse 
dynamic behaviour of circular tunnels in clayey soils,” Soil Dyn. Earthq. 
Eng., vol. 29, pp. 1059–1072, 2009. 

[12] Midas GTS NX, “Midas GTS NX User Manual: Chapter 6. Analysis,” 
Midas Family Package. pp. 401–442, 2012. 

[13] Oasys Ltd, “Adsec: Version 8.2.” 2014. 
[14] M. Shinozuka, M. Q. Feng, J. Lee, and T. Naganuma, “Statistical 

Analysis of Fragility Curves,” J. Eng. Mech., vol. 126, no. December, 
pp. 1224–1231, 2000. 

[15] National Institute of Building Sciences (NIBS), “Multi-hazard Loss 
Estimation Methodology Earthquake Model: HAZUS® MH MR4 
Technical Manual,” Washington, D.C, 2004. 

[16] G. D. Hatzigeorgiou and D. E. Beskos, “Soil–structure interaction 
effects on seismic inelastic analysis of 3-D tunnels,” Soil Dyn. Earthq. 
Eng., vol. 30, no. 9, pp. 851–861, Sep. 2010. 

[17] The British Tunnelling Society (BTS) and Institution of Civil Engineers 
(ICE), Tunnel Lining Design Guide. Thomas Telford Books, 2004, pp. 
100–113. 

[18] P. E. E. R. C. PEER, “PEER Ground Motion Database,” Shallow 
Crustal Earthquakes in Active Tectonic Regimes, NGA-West2, 2013. 
(Online). Available: http://ngawest2.berkeley.edu/. 

[19] BS EN 1998-1:2004 and T. E. S. E. 1998-1:2004 has status of a B. S. 
European Committee for Standardization, Eurocode 8: Design of 
structures for earthquake resistance BS EN 1998-1:2004, vol. 3. 2004. 

[20] Y. M. a. Hashash, D. Park, and J. I.-C. Yao, “Ovaling deformations of 
circular tunnels under seismic loading, an update on seismic design and 
analysis of underground structures,” Tunn. Undergr. Sp. Technol., vol. 
20, no. 5, pp. 435–441, Sep. 2005. 

[21] N. Iranisarand, “Effect of Vertically Propagating Shear Waves on 
Seismic Behavior of Circular Tunnels,” 15th World Conf. Earthq. Eng., 
vol. 2014, 2012. 

[22] Pacific Earthquake Engineering Research (PEER) Center, “PEER 
Ground Motion Database,” 2014. (Online). Available: 
http://ngawest2.berkeley.edu/. 

[23] American Lifelines Alliance (ALA), “Seismic Fragility Formulations for 
Water Systems: Part 1 - Guideline, ASCE-FEMA, Reston,” 2001. 

[24] N. G. Owen and R. E. Scholl, “Earthquake Engineering of Large 
Underground Structures,” 1981. 

[25] S. Sharma and W. R. Judd, “Underground opening damage from 
earthquakes,” Eng. Geol., vol. 30, pp. 263–276, 1991. 

[26] J. M. Mayoral, S. Argyroudis, and E. Castañon, “Vulnerability of 
floating tunnel shafts for increasing earthquake loading,” Soil Dyn. 
Earthq. Eng., vol. 80, pp. 1–10, 2016.  

 


