
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2973

Abstract—Character segmentation is an important preprocessing

step for text recognition. In degraded documents, existence of
touching characters decreases recognition rate drastically, for any
optical character recognition (OCR) system. In this paper we have
proposed a complete solution for segmenting touching characters in
all the three zones of printed Gurmukhi script. A study of touching
Gurmukhi characters is carried out and these characters have been
divided into various categories after a careful analysis. Structural
properties of the Gurmukhi characters are used for defining the
categories. New algorithms have been proposed to segment the
touching characters in middle zone, upper zone and lower zone.
These algorithms have shown a reasonable improvement in
segmenting the touching characters in degraded printed Gurmukhi
script. The algorithms proposed in this paper are applicable only to
machine printed text. We have also discussed a new and useful
technique to segment the horizontally overlapping lines.

Keywords—Character Segmentation, Middle Zone, Upper Zone,
Lower Zone, Touching Characters, Horizontally Overlapping Lines.

I. INTRODUCTION
S a part of the optical character recognition (OCR),
character segmentation techniques are applied to word

images before individual characters are recognized. The
simplest way to segment the characters is to use inter-
character gap as segmentation point. However, this technique
does not work well if the text to be segmented contains
touching characters.

The motivation behind this paper is that in a poor quality
text page, degradation leads to many problems such as:
adjacent characters can touch one another; a character may be
broken into several pieces; random noise or ink smears may
make a character distorted. With the presence of such
problems, for many word images, it is difficult to correctly
determine their identities. Therefore, many recognition errors
and uncertainties remain unresolved if the text image is highly
degraded. The degraded texts mostly appear in xeroxed pages,
fax massages, typewriter-printed pages, dot matrix printed
pages, noisy images, images with blur or skew etc. Touching
characters is also one kind of degradation that may decrease
the recognition results drastically.

M. K. Jindal is with the Panjab University Regional Centre, Muktsar
(Punjab) India. (e-mail: mk1_jindal@ yahoo.co.in).

G. S. Lehal is working as Professor, in the Department of Computer
Science & Engineering, in Punjabi University, Patiala (Punjab) India. (e-mail:
gslehal@lycos.com).

R. K. Sharma is Professor and Head in School of Mathematics and
Computer Applications, at Thapar Institute of Engineering & Technology ,
Patiala(Punjab) India (e-mail: rksharma@tiet.ac.in).

A number of algorithms have been proposed in the past [1-
4] for segmenting touching characters in roman script. Kahan
et al. [2] have proposed very useful double differential
function to segment the touching characters. Tsujimoto and
Asada [3] constructed a decision tree for resolving ambiguity
in segmenting touching characters. Casey and Nagy [4]
proposed a recursive segmentation algorithm for segmenting
touching characters. T. Hong [5] has utilized visual inter-word
constraint available in a text image to split word images into
pieces for segmenting degraded English language characters.

Some work has also been done on segmenting the touching
characters of Indian languages [6-12]. Veena Bansal and
Sinha [6] have segmented the conjuncts (one kind of touching
patterns) in Devanagari script using the structural properties of
the script. U. Garain and B.B. Chaudhuri [7] have used a
technique based on Fuzzy Multifactorial Analysis to segment
the touching characters in Devanagari and Bangla scripts. B.
B. Chaudhuri, U. Pal and M. Mitra [8] have used the principle
of water overflow, from a reservoir, to segment the touching
characters in Oriya script. M.K. Jindal et al. [10] have used
the structural properties for segmenting the touching
characters in middle zone of printed Gurmukhi script. Lehal
and Singh [11-12] have also tried to segment the touching
characters in upper zone of Gurumukhi script.

In this paper, we have proposed new strategies to segment
touching Gurmukhi script characters. First we have developed
an algorithm to segment the multiple horizontal overlapping
lines in printed Gurumukhi script. These horizontally
overlapping lines are found even in clean printed books,
magazines and newspapers. At the outset, a database has been
prepared after scanning a number of poor quality printed
documents containing 20-30% touching characters. Then all
the touching locations were carefully analyzed and various
categories are proposed based on the structural properties of
the Gurmukhi characters. After that, algorithms have been
developed to segment the touching characters in middle, upper
and lower zone.

II. CHARACTERISTICS OF GURMUKHI SCRIPT
Gurmukhi script alphabet consists of 41 consonants and 12

vowels as shown in Fig. 1. Besides these, some characters in
the form of half characters are present in the feet of characters.
Writing style is from left to right. The concept of upper/lower-
case characters is absent in Gurmukhi. A line of Gurmukhi
script can be partitioned into three horizontal zones namely,
upper zone, middle zone and lower zone. The middle zone
generally consists of the consonants. These zones are shown

Segmentation Problems and Solutions in Printed
Degraded Gurmukhi Script

M. K. Jindal, G. S. Lehal, and R. K. Sharma

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2974

in Fig. 2. The upper and lower zones may contain parts of
vowel modifiers and diacritical markers.

In Gurmukhi Script, most of the characters, as shown in
Fig.1, contain a horizontal line at the upper of the middle
zone. This line is called the headline. The characters in a word
are connected through the headline along with some symbols
as i, I, A etc. The headline helps in the recognition of script
line positions and character segmentation. The segmentation
problem for Gurmukhi script is entirely different from scripts
of other common languages such as English, Chinese, and
Urdu etc. In Roman script, windows enclosing each character
composing a word do not share the same pixel values in
horizontal direction. But in Gurmukhi script, as shown in Fig.
2, two or more characters/symbols of same word may share
the same pixel values in horizontal direction. This adds to the
complication of segmentation problem in Gurmukhi script.
Because of these differences in the physical structure of
Gurmukhi characters from those of Roman, Chinese, Japanese
and Arabic scripts, the existing algorithms for character
segmentation of these scripts does not work efficiently for
Gurmukhi script.

Consonants
u a e s h
c k g G L
C x j J M
t T D Q N

 V W d Y n
p f b B m
y r l v R
S z K F Z

 Pl
Vowels in Upper zone

* E & > ~
O :

 Vowels in Upper and Middle zone
i I

Vowels in Middle zone
A
Vowels in Lower zone

U <
Half characters in Lower zone

H q X

Fig. 1 Gurmukhi script characters and symbols

Fig. 2 a) Upper zone from line number 1 to 2, b) Middle Zone from

line number 3 to 4, c) lower zone from line number 4 to 5

Fig. 2(a), 2(b) and 2(c) show the contents of the three zones,

i.e., upper, middle and lower zone respectively. The upper and
lower zones can be empty for a word, but only the vowels/half
characters may be present in these zones. In Fig. 2, line
number 2 defines the start of headline and line number 3 end
of the headline. Also, line number 4 is called the base line.

III. PREPROCESSING
Preprocessing is applied on the input binary document in

order to minimize the effect of spurious noise in the
subsequent processing stages. In the present study, both salt
and peeper noise have been removed using standard algorithm
[13]. The skewness present in the document image has also
been removed with the help of Standard skew detection and
removal algorithm [14]. The algorithms proposed in the
present study do not perform very well in case the image is
skewed.

IV. LINE SEGMENTATION
Before identifying the problem of multiple horizontally

overlapping lines and proposing its solution, we hereby give
some definitions:

Definition 1 (Horizontal projection): For a given binary

image of size L x M where L is the height and M is the width
of the image, the horizontal projection is defined by [6] as:

HP(i), i = 1, 2, 3, …, L
where HP(i) is the total number of black pixels in ith
horizontal row.

Definition 2 (Vertical projection): For a given binary image

of size L x M where L is the height and M is the width of the
image, the vertical projection is defined as:

VP(j), j = 1, 2, 3, …, M
where VP(j) is the total number of black pixels in jth vertical
column.

Definition 3 (Continuous vertical projection): For a given

binary image of size L x M where L is the height and M is the
width of the image, the Continuous vertical projection has
been defined as:

CVP(k), k = 1, 2, 3, …, M
where CVP(k) counts the first run of consecutive black pixels
in kth vertical column.

Definition 4 (Strip): A strip can be defined as a collection

of consecutive run of horizontal rows, each containing at least
one pixel.

In printed Gurmukhi script, applying the simple concept of
horizontal projection to segment the whole document into
individual lines does not work well. Sometimes lower zone
characters of one line touches the upper zone characters of
next line, thus producing multiple horizontally overlapping
lines. This problem further intensifies in printed Gurmukhi
script as the horizontal projections of the document, divides
the whole document into following categories of strips:

1. Two or more horizontally overlapping lines (strip
number 1 in Fig. 3)

2. Only lower zone characters. (strip number 2 in Fig. 3)
3. Only upper zone characters(strip number 3 in Fig. 3)
4. Only middle zone characters(strip number 4 in Fig. 3)
5. Upper, middle and lower zone characters, i.e., complete

one line (strip number 5 in Fig. 3)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2975

6. Upper zone characters with middle zone
characters(strip number 6 and 8 in Fig. 3)

7. Lower zone characters touching with upper zone of
next line (strip number 7 in Fig. 3)

These different kinds of strips make it very difficult to find

the category of the given strip. Also in case of multiple
horizontally overlapping lines, it is difficult to estimate the
exact position of pixel row, which segments one line from the
next line. Statistical analysis of newspaper articles reveals the
following information.

TABLE I

PERCENTAGE OF OCCURRENCE OF VARIOUS STRIPS
Type of strip % of occurrence

1 17.54
2 21.49
3 0.88
4 1.31
5 12.28
6 31.57
7 14.91

These results have been obtained by analyzing 54

documents, scanned from fine printed newspaper articles. One
of the documents is shown in Fig. 3.

Fig. 3 Strip lines in printed Gurmukhi text

Fig. 3 contains eight strips. It can be seen that actual

number of lines in Fig. 3 is also eight (a line contains its
upper, middle and lower zone). Except strip number five and
eight, no other strip represents a complete line. As such, it is
necessary to find the exact boundaries of all the lines. An
algorithm, as given below, has been developed to segment this
kind of document into individual lines.

Algorithm 1
BEGIN
Step 1: Using the horizontal projections,
different strips in input binary document are
identified. For that whenever HP(i)=0 for i =
1, 2, 3, …, L, it is marked as the boundary of
strip line. Let us denote the strips by S1,
S2, S3, …, Sm. Also denote first row of strip
as FR(Sp), last row of strip as LR(Sp)and
height of the strip is calculated by
H(Sp)=LR(Sp)-FR(Sp)+1 ,for p = 1, 2, 3, …, m. Strips
identified in a document are shown in Fig. 3.

Step 2: In order to identify the location of
headlines, find
MAXPIX= max {HP(i)}, i = 1, 2, 3, …, L

 The headlines are considered as those lines
whose HP(i)≥ 70% of MAXPIX (The threshold
limit of 70% is arrived at after detailed and
careful experimentation). Let us denote the
ending location of the headlines as H1, H2,
H3, …, Hn. Also denote the lines to be
identified as L1, L2, L3, …, Ln (number of
headlines is same as number of lines)
Step 3: Define

AVG_LINE_HEIGHT=
1

1
−n

)(
2

1∑
=

−−
n

i
ii HH

Step 4: Set LINE_NO=1 and first row of line
LINE_NO as first row of first strip, i.e.,
FR(LLINE_NO)= FR(S1).
Step 5: For i=1 to m perform the following
operations:
 {

Step 5.1 : if H(Si) < 30% of
AVG_LINE_HEIGHT, Si is of type 3(
contains only upper zone), repeat
step 5(ignore current strip and go
for next strip).
Step 5.2: if H(Si) > 50% of
AVG_LINE_HEIGHT, Si will be of type 1
or 4 or 5 or 6 or 7 and will contain
at least one headline and one
baseline.
Step 5.3: identify the location of
baseline by noting the CVP(k),
{k=HLINE_NO to LR(Si)}. The location
where CVP(k) ends, mark it as α ,
every time. The row in which maximum
α are found is considered to be the
baseline. Mark it as BASELINE_NO. Also
set height of the middle zone as
HGT_MID = BASELINE_NO – HLINE_NO.
Step 5.4 : set last row of line
LINE_NO as LR(LLINE_NO) = BASELINE_NO +

2
1
(HGT_MID).(case number 4,5,6,7

solved here)
Step 5.5: if LR(Si) > LR(LLINE_NO),
(case 1 of horizontally overlapping
lines). Set H(Si)=H(Si)-(LR(LLINE_NO)-
FR(LLINE_NO), LINE_NO = LINE_NO + 1.
Also Set FR(LLINE_NO)= LR(LLINE_NO-1)+1
and goto step 5.1(for same strip)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2976

Step 5.6: if LR(Si+1)<=LR(LLINE_NO) set
i=i+1 (case 2 of only lower zone).
Repeat step 5.6(for multiple lower
zones)
Step5.7: LINE_NO = LINE_NO+1.
FR(LLINE_NO)= LR(LLINE_NO-1)+1 Go to step
5(for next strip)

}
Step 6: for j=1 to LINE_NO
Display FR(Lj) to LR(Lj) as line boundaries.
END.

Fig. 4 Different line boundaries identified using proposed

algorithm

Fig. 4 shows the boundaries of different lines identified
using the proposed algorithm. This algorithm has shown a
remarkable improvement in accuracy, for segmenting the
horizontally overlapping lines and associating the small strips
to their respective lines. This algorithm works even if the
input document contains many horizontally overlapping lines.
As shown in Fig. 5, there are six consecutive horizontally
overlapping lines in strip number one. The proposed method
segments all the lines of this strip correctly into individual
lines. We have obtained 95% accurate results of the algorithm
for segmenting the multiple horizontally overlapping lines and
associating the small strips to their respective lines using this
algorithm.

V. IDENTIFICATION OF TOUCHING CHARACTERS
In this section, we propose an efficient algorithm to

segment the touching characters in a degraded text document.
The work for the proposition of this algorithm starts with data
collection.

Fig. 5 Document strip containing six consecutive horizontally

overlapping lines

A. Data Collection
Data collection is a time consuming task. We selected true

degraded documents containing touching characters from
various books and magazines as well as normal documents,
faxed them, copied them and scanned them at 300 dpi
resolutions. About 100 such documents were scanned which
contains almost 6000 touching characters, thus a sufficiently
large database of touching characters has been created. Fig. 6
shows one paragraph taken from this database. This paragraph
contains touching characters in middle, upper and lower zone.

B. Categories of the Touching Characters in Middle Zone
After carefully analyzing the database of touching

characters in middle zone, it is found that on the basis of

Fig. 6 Gurmukhi paragraph containing touching characters

structural properties of the Gurmukhi script, various touching
characters can be classified into five categories. Some
characters may fall in multiple categories. For each pair of
touching characters, these categories are defined on the basis
of left character of the pair. These categories are hereby
briefly described.
Category 1: Touching characters containing full sidebar at

right end
Using statistical analysis, it is found that 54% of the total

pairs of touching characters contain these characters at left
side, which have full sidebar at their right end. There are total

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2977

twelve consonants and one stroke of two vowels in Gurmukhi
script containing sidebars at right end, as mentioned below:
a, s, k, g, G, j, W, Y, p, b, m, y, .

For example, in Fig. 7 touching characters at positions
marked as 1, 3, 5, 6, 7, 9, 10, 12, 13, 14, 17, 18 and 19 are
from this category.

Fig. 7 Words containing touching characters in middle zone

Category 2: Touching characters containing partial sidebar

at right end
There are four consonants in Gurmukhi script falling in

middle zone, that do not have full sidebar at their extreme
right end, but it contains 75-85% of the full sidebar. It has
been observed that approximately 15% characters of the total
touching characters fall in this category. These characters are:
g, r, h, C . In Fig. 7 touching characters at positions marked
as 2, 4 and 15 belong to this category.

Category 3: Touching Characters containing little sidebar at

right end
 It has been observed that approximately 11% characters of

the total touching characters fall in this category. In this
category, the characters contain a little sidebar at right side of
the character. Approximate size of the sidebar is half of the
total length of the character. There are seven consonants and
one vowel in Gurmukhi script falling in this category and
these are: e, t, d, v, x, M, f, A . Fig. 7 contains touching
characters at 16th and 20th position, from this category.

 Category 4: Touching Characters containing curved shape at

right end
It has been revealed from the analysis that approximately

16% characters of the total touching characters fall in this
category. Here, the touching character contains curved shape
at right extreme end. There are ten consonants in Gurmukhi
script, namely: L, J, T, D, V, l, B, R, u, n falling in this
category. Fig. 7 contains touching character at position 8 from
this category.

Category 5: Touching Characters of miscellaneous type

Rest, 4% of the total touching characters fall in neither of
the above mentioned categories. So these are categorized in
this category containing touching characters of miscellaneous
type. There are two consonants in Gurmukhi script, namely: c,
N falling in this category. Fig. 7 contains touching character at
position 11 from this category.

C. Categories of the touching characters in upper zone
Following three categories are being proposed in the upper

zone for touching characters.

Fig. 8 Gurmukhi words containing touching characters in upper
zone (touching characters have been marked with circles). a) Bindi

touching with other characters, b) Adhak touching with other
characters, c) Tippi touching with other characters

Category 1: Bindi (:) touching with other characters
By carefully analyzing, it is found that 35% of the total pair

of touching characters in upper zone fall in this category. In
this category, vowel “Bindi” (dot shaped) touches with other
characters present in upper zone either form left or right side.
Fig. 8(a) contains words from Gurmukhi script in which Bindi
touches with other characters in upper zone.

Category 2: Adhak (&) touching with other characters
Approximately 52% touching characters of the total

touching characters in upper zone fall in this category. In this
category, “Adhak” vowel touches with other characters
present in upper zone. Fig. 8(b) contains some examples of
Adhak touching with other characters in upper zone.

Category 3: Tippi (*) touching with other characters
It has been seen that 13% touching characters of the total

touching characters in upper zone fall in this category. In this
category, Tippi vowel touches with other characters present in
upper zone. Further, it has been revealed from the analysis
that the vowel Tippi always touches with upper zone segment
of the vowels i, I. Fig. 8(c) contains examples of Tippi
touching with upper zone segment of i, I in upper zone.

D. Categories of the touching characters in lower zone
Based on the analysis, we consider the following two

categories in lower zone.

Fig. 9 touching characters in lower zone (touching characters have

been marked with circles), a) Lower zone characters touching with
upper zone, b) lower zone characters touching with each other

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2978

Category 1: Lower zone vowels and half characters touching
with middle zone characters

Depending upon the quality of the input document,
approximately 40-70 % of the total lower zone vowels and
half characters always touch the middle zone characters. This
may sometimes happen even with non-degraded texts. Fig.
9(a) shows some examples of this kind of touching characters.

Category 2: Lower zone vowels and half characters touching

with each other
There is a possibility though rare of lower zone vowels

touching with each other. Fig. 9(b) shows this kind of
touching pattern in lower zone.

VI. SEGMENTATION IN MIDDLE ZONE
Most of the touching characters are found in middle zone of

a degraded Gurumukhi script document. The afore mentioned
categories of touching characters in middle zone are treated
individually for segmentation, as detailed below. We have
devised following algorithms to segment the touching
characters falling in middle zone.

Algorithm 2
BEGIN
Step 1: Recognize the headline. In order to
identify the location of headlines, find
MAXPIX= max {HP(i)}, i = 1, 2, 3, …, L
The headlines are considered as those lines

whose HP(i)≥ 70% of MAXPIX(The threshold
limit of 70% is arrived at after detailed and
careful experimentation). Let us denote
starting location of headlines as SHL1, SHL2,
SHL3, …, SHLn and the ending location of the
headlines as EHL1, EHL2, EHL3, …, EHLn.
Step 2: for i= 1 to LINE_NO (where LINE_NO
denotes the total number of lines in the input
binary document as found in algorithm 1)
repeat the following steps:
 {
Step 2.1: Recognize individual words by
considering VP(j) for j = 1, 2, 3, …, M,
from FR(Li) to LR(Li)(first row and last row
of ith line denoted as FR(Li) and LR(Li).
Whenever VP(j)=0, it denotes a word boundary
. Denote the individual words as W1, W2, W3,
…, Wp. First and last column of each word are
denoted as FC(Wj) and LC(Wj), j = 1, 2, 3,…,
p.
Step 2.2: for k=1 to p performs the following
operation:
 {
Step 2.2.1: Recognize the headline for
individual word. For that find HP(t),
{t=SHL(Li)-4 to EHL(Li)+4 }, between FC(Wk)
to LC(Wk). find

 MAXPIX1= max {HP(t)} , t=SHL(Li)-4 to
EHL(Li)+4
The headlines are considered as those
lines whose HP(t)≥ 90% of MAXPIX1. Let us
denote starting location of headline for
word k as FHWk and the ending location of
the headline for word k as LHWk.

Step 2.2.2 : identify the base line row of
the word k by noting the CVP(j), {j=FHWk to
LR(Li)}. The location where CVP (j) ends,
mark it asα , every time. The row in which
maximum α ’s are found is considered to be
the baseline. Mark it as BASEk. Also set
height of the middle zone as HGT_MID =
BASEk – LHWk.
Step 2.2.3: Note the Continuous vertical
projection CVP(m), m=FC(Wk) to LC(Wk),
between EHWk to BASEk
Step 2.2.4: for g = FC(Wk) to LC(Wk)perform
the following steps:
 {
Case 1 :(category 1)
 Step 2.2.4.1: if number of

pixels in CVP(g) >= (96/100)
*HGT_MID(Full sidebar column
detected, first category) go to
step 2.2.4.2 else go to step
2.2.4.4.
Step 2.2.4.2: while CVP(g)>=
85*HGT_MID/100,g=g+1
Step 2.2.4.3: g marks the column
where segmentation point to be
inserted to segment the
touching characters of first
category. Go to step 2.2.4
//for next sidebar (full,
quarter or half) in same word.

Case 2 : (Category 2)
Step 2.2.4.4: if number of
pixels in CVP(g) >= (85/100)
*HGT_MID(quarter sidebar column
detected, Fourth category) go
to step 2.2.4.5 else go to step
2.2.4.7
Step 2.2.4.5: while CVP(g)>=
75*HGT_MID/100, g = g+1
Step 2.2.4.6 : g marks the
column where segmentation point
to be inserted to segment the
touching characters of second
category. Go to step 2.2.4
//for next sidebar in same
word.

Case 3 : (Category 3)
Step 2.2.4.7: if number of
pixels in CVP(g) >= (40/100)
*HGT_MID and CVP(g) <= (60/100)
*HGT_MID (half sidebar column
detected, third category) go to
step 2.2.4.8 else go to step
2.2.4
Step 2.2.4.8: while CVP (g+1)
>= 20*HGT_MID/100, g=g+1
Step 2.2.4.9: g marks the column
where segmentation point to be
inserted to segment the
touching characters of third
category. Go to step 2.2.4
//for next sidebar in same
word.

}

 Step 2.2.5: go to step 2.2 //for next word
}

Step 3: go to step 2. // for next line
END

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2979

A. Solution for segmenting touching characters falling in
first category

 For segmenting the characters of a word having touching
characters of the first category, we have developed case 1 of
algorithm 2.

Fig. 10 Horizontal & Vertical Projection of a touching word

Fig. 11 White dots showing start of headline, end of headline and

possible locations of sidebar Columns

Horizontal and vertical projections of a word having
touching characters are given in Fig. 10. Also, start of the
headline and end of the headline in Fig. 11 have been marked
by white marks in horizontal projection area. The possible
locations of sidebar columns in Fig. 11 are marked by white
marks in vertical projection area. We can put a white line after
these locations and segmentation is achieved as shown in Fig.
12.

Fig. 12 Touching characters segmented using case 1 of algorithm 2

This algorithm is based upon the structural property of

Gurmukhi script, that, in all the Gurmukhi characters if
sidebar exists, it is always present at extreme right end of the
character, in contrary with Devanagari and Bangla script,
where it may be in the middle of the character. The advantage
of this algorithm is that, we do not need to identify the
candidate for segmentation. Also, more than two touching
characters in a single word can be segmented using this
algorithm and if the width of touching blob is greater than or
equal to the width of the stroke, even then, this algorithm
works.

B. Solution for segmenting touching characters falling in

Second category
Case 2 of algorithm 2 has been developed to segment the

touching characters falling in this category. The characters
falling in second category consists of the sidebar of height
more than 85% of the total height of the character. Whenever
such a column occurs, we continue for looking more
consecutive columns. When we get a column whose height is

less than 75% of the height of the character we put a
segmentation mark for this category of touching characters.

C. Solution for segmenting touching characters falling in

third category
A challenging task in segmenting the touching characters

falling in this category is how to identify the little sidebar,
which is approximately half of the total height of the
character. We have developed case 3 in algorithm 2 to
segment the touching characters falling in this category.

Case 3 of the algorithm sometimes fails producing over
segmentation. The reason behind this is that there are some
characters in Gurmukhi script, which have little sidebar at
their middle or at extreme left end. These characters are L, T,
n . A solution for this problem has been implemented by
considering the fact that whenever we are encountered in case
3, after terminating of half sidebar columns, it is noted that for
next 3-4 columns (depending upon width of the stroke), at
least one column must contain less than 20% pixels of height
of the characters. If no such column found, ignore that half
sidebar column (it will be from L, T, n characters) otherwise
segment the touching characters at this position.

D. Solution for segmenting characters falling in fourth

category
After implementing the above mentioned algorithm we look

for candidate of segmentation by considering the aspect ratio
of the characters. Now for segmenting the touching characters
of these candidates, we look for the density of the pixels in
columns from left one third to right one third columns of the
candidate character. Wherever the density of pixels is
minimum we consider it as segmentation column. Fig. 13
shows some words containing touching characters falling in
fourth category and the problem areas have been encircled.

Fig. 13 Touching characters falling in fourth category (problem area

encircled)

After implementing the above mentioned algorithm, one is
able to segment about 76-86% of the total touching characters.
Over segmentation occurs in approximately 8-14% of cases
and incorrect segmentation takes place in about 2-3% of cases.
Also in 4-7% cases the algorithms is unable to segment the
touching pair and bypasses it without segmenting. The major
drawbacks and problems, we face during segmentation using
this algorithm are shown in Fig.14 and explained as below:

Sometimes a character has a stroke similar in shape of half,
full or quarter sidebar, as shown in Fig. 14(a). Since algorithm
2 (case 1, 2 and 3) is based on the concept of sidebar, it results
over segmentation, by considering a non sidebar stroke as
sidebar stroke. Identifying the candidate of segmentation is
not possible in some cases as shown in Fig. 14(b) and 14(d).
This is due to the fact that width of touching characters pair is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2980

comparable to the two widest characters in Gurumukhi script
(G, a). A solution to this problem has been found as both of
these characters do not contain any headline. So this concept
can be used to identify that weather a wide character is
actually a touching pair or a single character (G, a).

Fig. 14 Problems in segmenting characters in middle zone

Similarly, as shown in Fig. 14 (c) even though, it is

identified that this character is a touching pair using its aspect
ratio, but touching blob is very much big and it results in
wrong segmentation.

VII. SEGMENTATION IN UPPER ZONE
 We can divide the vowels into following four categories.

1. Vowel present in upper zone only.

2. Vowel present in upper and middle zone.

3. Vowel in middle zone only.

4. Vowel present in lower zone only.

TABLE II

NO OF VOWELS FALLING IN EACH CATEGORY
Categories of vowel Number of vowels

First 7

 Second 2

Third 1

Fourth 2

The pronunciation, actual shape and examples of the
vowels, falling in first category are shown in Fig. 15 and that
of falling in second category are shown in Fig. 16.

Except the above mentioned vowels falling in upper zone
there are some characters whose one stroke falls in upper
zone. The character pronunciation, the stroke of the character
falling in upper zone and example words are shown in Fig. 17.

Fig. 15 Pronunciation, actual shape and example words of the

vowels falling in first category

Fig. 16 Pronunciation, actual shape and example word of the vowels

falling in second category

Fig. 17 Pronunciation, actual shape and example words of some

character strokes in upper zone

For segmenting the touching characters in upper zone, we
have developed a strategy based on the structural properties of
Gurumukhi characters in upper zone. Structural properties of
Gurmukhi characters reveal that every character in upper zone
consists of single Concavity or Convexity in its structure. This
concept of single concavity or convexity is used to segment
the touching characters in upper zone.

Algorithm 3
BEGIN
Step 1: Using the vertical projection in
upper zone identify the boundaries of each
character. For that whenever VP(i)=0 for i =
1, 2, 3, …, L, it is marked as the boundary
of character. Let us denote the different

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2981

characters as C1, C2, …, Cn. Denote first
column of the character as FC1, FC2, …, FCn
and Last column of the character LC1, LC2, …,
LCn.
Step 2: for k=1 to n performs the following
operations (for each character in upper zone)

Step 2.1: find the top profile of the
character. For that, for j=FCk to LCk
perform the following
Step 2.1.1: mark the row as X, in which
first black pixel in jth column is
encountered. Now calculate TP(j)=LR-X+1
where TP is top profile and LR is last
row of upper zone.

Step 2.2: for j = FCk to LCk perform the
following
Step 2.2.1: if TP (j+1)>=TP(j) go to step
2.2.3(concavity) else goto step
2.2.5(convexity)
Step 2.2.2 : while TP(j+1)>= TP(j) &
j<LCk increment j and repeat step 2.2.2
Step 2.2.3: while TP(j+1)<=TP(j) & j<LCk
increment j and repeat step 2.2.3.
Step 2.2.4: if j <= LCk, j marks the
segmentation column
Step 2.2.5 : while TP(j+1)<=TP(j) & j<LCk
increment j and repeat step 2.2.5
Step 2.2.6: while TP(j+1)>=TP(j) & j<LCk
increment j and repeat step 2.2.6.
Step 2.2.7: if j <= LCk , j marks the

segmentation column

END.
 In this algorithm, initially, top profile of each character in
upper zone is identified shown in Fig. 18(c). The top profile is
scanned from left to right to examine the presence of
concavity/convexity. For example, in first word of Fig. 18,
one can see that as the column number increases while
moving from left to right the number of pixels in top profile
also increases. After few columns, number of pixels starts
decreasing. This increase and subsequent decrease of the
number of pixels represents the convex shape of the character.
Now, going further, whenever the downward trend of the
number of pixels changes its direction to upwards that marks
the segmentation column. Similar argument holds well when
the first character has concavity and in such a situation the
number of pixels decreases initially and after few columns it
starts increasing. Whenever any downward trend appears it is
marked as segmentation column. Second example word in
Fig. 18 shows this concept.

Segmentation problem in this zone becomes difficult when
Kanoda touches with other vowels. As the shape of this
character contains one little concavity followed by one little
convexity, it produces incorrect segmentation. But the chances
of occurring touching characters involving this character are
very less. Noise may also affect the accuracy. During the
process of finding the concavity or convexity, if some noise
pixels are present in such a way that it disturbs the concavity
or convexity of the touching characters, it may also result in
incorrect segmentation as shown in Fig. 19(c).

Fig. 18 a) example words, b) problem areas, c) top profile of problem
areas, d) segmenting columns in top profiles, e) actual segmented
characters

Fig. 19 a) Example word, b) problem area, c) extended view of

problem area and noise pixel encircled, d) incorrect segmentation
column

VIII. SEGMENTATION IN LOWER ZONE

As described in section V (D), touching characters in lower
zone can be divided into two categories. For first category it is
sufficient to identify the base line of a strip. Base line
segments the middle zone characters from lower zone
characters. For second kind of touching category, candidate
of segmentation can be identified by the aspect ratio of the
characters. The character having aspect ration greater than a
threshold value is considered to be candidate of segmentation.
For actual segmentation, one can use the same technique as
used for segmenting the touching characters of fourth category
in middle zone in section VI (D).

IX. RESULTS AND DISCUSSIONS

The main objective of the work was to segment the multiple
horizontally overlapping lines and to segment the touching
characters present in all the three zones in degraded printed
Gurmukhi script. For segmenting horizontally overlapping
lines, we have scanned 54 documents from various printed
newspapers articles. We applied algorithm 1 on these
documents and achieved 95% accuracy in segmenting the
horizontally overlapping lines along with associating the small

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:9, 2008

2982

size strips (containing only lower/upper zone) to their
respective text lines. Work is in progress to implement the
same algorithm to segment the horizontally overlapping lines
from various other Indian languages such as Devanagari,
Bangla, Malayalam etc. We are also trying to work upon
segmenting horizontally overlapping lines from newspaper
articles, which contain characters of varying size and fonts.

For segmenting the touching characters in middle zone, we
have implemented second algorithm. We collected about 6000
words containing touching characters and applied algorithm 2
on these words. The characters falling in category 4 were
segmented using the solution scheme given section VI(D).
The results of the implementations of these algorithms and
solutions on nine Gurmukhi documents are given in Table III.
The percentage accuracy of segmentation for these documents
is in the range of 77-86%. Earlier [10], we have given higher
accuracy, since the database taken was not very big at that
time as compared to now.

TABLE III

ACCURACY IN MIDDLE ZONE
Number of touching
characters in category

Docu
ment

Total
chara
cters A B C D

Corre
ctly
segme
nted

Wrong
segmen
tation

%
accurac
y

Doc1 955 39 12 14 2 56 11 83.82
Doc2 1023 46 9 30 13 81 17 82.65
Doc3 984 105 26 21 18 131 39 77.05
Doc4 1023 119 33 41 25 173 45 79.35
Doc5 1045 125 34 36 27 189 33 85.13
Doc6 992 57 7 14 22 86 14 86
Doc7 923 41 6 17 6 58 12 82.85
Doc8 776 14 4 2 15 27 8 77.14

Similarly, for segmenting the touching characters in upper

zone we have implemented Algorithm 3 proposed in section
VII and observed that an accuracy of 76-82 has been
achieved. The results are shown in Table IV.

TABLE IV

ACCURACY IN UPPER ZONE
Docum
ent

Total
character
s in
upper
zone

Touching
characters

Correctly
segmented
characters

Wrong
segmen
tation

%
Accuracy

Doc1 307 19 15 4 78.94
Doc2 357 15 12 3 80.0
Doc3 319 22 18 4 81.81
Doc4 297 17 13 4 76.47

For segmenting the touching characters of first category in

lower zone, the technique given in section VIII has been
implemented. It has been observed that 92% of lower zone
characters are correctly segmented from middle zone
characters by using the concept of base line. We have also
achieved 96% accuracy for segmenting the touching
characters of second category in lower zone.

REFERENCES
[1] Y. Lu, “Machine Printed Character Segmentation – an Overview”,

Pattern Recognition, vol. 29, no. 1, pp. 67-80, 1995
[2] S.Kahan, T.Pavlidis, and H.S.Baird, “ on the recognition of printed

characters of any fonts and sizes”, IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 9, no. 2, pp. 274-288, Mar. 1987

[3] S. Tsujimoto and H. Asada, “ Resolving Ambiguity in Segmenting
Touching Characters” Ist Int. Conf. on Document Analysis and
Recognition ,pp. 701-709, Saint-Malo, France, Oct 1991.

[4] R.G.Casey and G. Nagy, “Recursive Segmentation and Classification of
Composite character Patterns”, Proc. 6th Int. Conf. on Pattern
Recognition, pp. 1023-1026, Munich, germany,1982.

[5] Tao Hong, “Degraded text recognition using visual and linguistic
context”, a dissertation submitted to the faculty of the graduate school
of the State University of New York at Buffalo, 1995.

[6] Veena Bansal and R.M.K. Sinha , “Segmentation of touching and Fused
Devanagari characters, ", Pattern recognition, vol. 35, pp. 875-893,
2002.

[7] U. Garain, B.B. Chaudhuri, “Segmentation of touching characters in
printed Devanagari and Bangla scripts using fuzzy multifactorial
analysis”, IEEE Trans. Systems Man Cybern. Part C-32 (2002) 449–459.

[8] B.B. Chaudhuri ,U. Pal and M. Mitra , “Automatic Recognition of
Printed Oriya Script”, ICDAR, pp.795-799,2001.

[9] U. Garain, B.B. Chaudhuri, “On recognition of touching characters in
printed Bangla Documents”, Proceedings of the Fourth International
Conference on Document Analysis and Recognition, 1997, pp. 1011–
1016.

[10] M. K. Jindal, G.S. Lehal and R.K. Sharma,” A Study of Touching
Characters in degraded Gurmukhi Script”, in Int. Conf. on Pattern
Recognition and Computer Vision, PRCV 2005, pp. ?, 25-27 February
2005, Istanbul, Turkey

[11] G. S .Lehal and Chandan Singh, “Text segmentation of machine printed
Gurmukhi script”, Document Recognition and Retrieval VIII,
Proceedings SPIE, USA, vol. 4307, pp. 223-231, 2001.

[12] G. S. Lehal and Chandan Singh, “A technique for segmentation of
Gurmukhi script”, Computer Analysis of Images and Patterns,
Proceedings CAIP 2001, W. Skarbek (Ed.), Lecture Notes in Computer
Science, vol. 2124, Springer-Verlag, Germany, pp. 191-200, 2001.

[13] Serban, Rajjan and Raymund, “Proposed Heuristic Procedures to
Preprocesses Character Pattern using Line Adjacency Graphs”, Pattern
recognition, vol. 29, no. 6, pp. 951-975, 1996.

[14] B. B. Chaudhuri and U. Pal, “Skew Angle Detection of Digitized Indian
Scripts Documents”, Pattern recognition, vol. 19, no. 2, pp. 182-186,
1997.

