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Abstract—Piecewise polynomial regression model is very
flexible model for modeling the data. If the piecewise polynomial
regression model is matched against the data, its parameters are not
generally known. This paper studies the parameter estimation
problem of piecewise polynomial regression model. The method
which is used to estimate the parameters of the piecewise polynomial
regression model is Bayesian method. Unfortunately, the Bayes
estimator cannot be found analytically. Reversible jump MCMC
algorithm is proposed to solve this problem. Reversible jump MCMC
algorithm generates the Markov chain that converges to the limit
distribution of the posterior distribution of piecewise polynomial
regression model parameter. The resulting Markov chain is used to
calculate the Bayes estimator for the parameters of piecewise
polynomial regression model.

Keywords—Piecewise, Bayesian, reversible jump MCMC,
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I. INTRODUCTION

IECEWISE polynomial regression model is a model that is

often used in many fields. For example, it is used in the
field of geomagnetic [1], health [2], ecology [3] and genome
[4].

If the piecewise linear regression models are matched
against the data, the model parameters will be generally
unknown. The objective of this paper is to estimate the
parameters of the piecewise polynomial regression models.
There are so many piecewise polynomial regression models.
In this paper, the noise distribution for each piece will be
assumed has the Gaussian distribution with mean 0 and
variance unknown.

Let y: be a dependent variable and t be an independent
variable with t=1,2,---,n and n is the number of samples. A
piecewise polynomial regression models can be written as:
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For example, Fig. 1 shows the graph of the piecewise
polynomial regression with threshold at 100, 175 and 300.
In the above two equations: (a) k is the number of pieces,

(b) T= (70,7 Ty ) is the threshold vector, (c) o

(i=1,k; j=1--,p; +1) are the regression coefficients, (d)

regression order vector, (e)

p=(p;»-p,) s the

02 =(6}.63..0}) is the noise variance. Let Q be the

regression coefficient matrix.
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Let 6 be the parameter of the above piecewise polynomial
regression model. Then this parameter 6 can be written as:

0 = (k,7,p,Q,62) “)

Suppose that y, (t=1,---,n) is a random sample drawn from

a population having a piecewise polynomial regression
models. Based on the random sample, the main problem is
how to estimate the parameter 0. Here, the parameter 0 is
estimated by using Bayesian method. The study of the
Bayesian method can be found in the literature, for example
[5]. Unfortunately, the Bayes estimator cannot be determined
analytically because the likelihood function of the parameter 6
has a complicated form. To overcome these problems,
reversible jump MCMC Algorithm [6] is used.
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Fig. 1 Four piecewise polynomial regression

II. METHOD

A. Maximum Likelihood Function
Because the variable random z; has a Gaussian distribution

with mean 0 and variance Giz fori=1,2,---,k and T <tst o

the density function of z; is

f(zt| 62)= exp—;zztz (&)
21tci2 20
Let =G ) be the noise of the piece [, +1 1]
Tt T

i

Then the z; has a joint density function is:
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The variable transformation:
Vi = tp‘+ o, t+o +24 0
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Let O, = (o, be the regression coefficient vector.
RN
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Thus, the density function of y, is
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Finally, the maximum likelihood function of the
y=(yl,y2,---,yn) canbe expressed in:
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B. Prior Distribution

To obtain a posterior distribution, a prior distribution must
be determined. As in [7] and [8], the prior distribution is
chosen as follows:

A binomial distribution is chosen for the number of
piecesk (k=1,2,---,kmax ).
a(kf) = CEmapk (1 — ks =k (10)

where kmax is the maximum of k and p is a hyper

parameter. The prior distribution for t given k is chosen as
follows:
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A binomial distribution is chosen for the number of order

p (P:Lzs"',Pmax )

n(plg) = CR™ AP (1-p)Pmx P (12)

where pmax is the maximum of p and A is a hyper

parameter. A non-informative prior distribution for o and Giz

is:
n(e,02| k7)o 1K o72. (13)
Furthermore, the hyperprior distribution for p is:

(W) e [u(1-w]-1/2. (14)
The hyperprior distribution for A is:
(L) oc [A(1=2)]"1/ 2. (15)

Let ¢ =(p,A) be the hyper parameter vector. Let m(0,¢)
be a prior distribution for (6,¢). Because the distribution of

0 given ¢ is (0] 0) = 7(0,9) | the prior distribution for (0,)
()
can be written as

(0,0) = (6] P)m(¢) (16)

C. Posterior Distribution
Let Tt(G,(p| y) be a posteriori distribution for (6,¢).

According to the Bayes Theorem, the posterior distribution for
(6, ) is given as

(0, 9| y) < f(y| 0)n(®,9)

= £(y] 0)m(0.¢) 76| )m(p) (17)

D. Reversible Jump MCMC

Suppose that M =(0,¢0). A MCMC method for the
simulation of a distribution ﬂ:(e,(p| y) is any method
producing an ergodic Markov chain Mi,M2,:--,Mm whose
stationary distribution (6, (p| y) [9]. This Markov chain
Mi1,M2,---,Mm can be considered as a random variable
whose distribution (6, (p| y) . Furthermore, the Markov chain

Mi1,M2,---,Mm is used to estimate the parameter M. To

realize this, the Gibbs sampling algorithm is adopted. It
consists of five steps:

1) Simulate “NB(k‘*‘%:kmax —k+%)
2) Simulate kNB(p"’%’Pmax_p‘*'%)

3) Simulate o2 ~ 1(‘,(%,%52) where

2 = yl-xn) Iy -
n-p

4) Simulate @, ~ N((x'x)"ly.02(x'x)™)
5) Simulate (k,t,p) ~n(k, 1 p.Q.62,01y)
Unfortunately, the distribution r(k,t,p| p,Q,62,1,1,y) have

not an explicit form. The exact simulation is not possible to be
done. Since the value k is not known, the MCMC algorithm
cannot be used to simulate n(k,1 p,Q,6%,A,u,y). Here,

reversible jump MCMC algorithm [6] is adopted.

Let o =(k,t,p) be an actual point of the Markov chain.
There are 3 types of transformations are used, namely: the
birth of the threshold point, the death of the threshold point
and the change of the threshold point. Furthermore, let Nk be
the probability of transformation from k to k + 1, let Dk be the
probability of transformation from k + 1 to k, and let P be
the probability of transformation from k to k.

1. Birth/Death of The Threshold Point

The transformation of the birth of the threshold will change
the number of threshold point, from k to the k + 1. If the birth
of the threshold is selected, the birth of the threshold from a
point ® = (k,t,p) is defined in the following way. Choose a

random point z from a set {1,---,n —1}\7. Suppose that the
point z is on the interval [‘ri +1 Ti+l — 1]. Next, create a new
point o* = (k +1,7,p) With:

=7, 7T,

Tpoen Ty T 120 Tpyn

i i+l

The order p;is replaced by two orders p? and p;l

according to this formula [10]:

-
p; = u

* _ *

Piy1 =Pi 7P

where u~U{0,---,p, }- The coefficient vector Q. is replaced
~ )1y, 62(x'x)-1 i 2 _1g™=P n-p oy,
by 0 ~N((x'x)ly,62(x'x)7)  with 62 ~1G( S5

The coefficient vector Q. is

i+1

replaced by

. nep e
O =Ny od 0™ With o ~16EE 2R

Otherwise, the transformation of the birth of the threshold will
change the number of threshold point, from k+1 to k. If this
transformation is selected, the death of the threshold from a
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point ©* =(k+1,7,p) is defined in the following way:

Choose randomly a point from 7 . Suppose that this point is
Ti+1 . Next, create a new point o = (k,t,p) with:

Tpso Tps Tinn oo Ty

Two orders p}k and p;‘ 4 are replaced by:
* *
Pi =Py *P;-

The  coefficient  vector € is replaced by

1 — 1 — 3 n-— n-—
Q; ~N(x'0)ly,6?(x'x)™) with 62 ~IG(TP,TPSZ).

Suppose that a;, and aj are respectively a probability of

acceptance for birth and death. The probability of acceptance
for birth is as:

(0] 9,) g(o*, ) (18)
(0] ¢,y) q@.0%)

an(o,0%)=min{l,

While the probability of death is as:

ad(w,w*)min{l,+} (19)
an(0 ,0)

where;

q(o*,0) Dk+1 n-1-k (20)

q(u),o)*)i Nk k+1

2. Change of The Threshold Point

The transformation of the change of threshold will not
change the number of threshold point. This transformation
makes to change the position of the threshold point. If the
change of the threshold is selected, then the change of the
threshold point from o =(k,t,p) is defined in the following

way: Choose a random point on the 7 . Suppose that 7; is this
point. Next, create a new point © = (k,T,p) where this point
T is replaced with z generated from the uniform distribution

on the set {1,-~~,n—1}\1.

Let aj, be the probability of acceptance to the change. Then

the probability of acceptance for change is as:

m©] ¢.¥) q(o*, ) @1

ap(0,0%)=minil,
p *
o] ¢.y) q(0,0")

where;

A@*0) (22)
q(o, 03*)

III. CONCLUSION

The purpose of this paper was to estimate the parameters of
piecewise polynomial regression models when the number of
regression is unknown. The parameters cannot be estimated by
Markov chain Monte Carlo algorithm, because the number of
regression is unknown.

The reversible jump Markov chain Monte Carlo algorithm
is one of the new methods that can be used to estimate the
parameters of piecewise polynomial regression models
although number of regression is unknown. The advantage of
this method is both the number of regression and the
parameter estimation of polynomial regression models per
piece can be estimated simultaneously.
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