
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1057

1

Abstract—SQL injection is one of the most common types of
attacks and has a very critical impact on web servers. In the worst
case, an attacker can perform post-exploitation after a successful SQL
injection attack. In the case of forensics web servers, web server
analysis is closely related to log file analysis. But sometimes large
file sizes and different log types make it difficult for investigators to
look for traces of attackers on the server. The purpose of this paper is
to help investigator take appropriate steps to investigate when the
web server gets attacked. We use attack scenarios using SQL
injection attacks including PHP backdoor injection as post-
exploitation. We perform post-mortem analysis of web server logs
based on Hypertext Transfer Protocol (HTTP) POST and HTTP GET
method approaches that are characteristic of SQL injection attacks. In
addition, we also propose structured analysis method between the
web server application log file, database application, and other
additional logs that exist on the webserver. This method makes the
investigator more structured to analyze the log file so as to produce
evidence of attack with acceptable time. There is also the possibility
that other attack techniques can be detected with this method. On the
other side, it can help web administrators to prepare their systems for
the forensic readiness.

Keywords—Web forensic, SQL injection, web shell,

investigation.

I. INTRODUCTION

EB servers and web applications are the most frequently
targeted by attackers in cybercrime cases. They are

easier to access and do not need any special connection or
state-sponsored resources. In this regard, they are easier to hack
than operating systems or network devices like routers and
switches. In many cases, once a website is compromised, they
serve as a beachhead for other major attacks and allow
attackers to gain more sensitive information from internal
resources. The attack vector is the starting point that attacker
can exploit a system and it come in a variety of forms. OWASP
(Open Web Application Security Project) each year offers to
list the most critical web application vulnerabilities. The list
consists of the latest vulnerabilities, threats, attack vectors, and
detection recommendations.

Report from Positive-Technologies in 2017, SQL Injection
(sqli) is one of the most common attacks in web applications
[1]. This attack method is used to access sensitive information
on a system or run operating system commands for further

Gigih Supriyatno is with the School of Electrical Engineering and

Informatics, Institut Teknologi Bandung, Bandung, Indonesia (e-mail:
gigih.supriyatno@gmail.com).

penetration of a system. In the worst case, this attack can
bypass the authentication and authorization mechanisms and
even pass through a firewall that protects the web system. A
web application becomes vulnerable to sqli attack when they to
handle user inputs in a secure manner such as in situations of
poor input validation [2]-[4]. In addition, the use of plugin web
applications that are not provable secure or have zero-day
vulnerability cause the web server to be vulnerable to sqli [5].

After a successful attack, the attacker will usually manage a
broken system to perform advanced attacks. Web shell is
malicious code that forms a Remote Access Tool (RAT) or
backdoor that provides a means for an attacker to interact with
a web server. This will save the attacker time and effort each
time access to the compromised server is required. US-CERT
categorizes the web shell as a very dangerous program because
it is often used in cybercrime and can be a hole for injecting
Advanced Persistent Threats (APTs) [6]. Web shell could hide
as a single file among the thousands of files present on a web
server or as a single line of code in a legitimate page on a site.
Web shell can be created in several programming languages
such as PHP, ASP, Java, and JavaScript depends on the server
environment. The most common web shell is written in PHP
since the majority of web systems support this language.

Web forensic is a branch of the computer forensic that deals
with web attack [7]. Computer forensics prepares legal
evidence related to cybercrime so that it can be used in a court
of law. In that case, investigators are trying to reveal digital
evidence in the victim server and attacker machine, to find out
when it happened and how the attacker attacked the web
system. Web forensics is generally carried out on both client
side and server side. While the server side forensic evidence
helps an investigator progress towards a conclusion, the client
side evidence provides potentially very strong and detailed
evidence.

Server side forensic process usually starts with an analysis of
various log files in the victim machine [7]-[9]. A log file
records events and actions that take place during the runtime of
a service or application. Even when someone performs an
attack, the log file lets store the traces left behind. It can help
forensic investigators unfold the chain of events that may have
led to a malicious activity. Investigation to find out incident of
web application attacks can be started in one of the following
files: web server(s) and application server(s) logs, application
server(s) configuration files, web server(s) and any third party
installed software logs, the operating system logs, and server
side scripts which are used by the web application [9]. In many

Searching for Forensic Evidence in a Compromised
Virtual Web Server against SQL Injection Attacks

and PHP Web Shell
Gigih Supriyatno

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1058

cases, log file contains a large number of log entries. It will be
difficult and takes time to extract relevant evidence, analyze,
track and understand existing information efficiently and
reliably [9], [8].

This paper discusses the steps to find digital evidence using
log files against SQL injection attack and detect backdoor web
shells on compromised servers. It will help forensic
investigators to retrieve important information from the server
through simple operating procedures, and to offer investigation
of collections and reports of analysis related to digital
evidence. We use the attack simulation using SQL injection
vulnerability and then perform injection backdoor into server.

II. LITERATURE REVIEW

In order to conduct web forensic, it is necessary to use
special methods for forensic purposes to be achieved.
Following a standard methodology is crucial to perform a
successful forensic investigation. The European Union Agency
for Network and Information Security (ENISA) makes general
forensic process models that can be applied to a web server
including collection phases, data testing, data analysis and
reporting [10]. Suteva et al. perform forensic web servers using
three-stage forensic processes including data acquisition,
analysis, and reporting [7]. They simulate frequent attacks on
websites such as SQL injection, XSS, Remote File Inclusion,
and command-line injection. Their forensic process is done
manually against multiple log files using known keywords to
detect attacks.

Common methods of forensic web server process carried out
include the following stages [9], [11] :
1. Protect the web application during the forensic

examination to prevent any modification of the evidence
files. Protection can be done for multiple servers
depending on the condition of the object forensics.

2. Discover all files needed for the forensic investigation.
3. Perform forensic analysis of the files considering the order

of events and the degree of compromise, and then create
chain of events.

4. Create a report of the results of the investigation of the
data files obtained from web applications.

5. Prepare recommendations for post-event actions.
Previous researches are common case when attacks occur on

the web server. We found that there is still an open space for
the development and research on the technical forensic web
server in special cases such as SQL attack and backdoor
injection.

III. ATTACK SCENARIO

Focus of this paper is to detect SQL injection attacks and
successful backdoor uploads on web server. We use attack
scenarios against web servers. Each step is viewed at the
application layer level. The importance of understanding the
attack technique is by understanding how an attacker performs
an action will find it easier to find digital evidence left behind.
This simulation ignores the stage of scanning and gathering
information that is commonly done when performing

penetration tests, although at that stage there will be many
traces left by attackers in the server log.

The web server used in this simulation uses Ubuntu 12.04
32-bit, Apache 2.2.22, MySQL 5.5.35, PHP 5.3.10-1, and
bWAPP web applications. The web server and the attacker's
computer are on a LAN network. The web server is operated in
Virtual Machine (VM) using VMware Fusion. The dummy
domain used in simulation as a website is www.presiden.info
with IP address 192.168.179.142. Simulated attacks were
carried out through two stages i.e. SQL Injection and backdoor
upload. The detailed working of the simulated attacks is
described as a flow chart shown in Fig. 1.

Fig. 1 Flowchart attack scenario

A. SQL Injection

SQL injection is carried out using the tools sqlmap to create
malicious queries of SQL. The attacker is assumed to have
knowledge of the target server URL that is vulnerable to SQL
injection. HTTP POST and HTTP GET methods used in these
simulations to see the characteristics of the traces left behind
on the server.

B. Upload Backdoor

The attacker sends shell stager file to the web server before
uploading the main shell's web. The shell stager searches for
the writeable permissions on the web server. The location of
the stager shell should be accessible by the attacker's browser.
Shell stager is written through SQL query and encoded
according to successful injection query in web server
execution.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1059

Fig. 2 Log analysis flowchart

IV. METHOD FOR SEARCHING EVIDENCE

In this section, we describe how we investigate evidence
from a suspected web server. Our method is highly dependent
on the information recorded on the log file. Log files that we
need primarily come from web servers and database
applications. We use several assumptions related to log
configurations that run on the web server.
 Log files that created by apache did not record HTTP

POST parameters.
 Mysql application's log file records all the queries that

occur.
 Entries in the log file are the original of the authorized

application. The attacker does not re-write the contents of
log files with fake entries.

 The attacker performs a simple delete operation against the
log files.

The first phase, we copied the hard drive from the evidence.
At this stage we describe the acquisition on the virtual machine
server but not in detail. In the second phase, we perform log
analysis using the procedure shown in the Fig. 2. Our method
investigates the events recorded on a log file and performs
cross-checking with other log files. When conducting an
investigation of event information, there is an opportunity for

investigators to use two analytical methods that is using rule-
based software detection or manual detection. The final phase
is the creation of reports that the timeline of attacks and
evidence found.

A. Data Acquisition

Data acquisition of the VM web server begins with a
snapshot of the last condition of the web server [12]. After the
snapshot is finished, the server is suspended for a while then
copies the hard disk artifact into forensic media storage. In
virtual environment, performing bit-to-bit copy is same as
copying the VM files (such as vmdk, vmx, and vmem) to other
storage media. The VM artifacts are duplicated for the
analytical process and then record the hash value to maintain
the integrity of the data.

B. Data Examination and Analysis

There are two options that forensic investigators can do
when analyzing VMs artifacts:
a) Continue a suspended VM and analyze live machines

using normal procedures. Using this method, the
investigator can search and analyze evidence in a flexible
manner such as conducting live forensic testing. The
disadvantage of this technique is that during resume
process many files stored on the hard disk might change
including information stored in memory, which may
damage evidence.

b) Analyze VM files without resuming suspended machines.
This technique works directly with the VM files that are
stored on forensic media.

The second technique used an FTK Imager to retrieve files
that we need from the VMDK file and then we perform an
application analysis. In terms of the application analysis, we
seek for unusual entries in log files, check for files created or
modified around suspected time of attack, and cross-check
between them to find relationships between them. We
considered two main logs to be analyzed first; that is web
server log and database log. If no attack indication has been
found from them, additional log files are required. It can also
be used to combine the information found in the two files
before. The log analysis step is described in the flowchart
shown in Fig. 2.

1) Web Server Log File

In Apache, there are two important files used as forensic
material that is access.log and error.log. Usually, they can be
found in the same folder i.e. /var/log/apache/. We start with the
hypothesis of any hint of sqli attack. We can start an
investigation of the access.log file because it contains all
requests that occur to the web server. After that, we can
analyze the error.log file to look for other evidence. In cases of
access.log or error.log with small size, we can observe the logs
manually looking for a specific keyword using things like grep
or other searching software. But when we deal with a large size
of file log, we should use automated software such as scalp,
with manual inspection. Scalp is an open source web log
analyzer for Apache web server. It reads the apache log and
performs log analysis for possible attacks using provided rule

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1060

sets [13]. This can minimize the time required for the
investigator to find the attack fingerprint.

To detect sqli we check existence of specific keyword in
access.log such as “union”, “select”, single-quote “‘”, “into
file”, and some other SQL keywords. In the case of the GET
method, all parameters that go to the server are logged to
access.log so that sqli traces are easy to be found. But
access.log file does not contain all data of the HTTP POST
method. We only found the header form of POST method in
the access.log, so we used mysql.log to see if the POST
parameters sent were malicious queries. There are a few things
to be considered when doing an investigation on the access.log
file:
 The keywords used to detect sqli should be appropriate.

Investigators can use regular expressions for detection of a
typical sqli attack.

 If any suspected sqli entries have been found in the log,
look for the initial entry of the traffic in the log file to
create a timeline of the attack. Record the IP address of the
client as a suspect candidate.

 Investigator needs to observe the status code of the HTTP
request. A status of 404 can also give an indication that the
attacker is doing web page enumeration.

 In case of sqli with POST method has the characteristics
that there are POST headers with the similar URL
accessed sequentially within the specified time range. The
trace is created when an attacker performs a POST method
attack on a URL even with different size payloads.

Record important information obtained from the
investigation such as IP address, date, time, size of payload,
HTTP method, and URL. The record becomes a result of the
examination of the web server log. We can obtain information
based on Fig. 3.
a) IP address 192.168.179.1 is suspected attacker.
b) The attack starts at 03/Apr/2018 23:20:23 +0700 UTC.
c) The attack using GET method to exploit URL

“www.presiden.info/sqli_1.php?title=”.

Access.log GET method:
 192.168.179.1 - - [03/Apr/2018:23:20:23 +0700] "GET
/sqli_1.php?title=admin' or '1'='1&action=search HTTP/1.1"
200 1382
"http://www.presiden.info/sqli_1.php?title=Joe&action=search"
"Mozilla/5.0 AppleWebKit/537.36 Chrome/65.0.3325.181
Safari/537.36"

Fig. 3 An indication of SQL Injection using GET method

Fig. 4 An indication of SQL Injection using POST method

TABLE I
SUSPICIOUS ENTRIES RECORDED IN ACCESS.LOG

No Log entries

1

192.168.179.1 - - [03/Apr/2018:22:54:59 +0700] "POST /sqli_6.php
HTTP/1.1" 200 1346 "-" "Mozilla/5.0 (Windows; U; Windows NT

6.0; en-US) AppleWebKit/532.0 (KHTML, like Gecko)
Chrome/4.0.202.0 Safari/532.0"

2

192.168.179.1 - - [03/Apr/2018:22:54:59 +0700] "GET /tmpuecpj.php
HTTP/1.1" 404 469 "-" "Mozilla/5.0 (Windows; U; Windows NT 6.0;
en-US) AppleWebKit/532.0 (KHTML, like Gecko) Chrome/4.0.202.0

Safari/532.0"

3

192.168.179.1 - - [03/Apr/2018:22:55:14 +0700] "POST /sqli_6.php
HTTP/1.1" 200 4397 "-" "Mozilla/5.0 (Windows; U; Windows NT

6.0; en-US) AppleWebKit/532.0 (KHTML, like Gecko)
Chrome/4.0.202.0 Safari/532.0"

SQL Injection using POST method is often difficult to detect

because they are similar to other normal POST traffic in
access.log files. But we can pay close attention to a similar
URL accessed sequentially within the specified time range, as
shown in Fig. 4. There are various payload sizes recorded as
POST parameters. We can verify that POST payload using
other information was founded in the database log.

When performing POST method analysis on the access.log

file, investigator persistence is required. Based on Table I, the
log number 1 indicates a header with POST method that looks
like normal access. We did not know what kind of packet the
IP address had sent to the server via the POST parameter. In
log number 2, with a very close time difference, the same IP
address tries to access the /tmpuecpj.php page using the GET
method but the page does not exist and the response is 404.
Log number 3 with the time contiguous to log number 1 and
log number 2 tries to access the sqli_6.php page with a larger
payload size from log number 1. That log is our concern for the
next action investigation.

2) Database Log File

Mysql has three standard log files that can be used as
forensic materials. They are general query logs, error logs, and
slow query logs. By default, mysql does not enable the log
facility, therefore it is recommended to the administrator to
enable the feature. General query logs and error logs are the
two most important features of the investigation process.
General query logs are usually stored in the mysql.log file. The
mysql.log file provides information about query activity not

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1061

found in the web server log. In the case of sqli attacks using the
POST method, the investigator can perform a query search
stored within the POST parameter through the file. While
error.log contains information about errors that occur while the
server is running.

The investigator can start his investigation through the
mysql config file, my.cnf, to check whether the mysql logging
facility is enabled and the file name used. In this case, the log
feature is enabled and stored in files named mysql.log,
error.log, and mysql-slow.log. We perform investigation
priorities with mysql.log, error.log and mysql-slow.log. Based
on Table I, POST parameters of log number 1 can be traced
using keywords based on time range of events, 03/Apr/2018
22:54:59. Based on Table II, we found the relationship that log
number 1 and log number 2 in Table I are sequences of bound
events. The attacker tries to write a file named “tmpuecpj.php”
in the “/var/www/presiden/” directory via the SQL query in the
POST parameter of log number 1 and then they try to access
the tmpuecpj.php file. But their efforts were unsuccessful, as
we saw from the response server 404.

TABLE II
RECORDED QUERY BASED ON TIME RANGE OF EVENTS

Query Log
180403 22:54:59 88 Connect root@localhost on

88 Init DB presiden
88 Query SELECT * FROM movies WHERE title LIKE '%%' LIMIT 0,1

INTO OUTFILE '/var/www/presiden/tmpuecpj.php' LINES TERMINATED
BY

0x3c3f7068700a69662028697373657428245f524551554553545b2275706c6f6
16420e616d653d75706c6f61642076616c75653d75706c6f61643e3c2f666f726

d3e223b7d3f3e0a-- #%'
88 Quit

We apply searches based on keywords commonly used by

attackers when writing or accessing files through SQL injection
vulnerabilities like outfile, dumpfile, and load_file. Then, we
found evidence when the attacker wrote a malicious file. We
can check the existence of that file in the known directory or
we can re-examine the web server logs to obtain any other
suspicious activity.

TABLE III

SUSPICIOUS QUERY
Query Log

180501 7:12:05 52 Connect root@localhost on
52 Init DB presiden

52 Query SELECT * FROM movies WHERE title LIKE '%=joe' UNION ALL SELECT
NULL,NULL,NULL,NULL,NULL,0x61646d696e61646d696e00202020203c68c2f74643e0a202020203c2f54523e223b0a202020207d0a202020207d0a20202020

6563686f20223c2f5441424c453e223b0a202020203f3e0a0a202020203c2f626f64793e0a202020203c2f68746d6c3e,NULL INTO DUMPFILE
'/var/www/html_presiden/upload.php'#%'

52 Quit

TABLE IV

SUSPICIOUS ENTRIES IN ACCESS.LOG

No Log entries

1
192.168.179.1 - - [01/May/2018:07:12:05 +0700] "POST /sqli_6.php HTTP/1.1" 200 4011 "http://www.presiden.info/sqli_6.php" "Mozilla/5.0

(Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.117 Safari/537.36"

2
192.168.179.1 - - [01/May/2018:07:13:45 +0700] "GET /upload.php HTTP/1.1" 200 3254 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.117 Safari/537.36"

3
192.168.179.1 - - [01/May/2018:07:14:17 +0700] "POST /upload.php HTTP/1.1" 200 3299 "http://www.presiden.info/upload.php" "Mozilla/5.0

(Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.117 Safari/537.36"

4
192.168.179.1 - - [01/May/2018:07:14:23 +0700] "GET /rcd.php HTTP/1.1" 200 1065 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.117 Safari/537.36"

We found connection between queries in Table III with logs

in Table IV. Queries in Table III are the contents of the POST
parameter of log number 1. It is confirmed from log number 2
that shows the attacker attempted to access the upload.php page
result from log number 1 with responses 200 from the server.
Unfortunately we cannot find the contents of the POST
parameter log number 3, because the server does not record the
contents of the POST parameters. However, we can deduce
from log number 4 that log number 3 sends an rcd.php file to
the server.

3) Additional Logs

Web forensic analysis can be done by examining additional
queries that come from other logs in the web server. There are
certain web applications that include special log features for
themselves. Investigators can use that log file to obtain
indications of attack. It can be another source of information
that confirms evidence at the previous source. In this paper, we

do not explain in detail how to analyze logs from the other
sources, but its opportunities as forensic materials are wide
open such as antivirus server logs, event logs, service logs,
firewall logs and system logs also help in tracking a web server
incident.

4) Searching Web Shell

Web shell is a post-exploitation tool, attacker first has to find
a vulnerability in the web server, exploit it, and upload their
web shell to the server [14]. They will leave enough footprints
except for those who are already skilled and eliminating tracks.
We use two techniques to trace the existence of a web shell
within the server. The first technique uses evidence that we
found on the web server logs and database logs before. We use
time range analysis of events. We utilized access.log and
mysql.log of the web server as primary source. From the
evidence we find earlier, there are some files that are inserted
by the attacker inside the web server. There are

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1062

“tmpuecpj.php”, “upload.php”, and “rcd.php”. Then we check
the existence of the file and we perform static code analysis.

The difficulty of the first technique is if an attacker creates a
file name similar to a normal file name on the web server.
Investigators should search from thousands of files on the web
server. But, this can be minimized by analyzing the time range
of attacks that occur so as to obtain initial conclusions about
the web shell location. Therefore, analysis of web server logs
and database logs become important as the starting points for
the investigator to find a web shell.

The second technique utilized an automatic web shell
detector. There are some commercial or freeware web shell
detectors available. Some web shell detectors use a web
signature database known to identify a web shell, while other
detectors perform code analysis based on commonly used
functions as part of a web shell. The disadvantage of this
technique is when webshell uses obfuscation technique in order
to avoid detection, web shell detector cannot detect it. Because
the webshell's detection method doesn't work properly, so it
makes false positive results.

We used web shell detector to detect malicious PHP file in
our web page directory. Web shell detector detected “rcd.php”

as a suspicious file, but not “upload.php”, as shown in Fig. 5.
The rcd.php contains obfuscated program code obfuscated
using "eval(gzinflate (base64_decode ())))" method. While
upload.php is a stager file used to upload the rcd.php web shell.
This confirms the correlation of log number 3 and log number
4 of Table IV.

Fig. 5 The rcd.php detection results

C. Reporting

The last stage of the forensic process is make a report. We
create reports in timeline format as in Table V.

TABLE V

INVESTIGATION RESULTS IN TIMELINE EVENTS

Time Log entries Comment

4/3/2018
10:54:59 PM

192.168.179.1 - - [03/Apr/2018:22:54:59 +0700] "POST /sqli_6.php HTTP/1.1" 200 1346 "-"
"Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) AppleWebKit/532.0 (KHTML, like Gecko)

Chrome/4.0.202.0 Safari/532.0"
First attack attempt;

Confirm at query in mysql.log;
Write tmpuecpj.php into server 4/3/2018

10:54:59 PM
88 Query SELECT * FROM movies WHERE title LIKE '%%' LIMIT 0,1 INTO OUTFILE

'/var/www/presiden/tmpuecpj.php'

4/3/2018
10:54:59 PM

192.168.179.1 - - [03/Apr/2018:22:54:59 +0700] "GET /tmpuecpj.php HTTP/1.1" 404 469 "-"
"Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) AppleWebKit/532.0 (KHTML, like Gecko)

Chrome/4.0.202.0 Safari/532.0"

Unsuccessful file writing in
previous step.

4/3/2018
11:20:23 PM

192.168.179.1 - - [03/Apr/2018:23:20:23 +0700] "GET /sqli_1.php?title=admin' or
'1'='1&action=search HTTP/1.1" 200 1382 "http://www.presiden.info/sqli_1.php?title=Joe&action=
search" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/65.0.3325.181 Safari/537.36"

SQL Injection GET method

5/1/2018
7:12:05 AM

192.168.179.1 - - [01/May/2018:07:12:05 +0700] "POST /sqli_6.php HTTP/1.1" 200 4011
"http://www.presiden.info/sqli_6.php" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.117 Safari/537.36"
SQL Injection POST method;
Confirm at query in mysql.log;
Write upload.php into server. 5/1/2018

7:12:05 AM

52 Query SELECT * FROM movies WHERE title LIKE '%=joe' UNION ALL SELECT
NULL,NULL,NULL,NULL,NULL,0x61646d69793e0a202020203c2f68746d6c3e,NULL INTO

DUMPFILE '/var/www/html_presiden/upload.php'#%'

5/1/2018
7:13:45 AM

192.168.179.1 - - [01/May/2018:07:13:45 +0700] "GET /upload.php HTTP/1.1" 200 3254 "-"
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/66.0.3359.117 Safari/537.36"

Successful file writing of
upload.php;

Get 200 response server.

5/1/2018
7:14:17 AM

192.168.179.1 - - [01/May/2018:07:14:17 +0700] "POST /upload.php HTTP/1.1" 200 3299
"http://www.presiden.info/upload.php" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.117 Safari/537.36"

upload.php page send unknown
data to server using POST method.

5/1/2018
7:14:23 AM

192.168.179.1 - - [01/May/2018:07:14:23 +0700] "GET /rcd.php HTTP/1.1" 200 1065 "-"
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/66.0.3359.117 Safari/537.36"

Unknown page exists after POST
method using upload.php.

- /var/www/tmpuecpj.php File does not exist in server.

- /var/www/upload.php
File exists;

Suspected as malicious code;
Created at 5/1/2018 7:12:05 AM.

- /var/www/rcd.php

File exists;
Suspected as malicious code;

Created at 5/1/2018 7:14:17 AM;
File contains encoding base_64.

V. DISCUSSION AND CONCLUSION

We can summarize several conclusions from the obtained
results. SQL Injection attack and use of web shell leave traces

on a web server. There are some very important log files as
forensic materials. Our method is to utilize log files from web
server applications and database applications as the primary

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:12, 2018

1063

source. We perform cross-analysis of the information found on
access.log and mysql.log using suspicious time and keyword
parameters to seek for evidence of sqli attack and web shell.
These results can help to reconstruct the timeline of attacks and
it can be also as valid evidence in the court of law.

In the scenario we created, the forensic methods we did
successfully identified sqli attacks and detected a PHP web
shell inside the compromised server. With the limitation of our
work, there is space for researchers to investigate a better
method to conduct web forensic analysis.

REFERENCES
[1] P. Technologies, “Web Application Attack Statistics 2017.” (Online).

Available: https://www.ptsecurity.com/upload/corporate/ww-
en/analytics/WebApp-Attacks-2017-eng.pdf.

[2] R. U. Putri and J. E. Istiyanto, “Analisis Forensik Jaringan Studi Kasus
Serangan SQL Injection pada Server Universitas Gadjah Mada,”
Indones. J. Comput. Cybern. Syst., vol. 6, no. 2, p. 12, 2012.

[3] R. J. Manoj, D. A. Chandrasekhar, and M. D. A. Praveena, “An
Approach to Detect and Prevent Tautology Type SQL Injection in Web
Service Based on XSchema validation,” Int. J. Eng. Comput. Sci., no. 1,
p. 5, 2014.

[4] B. Nagpal, N. Chauhan, and N. Singh, “A Survey on the Detection of
SQL Injection Attacks and Their Countermeasures,” J. Inf. Process.
Syst., vol. 13, no. 2017, p. 14.

[5] B. Dickson, “Why are web applications attractive targets for hackers?,”
TechTalks, 29-Feb-2016. (Online). Available:
https://bdtechtalks.com/2016/02/29/why-are-web-applications-attractive-
targets-for-hackers/. (Accessed: 10-Apr-2018).

[6] “Web Shells – Threat Awareness and Guidance.” (Online). Available:
https://www.us-cert.gov/ncas/alerts/TA15-314A. (Accessed: 01-Apr-
2018).

[7] N. Šuteva, A. Mileva, and M. Loleski, “Finding forensic evidence for
several web attacks,” Int. J. Internet Technol. Secur. Trans., vol. 6, no.
1, p. 64, 2015.

[8] A. Fry, “A Forensic Web Log Analysis Tool: Technique and
Implementation,” Thesis Dissertation, Department of Concordia Institute
for Information Systems Engineering, Concordia University, Montreal,
Canada, 2011.

[9] A. Lazzez and T. Slimani, “Forensics Investigation of Web Application
Security Attacks,” Int. J. Comput. Netw. Inf. Secur., vol. 7, no. 3, pp.
10–17, Feb. 2015.

[10] L. Palkmets, “Forensic Analysis,” ENISA, p. 68, 2016.
[11] O. Segal, “Web Application Forensics: The Uncharted Territory.”

Sanctum, 2002.
[12] M. Hirwani, Y. Pan, B. Stackpole, and D. Johnson, “Forensic

Acquisition and Analysis of VMware Virtual Hard Disks,” Rochester
Institute of Technology, 2012.

[13] S. Zakharchenko, “apache-scalp: Scalp!/Anathema is a log analyzer for
web server (Apache, nginx) (Python3),” 01-Apr-2018. (Online).
Available: https://github.com/nanopony/apache-scalp. (Accessed: 01-
May-2018).

[14] S. Agisilaos, “Detecting Malicious Code in a Web Server,” Departemen
Of Digital Systems, University Of Pireaus, Athens, 2016.

